
CSC487/2503—Foundations of Computer Vision, Fall 2007

Assignment 2: Robust Estimation of Image Models

Due: 1:10pm, Thurs., Nov. 1 (before the lecture)
This assignment is worth 15 marks towards your grade in this course.

Robust estimation of parameterized models. In your new job as a machine vision specialist, a geneticist
drops by with microscope images such as the one depicted in Fig. 1a. She wishes to automatically count the
cells in these images, and take specific note of cells that are in various stages of splitting. Here we consider
two applications of robust estimation that together will get us started on a solution for the geneticist.

Figure 1: Cell image (a) with fitted cells (b) (view in colour).

What to hand in. Write a short report addressing each of the itemized questions below. The reports can
be electronic, in the form of a PDF file. Alternatively, neatly hand-written reports including printed copies of
the images output by your program are also acceptable. You can assume that the marker knows the context
of the questions, so do not spend time repeating material in the hand-out, or in class notes. Also, your
completed Matlab code should be in one directory A2/, and either zip or tar it up. Email the zip/tar ball to
mbrubake@cs.utoronto.ca.

Download the starter code cellFinder.zip from the course homepage.

Undergraduates. Students registered in CSC487 (i.e., undergraduates) only need to do question 2 below,
although I will give you a 50% bonus if you successfully complete both questions. Grad students will be
marked on both questions.

1. Smooth background model [20pts]. Our first task is to model the slowly varying background brightness
in the microscope images. We will make use of this background model to differentiate between cell pixels and
background pixels, and thereby detect cells. In the next question we will model the shapes of these detected
cells. Specifically, our first goal is to find coefficients ~c such that

I(~x) ≈

K
∑

k=1

Bk(~x)ck.

The basis functions Bk(~x) are formed using Gaussians Gk(~x) ≡ G(~x − ~xk, σB), having standard deviation σB

and centered on points ~xk arranged in a coarse 2D sampling grid. The spacing between the grid points ~xk is
set to be 0.8σB in both the x and y directions. In order to represent smooth functions, we set σB to be large,
say σB = 100 pixels.

1

Given an image I(~x), consider the robust objective function

Od(~c) ≡
∑

~x∈R

ρ (e(~x;~c), σg) , e(~x;~c) ≡ I(~x) −

K
∑

k=1

Bk(~x)ck (1)

Here R is the whole set of image pixels. Here we will set ρ(e, σg) to be the Geman-McLure (GM) estimator
introduced in class,

ρ(e, σg) =
e2

σ2
g + e2

. (2)

The vector of unknown coefficients ~c = (c1, . . . , cK)T for the smooth background is then chosen by minimizing
this objective function Od(~c).

1a. Using the GM estimator ρ(e, σg) in equation (1), derive an iteratively reweighted least squares algorithm
for computing the coefficients ~c. That is, given an initial guess ~c0, we iterate an equation of the form

Dν~cν+1 = ~bν . (3)

Here Dν is a K × K matrix and ~bν is a K-vector, where K is the number of RBF kernels in (1). Both Dν

and ~bν depend on the robust weights w(eν), which are evaluated using the current coefficient vector ~cν .
The solution ~cν+1 of this matrix equation provides the updated coefficient vector.

Show the derivation of expressions for Dν and ~bν by following a roughly similar approach to the one for
line estimation done in the class notes.

1b. Implement the iteratively reweighted least squares approach described in equation (3) above by completing
the M-file robustBack.m. Note that many of the tools you need to do this are provided in the rbf/

directory of the handout code. The implementation requires an initial guess for ~c0 and a value for the scale
σg of the robust estimator. Use a least squares estimate for the initial guess (i.e., for ν = 0 in (3), set all

the weights used to form D0 and ~b0 to be one).

For subsequent iterations, in order to set σg in the robust estimator, we need an estimate for standard
deviation of the noise for the inliers. A simple way to do this is to approximate the errors for the inliers to
be Normally distributed, and to assume the median absolute error |e(~x)| is approximately the median of
the absolute values from this Normal distribution. To match the width of the GM weight function to the
standard deviation of the noise, use

σg = 2median(|~e|). (4)

This value of σg is updated each time the coefficients are updated in the IRLS algorithm.

