
CSC487/2503—Foundations of Computer Vision, Fall 2009

Assignment 1: Photometric Stereo

Due: 12:10pm, Mon., Oct 5 (at the start of the tutorial)
This assignment is worth 15 marks towards your grade in this course.

The purpose of this assignment is to construct a depth field from a series of images of an object from the same
view point, but under different illumination conditions. We assume orthographic projection of an object with
Lambertian reflectance, illuminated by several distant point light sources. This problem is widely known as
Photometric Stereo.

Your goal is to 1) recover the light source directions, 2) estimate the surface normals at each pixel, 3) estimate
the albedo of the object at each pixel, and 4) estimate the depth (or height) at each pixel. You will be given a
collection of test images.1 For each of six objects you will receive 12 images. For a single object all the images
are taken from the same camera position and viewing direction. They are, however, taken under different
point light sources; this is the key. In addition to the 12 images there is a mask image for each object that
specifies those pixels to which the object projects in the images. Finally, in addition to the test objects there
are images taken of a chrome sphere (from which you will estimate six of the light source directions).

Download the handout code A1handout.zip from the homepage. These files will be used in the following
questions.

What to hand in. Write a short report addressing each of the questions below (either hand-written reports
with printed copies of a small sample of the result images, or a report submitted as a pdf file, are acceptable).
The report should be self-contained in that the marker should not have to run your Matlab code to be convinced
your code is correct. In your report you can assume that the marker knows the context of the questions, so do
not spend time repeating material in the hand-out or in class notes. Email a zip file containing the completed
Matlab files and pdf file (if any) to the TA at kalo@dgp.toronto.edu with the Subject: CSC2503 A1.

1. Calibration. Before we can extract surface normals from images, we have to calibrate our capture setup.
We need to specify the transformation from the scene to image coordinates. We also need to determine
the power and direction of the various illuminants, as well as the camera response function.

For this assignment, the camera response function has already been radiometrically calibrated. In partic-
ular, the gamma correction has been undone, and any vignetting has been corrected for. What this means
is that you can treat pixel values as (proportional to) scene radiance. So for a Lambertian surface we have
the image brightness Iν(~x), at a pixel ~x in each of the colour channels, ν = R, G, B, is given by

Iν(~x) = aν(~x)b~n(~x) · ~Lc. (1)

Here aν(~x) for ν = R, G, B is the albedo of the surface at pixel ~x (within the range [0, 255]), and ~n(~x) is

the surface normal. Also ~L represents both the direction and intensity of the light source. We assume the
strength of the different light sources has been balanced, and take ||~L|| = 1.

The only remaining task in calibratng the capture setup is therefore to estimate the light source directions.
The method we suggest is based on images of a shiny chrome sphere, in the same location as all the other
objects, illuminated with the same point sources as the other objects. Since we know the object is spherical,
we can determine the normal at any given point on its surface, and therefore we can also compute the
reflection direction for any spot on the surface.

Toward this end we will assume a particularly simple projection model. First, for simplicity, let’s assume
that the world coordinate frame and the camera coordinate frame are coincident, so that the extrinsic

1Many thanks to Steve Seitz at University of Washington for providing the calibrated images.

1

mapping is the identity. And let’s assume a right-handed coordinate system (Y points down, X points
right, and the optical axis coincides with positive Z-axis). Finally let’s assume an orthographic projection.
Accordingly, the direction of the camera from any point on the objects of interest in the scene is (0, 0,−1).

With these assumptions we can specify the mapping from points in the world, ~X = (X, Y, Z)T , to the
locations of image pixels, ~x = (x, y), comprising the intrinsic and extrinsic transformations, as follows:

~x =

[

s1 0 o1

0 s2 o2

]





1 0 0 0
0 1 0 0
0 0 0 1





(

~X

1

)

(2)

where s1 and s2 are determined by the pixel dimensions, and (o1, o2)
T is a simple coordinate shift of the

origin (which we can take to be zero). Here we can use square pixels of unit size, so s1 = s2 = 1. With
these choices the orthographic projection reduces to ~x = (x, y)T = (X, Y)T .

