CSC 238H Midterm, Spring 2003

St. George Campus

Duration — 50 minutes

Student Number:		
Last Name:		
First Name:		
	No aids allowed.	
Do $oldsymbol{not}$ t	turn this page until you have received the si	$gnal\ to\ start.$

/10	# 1:
/10	# 2:
/10	# 3:
/30	TOTAL:

Good Luck!

PLEASE HAND IN

Question 1. [10 MARKS]

For each of the statements below, indicate whether it is true or false by circling the corresponding word. You do NOT need to justify your answers.

a. $15n^2 + 10n \in \mathcal{O}(n^3)$

- TRUE / FALSE
- **b.** $5n^2 \log(n) + 10n \in \Omega(n^2)$
- TRUE / FALSE

c. $n \log(n) + n \in \Theta(n)$

TRUE / FALSE

- **d.** $\frac{1}{500}n 10\sqrt{n} \in \Omega(n)$
- TRUE / FALSE
- **e.** $50n^2 \log(n) + 30n \in o(n^3)$
- TRUE / FALSE
- **f.** $50n^2 \log(n) 30n \in o(51n^2 \log(n))$
- TRUE / FALSE
- g. $15n^2 10n \in \Theta(20n^2)$
- TRUE / FALSE
- **h.** $3\log^2(n) \log(n) \in \mathcal{O}(\log(n))$
- TRUE / FALSE
- i. $\log(\sqrt{n}) \in \mathcal{O}(\sqrt{\log(n)})$
- TRUE / FALSE
- **j.** $\log(n^2 \log(n)) \in \mathcal{O}(\log(n))$
- TRUE / FALSE

Question 2. [10 MARKS]

Consider the function f(n) defined by

$$f(0) = 3,$$

$$f(1) = 0,$$

$$f(n) = 2f(n-2) + n^{2}, \text{ for } n \ge 2.$$
(1)

For example, f(2) = 10, f(3) = 9, and f(4) = 36. Prove that f(n+1) > f(n) for all integers $n \ge 3$.

Proof. Let S(n) be the statement "f(n+1) > f(n)". We will use complete induction to prove that S(n) is true for all $n \ge 3$.

Base Case. Equation 1 implies that f(2) = 10, f(3) = 9, f(4) = 36, and f(5) = 43. Therefore f(4) > f(3) and f(5) > f(4). And so f(5) > f(4) are true.

Let $k \geq 5$ be an arbitrary integer.

Induction Hypothesis. Suppose S(j) is true for $3 \le j < k$.

Induction Step. We need to prove S(k) is true. Since $k \geq 5$ we have $k > k - 2 \geq 3$ and, by the induction hypothesis, S(k-2) must be true. Therefore f(k-1) > f(k-2). We use this fact below.

Using equation (1) we find,

$$f(k+1) = 2f(k+1-2) + (k+1)^2$$
, by equation (1), since $k+1 \ge 2$,
 $> 2f(k-1) + k^2$, since $(k+1)^2 > k^2$,
 $> 2f(k-2) + k^2$, since we showed above that $f(k-1) > f(k-2)$,
 $= f(k)$, by equation (1), since $k \ge 2$.

Therefore f(k+1) > f(k) and so S(k) is true.

By mathematical induction it follows that S(n) is true for all n > 3.

If you need more space, continue on the back of this page.

Question 3. [10 MARKS]

Use an appropriate loop invariant to prove that the following program is correct.

```
IntLog(x, b)
Precondition: x, b are integers such that x \ge 1, b \ge 2.
Postcondition: Returns the integer k such that b^k \leq x < b^{k+1}.
1
      k := 0
2
      n := 1
3
      while n*b \leq x do
4
          k := k + 1
5
          n := n * b
6
      end while
7
      return k
```

Proof. Define L(i) to be the loop invariant: "If exactly *i* iterations have been completed, then $k_i = i$ and $n_i = b^i \le x$." We will use induction to prove that L(i) is true for all $i \in \mathbb{N}$.

Base Case: By lines 1 and 2 of the program, we find $k_0 = 0$ and $n_0 = 1$. Since b > 0 we have $b^0 = 1$. By the precondition $x \ge 1$, so we have $n_0 = b^0 = 1 \le x$. Hence L(0) is true.

Let i be an arbitary natural number.

Induction Hypothesis. Suppose L(i) is true.

Induction Step. We need to prove L(i+1) is true. If the loop exits before iteration (i+1), then L(i+1) is trivially true. Otherwise, when the loop body begins execution for the $(i+1)^{st}$ time then, from the induction hypothesis L(i), we have $k_i = i$ and $n_i = b^i \le x$. Moreover, the loop condition must be satisfied to allow iteration i+1, so $n_i b \le x$. By lines 4 and 5 we then have $k_{i+1} = k_i + 1 = i + 1$ and $n_{i+1} = n_i b = b^{i+1}$. Finally, since we know from the loop condition that $n_i b \le x$, we find that $n_{i+1} = n_i b \le x$. This proves that L(i+1) is true.

Therefore we conclude that L(i) is true for all $i \in \mathbb{N}$.

Partial Correctness. If the program terminates immediately after iteration i then, from the loop invariant L(i), we have $k_i = i$ and $n_i = b^i \le x$. Moreover, the loop condition $n_i b \le x$ must fail to hold, and therefore $n_i b > x$. It follows that $n_i = b^{k_i} \le x < b^{k_i+1}$ Therefore $k = k_i$ satisfies the postcondition upon termination.

Termination. Consider the sequence $\langle s_0, s_1, \ldots \rangle$ where s_i is defined only if the loop completes at least i iterations, in which case $s_i = x - n_i$. By the precondition and the loop invariant L(i), each of x, b, and $n_i = b^i$ are integers with $n_i \leq x$. Therefore $s_i = x - n_i \geq 0$ is a natural number. Moreover, if s_i and s_{i+1} exist, then

```
s_{i+1} = x - n_{i+1} = x - n_i b, by the loop invariant L(i+1),

< x - n_i, since 1 < b and 0 < n_i = b^i together imply n_i < n_i b,

= s_i.
```

Therefore $\langle s_0, s_1, \ldots \rangle$ is a decreasing sequence of natural numbers. Therefore it must be a finite sequence. Therefore the program must terminate.

If you need more space, continue on the back of this page.

Total pages = 4 End of Solutions