Complete the IRLS implementation and test it on the images provided in the images/ directory in the
handout. Convergence may require 20 to 50 or so iterations.

In your write up, include the following images as displayed by your solution code: i) the original image,
I(~x), ii) the estimated background image b(~x) ≡

∑

k Bk(x)ck, iii) the error image I(~x) − b(~x), and iv)
the GM weight image w(~x). Comment on the behaviour of this algorithm. How well does it estimate the
background for the images tested? Can you identify specific issues with the approach? Explain.

1c. On some images the converged value of σg (when the approach described in 1b. above is used) is rather
large. In particular, it is significantly larger for shirt03.pgm than either of other two shirt##.pgm images.
Explain why this happens.

In order to avoid this, consider a form of deterministic annealing where we force σg to decrease to some
prespecified value σg,min. For example, on iteration ν + 1 in (3) take

σg,ν+1 = max [σg,min, min {2median(eν), ρσg,ν}] , (5)

where ρ is a constant less than one (e.g. ρ = 0.9). When σg,ν is significantly larger than σg,min, the above
rule sets the new value σg,ν+1 to be less than or equal to ρ times the previous value. That is, σg,ν is forced

2

to decrease to σg,min. As in part 1b, this whole process can be started at ν = 0 using the least squares
solution (and, for ν = 1, set σg,0 = 2median(e0)).

Comment on the change in the performance on the shirt03.pgm image due to this annealing.

1d. A second issue with the implementation in 1b is that, on some images, the data contributing to a particular
RBF basis function may all (or mainly) have small weights (e.g., try images/f0300crop.pgm, for example).
This situation causes the matrix Dν in (3) to be nearly singular. To deal with these cases we add a
“regularization” term Or(~c) to the objective function (1). The general idea is that this regularizer helps
control the solution in these weakly constrained regions, but provides only a small bias on the solution in
strongly constrained regions.

We consider the regularizer

Or(~c) = αr

∑

k(i,j)

(ck(i+1,j) + ck(i−1,j) − 2ck(i,j))
2 + (ck(i,j+1) + ck(i,j+1) − 2ck(i,j))

2. (6)

Here ck(i,j) denotes the RBF coefficient in the ith row and jth column of the spatial grid of RBFs. The sum
in (6) is only taken over points (i, j) away from the boundary of the grid (so ck(i±1,j±1) are all defined).
Finally, the constant αr in (6) determines the relative importance of this regularization term, as compared
to the so-called “data term” in (1).

Derive the form of the equations for ~c which minimize the regularized objective function

O(~c) = Od(~c) + Or(~c). (7)

Hint: The equations are only a small modification of the ones you previously derived in part 1a. Modify your
IRLS solver from parts 1b and 1c to minimize this regularized objective function. Discuss the behaviour
of the solutions for various values of αr.

2. Robustly Fitting Circles [20pts]. The handout code findCell.m first loads previously saved results
from a solution of question 1. In particular, the image, the fitted background image (using σB = 100 in
the RBF functions), and the weight image are recovered from a .mat file for the selected cell image. For a
given cell image, the handout code detects cell pixels using the weight image, and clusters these detected cells
into connected segments. Canny edgels are computed on results these segmentation results. The code then
considers each connected segment separately.

Your job is to fit circles to the edgels obtained from the boundaries of these segments. The idea is that each
fitted circle should correspond to one “cell” including, perhaps, a small circle for a cell just being born by
splitting off from another cell (see Fig. 1b). I realize that this is a vague definition of what constitutes a “cell”.
However, if you study Fig. 1b (perhaps by blowing it up in the electronic copy), I think it is intuitively clear
what is meant by a “cell”. Part of your job in this question is to decide on how to operationally define our
intuitive notion of one cell.

In the following we denote a given edgel by (~xk, ~nk), where ~xk is the image position and ~nk is the edgel normal,
which points in the direction of increasing brightness. Let ~tk = (n2,k,−n1,k)T , which is a unit vector in the
direction tangent to the edgel.