Your Task. Given this setup, complete the M-function fitChromeSphere.m so that it estimates the light
source directions from the six images of the chrome sphere. (These are the same light source directions
for the first 6 images for each different object.) In your Matlab code avoid looping over image pixels. You
can test your code by running the script file soln.m (up to the first continue statement). This script calls
getLightDir.m, which in turn calls fitChromeSphere.m. In your report briefly describe the algorithm you
used here and your reasons for choosing it. (If you have trouble with this question, default light source
directions are provided in getLightDir.m. These are incorrect, but will let you begin doing the other parts
of this assignment.)

2. Computing Surface Normals and Grey Albedo. Let’s begin with a grey-level image I (perhaps just
the average of the three colour channels, R, G, and B). Then, given the model assumptions made above
of diffuse objects and distant point light sources, the relationship between the surface normal ~n(~x) and
albedo a(~x) at some scene point ~p which projects to image pixel ~x is given by

I(~x) = a(~x) ~n(~x) · ~L. (3)

This is a monochrome version of equation (1), with I(~x) denoting the image brightness at pixel ~x. Also,

for convenience, we have dropped the rectification of the ~n · ~L term. Essentially we are assuming that the
light source is positioned such that no visible piece of the surface is oriented away from the light source.
This assumption may not hold exactly, but it will simplify our estimation algorithms. Since our images
are already balanced as described above, we assume the incoming irradiance from each light is 1, that is
||~L|| = 1. Finally, it is also assumed that ~n(~x) is a unit vector.

Given the lighting directions computed in question 1, equation (3) provides one constraint on three un-
knowns, namely, the albedo a(~x) and two independent components of the direction of ~n(~x). With three
images, taken under linearly independent lighting directions, we should be able to uniquely constrain a(~x)
and ~n(~x). With more than three images we may not be able to find an exact solution, but we can formulate
a least-squares estimator for the unknowns a(~x) and ~n(~x).

Initially, let the unknowns at each pixel be written as a single 3-vector, for example, let ~g(~x) = a(~x)~n(~x).
We therefore wish to estimate the vector ~g(~x) at pixel ~x. Toward this end, our objective function for pixel
~x, given greyscale measurements Ij(~x) in image j, is

E(~x) =

6
∑

j=1

(Ij(~x) − ~g(~x) · ~Lj)
2 (4)

Here j indexes just the first six images, that is, the ones for which we obtained estimates of the light source
directions ~Lj in question 1 above. The objective E(~x) is then minimized with respect to ~g(~x).

Your Task. Derive the solution by differentiating E(~x) with repect to the elements of ~g (for a fixed pixel
~x) and then setting the derivatives to zero. Show your work here. Finally, given ~g(~x), it follows that the

2

grey-level albedo a(~x) is just the magnitude of ~g(~x) and ~n(~x) is of course the direction of ~g(~x). Implement
your solution in the M-file fitReflectance.m, which has been started in the handout code. In your Matlab
code, avoid looping over image pixels. When you complete this M-file, run the script file soln.m up to the
continue statement at the end of part 2. The script file will then display figures of your estimated grey
albedo and the components of the recovered normals.

3. Estimating Light Source Direction Given Scene Properties. The image data set for each object
includes six additional images taken from the same viewpoint as before, but with unknown light source
directions ~L. These are the last six images in each data set, and for these we do not have corresponding
images of the chrome sphere.

Your Task. Formulate a simple minimization problem to estimate both the direction and magnitude of ~L

for each of these additional images, given your results for a(~x) and ~n(~x) from question 2 above. Your write
up should clearly describe this minimization problem, and the algorithm you used to solve it. Implement
the algorithm in the appropriate part of soln.m. Your recovered light sources should be stored as columns
in the 3 × 6 array Lrec. The subsequent code in soln.m will then plot the recovered directions, and the
image reconstructions along with their errors (for all 12 images of each data set). Comment on the quality
of the (grey-level) image reconstructions. What sort of modelling errors are most apparent?

In addition, suppose one of the novel images was actually illuminated by two separate, distant, point light
sources of reduced intensity. If you ignore self-shadowing and the overall brightness, could you estimate
both light source directions from such an image? If so, explain how. If not, what could you estimate about
the two light source directions? Explain. (This is a theoretical question, you do not have to program
anything for this last part. Although, if you are curious, you can try this by computing the average of
any two images for a particular data set. This will provide a very good approximation of the image of the
object under both illuminants, each with reduced intensity.)