2a. Circle proposals. The first step in the inner-most loop in findCell.m is a call to getProposals. When
finished this function should return a P × 3 array circles, where each row of circles corresponds to the
parameters (xc, yc, r) of a circle. Here ~xc = (xc, yc)T denotes the image position of the center of the circle
(in the original image, not the cropped image), and r denotes the radius of the circle. In your solution you
can change the number and type of getProposals’ parameters, and also change the returned values (so
long as the circles array described above is returned).

The approach we advocate for implementing getProposals is to randomly sample two of the edgels pro-
vided by its parameters. Use the position and orientation of these two randomly sampled edgels to propose

3

a potential circle which passes close to these two image points, and with roughly the observed normals.
(If you cannot solve for a suitable circle for a particular pair of edgels, then sample again.) Repeat this
until you have P = numGuesses proposals. The remainder of getProposals in the handout code will then
display your circle proposals.

2b. Circle selection. The next step in findCell.m is to select the best circle from the proposed circles. A
good circle might be close to many edgels in the data.

One way to define this is to use the GM robust error function (2) on the error in a given edgel (~xk,~tk) with
respect to the circle centered at ~xc having radius r, say e(~xk,~tk; ~xc, r). We can express this error as

e(~xk,~tk; ~xc, r) =

√

[~nc(~xk) · (~xk − ~xc) − r]2 + [~nc(~xk) · ~tk]2β. (8)

Here
~nc(~xk) = (~xk − ~xc)/||~xk − ~xc||, (9)

is a unit vector in the direction of the edgel position ~xk from the circle center ~xc. The first squared term
in (8) therefore measures the squared distance between the edgel position ~xk and the circle specified by
(~xc, r). The second term involves the inner product of the edgel tangent with the normal to any circle
centered at ~xc. It therefore is the square of the sine of the angular error in the edgel. The value β is a
constant used to scale these angular errors so that the average magnitude of the two squared terms in (8)
are roughly equal for typical (inlier) edgels.

The error in (8) can be simplified by rescaling with the norm ||~xk − ~xc||, and using (8, 9). We find

||(~xk − ~xc)||e(~xk,~tk; ~xc, r) =

√

[(~xk − ~xc) · (~xk − ~xc) − r||(~xk − ~xc)||]2 + [(~xk − ~xc) · ~tk]2β. (10)

If we approximate the term r||(~xk − ~xc)|| by r2, we get the simpler scaled error,

s(~xk,~tk; ~xc, r) ≡

√

[(~xk − ~xc) · (~xk − ~xc) − r2]2 + [(~xk − ~xc) · ~tk]2β, (11)

≈ re(~xk,~tk; ~xc, r).

Finally, substituting e ≈ s/r in the GM estimator (2) we obtain a related estimator on s, namely

ρ(sk, σgr) =
s2

k

(σ2
gr2 + s2

k)
, where ~sk ≡ s(~xk,~tk; ~xc, r). (12)

Note the factor of r in the estimator’s scale parameter σgr. We therefore seek circle parameters (~xc, r)
which (locally) minimize the objective function

Oc(~xc, r) =
∑

k

ρ(sk, σgr). (13)

In this part of the question we use (13) only to select the best circle proposal from our list of proposals
(we consider finding local minima in the next part). We recommend that you use the sum of the robust
weights associated with the estimator in (13) as a goodness measure for the proposed circles. For example,
the proposed circle having the largest sum of weights might be selected as the winner. Alternatively, you
might also take the circumference of the circle into account, i.e., big circles might be expected to have a
larger sum of weights than little ones.

Implement your selection process in the function bestProposal. In your write up, clearly describe how
you select the best circle (be specific about what you mean by “best”).

2c. Robust fitting. Derive an IRLS algorithm for estimating the circle parameters (~xc, r) which minimize
(13). Include this derivation in your write-up. Modify the function fitCircleRobust to implement this
IRLS algorithm for robustly fitting a circle to your edgel data. Use the initial guess provided by part 2b.

4

2d. Model update. Finally, given the robustly fit circle, decide if it should be kept in the model (see the
function isGoodCircle). If it is decided that it should be kept, then the handout code greedily removes the
edgels from the data with sufficiently high weights. Steps 2a-d are then repeated to fit additional circles.
The cell finder is now complete.

In your write up, describe on what basis (and why) your isGoodCircle function decides to keep a new
circle. Finally, briefly describe any issues you noticed with the overall implementation.

5