4. Computing RGB Albedo and Relighting. Above we computed the normal and albedo for a monochrome
(or grayscale) image. We can now use that normal to compute the albedo for all three colour channels.
You can formulate this as a least-squares estimator for the albedo aν(~x) for pixel ~x and color channel ν,
minimizing

Eν(~x) =

6
∑

j=1

(Iν (~x) − aν(~x)~n(~x) · ~Lj)
2 (5)

with ν ranging over R, G, and B, where all quantities are known except of course for aν(~x).

Your Task. To minimize equation (5), differentiate Eν(~x) with respect to aν(~x), set the derivative to zero
and solve. Show your work here. Complete the corresponding section of the script file soln.m. When this
is completed the code should display your estimated albedo (now in colour, check this on the cat, owl, or
rock image sets), and will synthesize new images from novel light source positions. Comment on the quality
of the newly synthesized images. (E.g., do they appear realistic?) Supposing that the recovered albedos
and surface normals are correct, what are some of the main remaining modelling errors in generating these
synthetically light images?

5. Surface Fitting. Finally we want to find a surface which has (roughly) these normals. Due to noise in
the estimated normals, we cannot simply integrate the surface normals along particular paths to obtain the
surface. The trouble is that, due to noise, the value we get will typically be path dependent. Therefore,
rather than attempting to compute a unique surface that is exactly consistent with all the normals, we will
use a simple least-squares estimator that is approximately consistent with the normals.

To formulate the problem, let’s first express the surface as ~S(X, Y) = (X, Y, Z(X, Y))T , in world coordi-
nates. We can then write two surface tangent vectors as

~τX =
∂~S

∂X
= (1, 0, ZX)T (6)

3

~τY =
∂~S

∂Y
= (0, 1, ZY)T (7)

where ZX = ∂Z
∂X

and ZY = ∂Z
∂Y

. And therefore the surface normal, a unit vector in the direction of the
cross product ~τX × ~τY , is given by

~n(X, Y) =
(ZX , ZY ,−1)T

||(ZX , ZY ,−1)||
(8)

We already estimated this normal ~n(~x) at every pixel in question 2 above.

To formulate our constraints on depth, we exploit equation (2), and write the depth derivatives, ∂Z
∂(X,Y) =

(ZX , ZY), as

∂Z

∂(X, Y)
=

∂Z

∂(x, y)

∂(x, y)

∂(X, Y)
=

∂Z

∂(x, y)

[

s1 0
0 s2

]

=

(

s1
∂Z

∂x
, s2

∂Z

∂y

)

(9)

Here we denote the pixel ~x as the 2-vector (x, y)T . Next, we use first-order forward differences to approxi-
mate the depth derivatives, yielding

ZX ≈ s1 (Z(x+1, y) − Z(x, y)) (10)

ZY ≈ s2 (Z(x, y+1) − Z(x, y)) (11)

We then substitute these two approximations into equations (6) and (7) to obtain approximate tangent
vectors. Ignoring image noise and errors in the numerical differentiation, we know that these tangent
vectors are perpendicular to the surface normal; i.e.,

~τX(x, y) · ~n(x, y) = 0 (12)

~τY (x, y) · ~n(x, y) = 0 (13)

These equations constrain the unknown depths Z using the known normal vectors. However, given any
solution Z(x, y) it follows that Z(x, y)+ c is also a solution for any constant c. To constrain this remaining
degree of freedom, set Z(x0, y0) = 0 at one pixel (x0, y0).

With some algebraic manipulation, one can rewrite the collection of constraints for pixels within the object
mask as

A~z = ~v , (14)

where ~z is a vector comprising the values in the depth map Z(x, y), the entries of the matrix A include
the third component of the normal at each pixel along diagonals and some off-diagonals, and the vector ~v

comprises the first and second elements of the normal vector at each pixel. The matrix equation has NM

columns and just less than 2NM rows. It’s very large. Fortunately, most of the entries are zero, and so
you can exploit the use of sparse matrix representations and solvers in Matlab. Given A and ~v you can
use the backslash Matlab operation A\~v to find the pseudo-inverse solution for ~z. As this is a large sparse
system Matlab will use an iterative conjugate gradient solver.

Your Task. Complete the M-file getDepthFromNormals.m so that it uses the above algorithm to estimate
the depths Z(~x). The handout code should then display your estimate. Describe, in no more than a few
paragraphs, your assessment of where the technique works well, and where there are failures. Where the
technique fails to produce nice results, please explain as best you can what are the likely causes of the
problems. Can you formulate ways to fix these problems?

4

