CSC238:Discrete Mathematics for Computer Science — Spring 2003

Solutions for Assignment 4.

1. For each of the following assertions, state whether it is true or false, and justify your
answer. You can use any means of justification you like, but if you use the logical equiva-
lences stated in the course notes then specify which ones. Here A(z) and B(x) are unary
predicates in the first order language L.

(a) Vz(A(xz) — B(z)) logically implies Jz(A(z) A B(z))

(b) Jz(A(z) — —B(z)) is logically equivalent to —=Vz(A(z) A B(x)).
(c¢) dzA(z) A Jz—A(x) is logically equivalent to 3z (A(x) A —A(z)).
(d) JzA(z) v Jz—A(z) is logically equivalent to Jz(A(x) V —A(z)).

Answers:

(a) Vz(A(z) — B(x)) does not logically imply Jz(A(z) A B(z)).
Proof. Suppose S is a structure for £ with domain D such that the predicates
A(z) and B(z) are associated with relations A° = () and BS C D. Therefore the
antecedent A(x) is false for all = and, as a result, Vz(A(z) — B(z)) is true. Also,
since JrA(z) is false, 3z(A(z) A B(x)) is also false for this structure. Therefore S is
a structure for which Vz(A(z) — B(z)) is true and 3z(A(z) A B(z)) is false, and we
conclude Vz(A(x) — B(zx)) cannot logically imply Jz(A(z) A B(z)).

(b) True. A proof is as follows:

dz(A(z) - —B(z)) LEQV 3Fz(-A(z)V -B(z)) by — rule,
LEQV 3Jz—(A(z) A B(xz)) by De Morgan’s law,
LEQV —Vz(A(z) A B(x)) by Rulel, p.186,.

(c) zA(x) A Jxz—A(z) is not logically equivalent to Jx(A(z) A ~A(z)).

Proof. Let S be a structure for £ with domain D = {a,n}, and suppose A(z) is
associated with the relation A% = {a}. Then A(z) is true for valuation 0% and false
for valuation o2 . Since the two predicates A(z) in the formula 3z A(z) A Jz—A(x)
appear in different scopes, these two valuations show that this formula is true for
this structure S. However A(zx) A —A(z) is unsatifisfiable, and hence is false for
any interpretation. Therefore dz(A(z) A —A(x)) is false. Thus the two formula
in question have different truth values for this structure S, hence they cannot be
logically equivalent.

(d) FzA(z) Vv Jz—-A(z) is logically equivalent to Jz(A(z) V —A(z)).
Proof. Both formulas are valid. Note there are two separate scopes for x in the

first formula, and that it is logically equivalent to JzA(z) V Jy—A(y). Let S be
any structure, with domain D. Then either AS =) and Jy—A(y) must be true

1

(since D # (), or AS # () and Iz A(x) must be true. In either case we see that
dxA(x) V dz—A(x) is true.

Similarly, for the second expression, the subformula A(z) V —A(z) must be true for
any valuation o(z), and hence Jz(A(z) V —A(x)) must be true. Therefore both
formula are true for any interpretation, and hence are logically equivalent.

2. Convert the following first order formula into a logically equivalent formula in Prenex Nor-
mal Form (PNF) which only uses the connectives =, A and V (along with the quantifiers
3 and V, of course). In particular, do not use the connective —.

(Vz—-T(z,z) = S(z,y,2)) A (-3FYVzR(y, z,z) — JzU(z)).
Show the steps through which you obtained your PNF formula.

A derivation is as follows. For the first term:

(Vz—T(z,z2) = S(z,y,2)) LEQV (Vw—-T(z,w)— S(z,y,2))
LEQV FJw(—-T(z,w) — S(z,y, z)) by Rule Ile, p. 188,
LEQV Fw(——T(z,w)V S(z,y,z))
LEQV Fw(T(z,w)V S(z,y,z))

For the second term:

—-3AYyVzR(y,z,) — J2U(x)) LEQV —3ItVuR(t, u,x) — U (v)
LEQV ——3tVuR(t,u,z)V FoU(v)
LEQV 3tVuR(t,u,z) Vv FoU(v)
LEQV 3tVudv(R(t,u,z) VU (v)).

The orginal formula is therefore logically equivalent to the conjuction of these two terms.
Since the quantifiers are all on distinct variables, they can be brought to the front of the
expression. We find the original expression is logically equivalent to

JwItVuv((T(z,w) V S(z,y, 2)) A (R(t,u,z) V U(v))).

Only the order of the quantifiers on variables ¢ and u matters.

3. Consider a first order language £ with predicates S(s,n,a), C(c,n), E(s,c,y,m) and
T(n,c,y), and the equality relation . Consider a structure for £ which consists of the
following relations corresponding to the predicates S, C', E, and 7', respectively:

e Student(s,n,a) — each student corresponds to a unique triple (s, n, a), where s is the
unique student number, n the student’s name, and a is the student’s address (all in
the form of character strings).

e Course(c,n) — each course corresponds to a unique pair (¢, n) where ¢ is the unique
course identifier (e.g. “CSC238”) and n is the course title (e.g. “Discrete Mathe-
matics for Computer Science”).

e Enrolled(s,c,y,m) — a quadruple (s, ¢,y, m) indicates that the student with student
number s was enrolled in the course ¢ in the year y and obtained the mark m. If the
course is currently being taken by the student, then the mark is recorded as an “I”
for incomplete.

e Teaches(n,c,y) — a triple (n,c,y) indicates that a professor named n taught the
course named c in the year y.

The domain D for this structure is the set of strings that form entries in this database. For
example, these strings include all the student numbers, names, addresses, course names,
course identifiers, years, and so on. We will also use these same strings as constants in the
first order language, so a formula such as (n = “Jepson”) is true only when the valuation
o is such that o(n) is the string “Jepson” in the domain D.

Write first order formulas expressing each of the following queries:
(a) Find the name and address of every student who took CSC238 in 2001.
ds(ImE(s, “CSC238”, “2001”,m) A S(s,n,a))
(b) Find the names of all the courses ever taught by Cook.
YT (“Cook”, c,y)
(c) Find the names of all the courses taught only by Cook.
YT (“Cook”,c,y) ANVn(FyT(n,c,y) — (n =~ “Cook™))

(d) Find the names of every student who has received an “A” or an “I” in every course
he/she has taken.

ds(3aS (s, n,a) AVVYyYm(E(s,c,y,m) = ((m~ “A”)V (m = “I”))))

(e) Find the names of every course that has not been taken by any student who has ever
enrolled in CSC238.

JtC(c,t) AVs(FyamE(s, c,y,m) — —JyamE(s, “CSC238",y,m))
4. Consider the alphabet ¥ = {0, 1} and the language
L = {z € X" : 01 and 10 are both substrings of = (perhaps overlapping)}.

For example, 010 € L since 01 and 10 are both substrings of 010, even though these
substrings overlap on the character 1. Construct a regular expression that denotes L, and
prove that it is correct.

Answer. A suitable regular expression is
R = (00*11*0 + 11*00*1)(0 + 1)*

Proof. Let s € L. Let n = |s| and suppose k and j are the indicies for the beginning
characters of the substrings 01 and 10, respectively. By the definition of L these indicies
must exist, and k # 7 with 1 <k <n and 1 < 7 < n. By definition of a substring notice
that we have sy =0, s,41 =1, and s; =1, 5,41 = 0.

Suppose k < j, that is the substring 01 appears before 10 in s. Since the (j 4 1)% element
of sis 0, we have s = uvOw where u = s1 ...k, ¥ = Sg11...5j, W = Sjto2...5, (ifn =j+1
then we take this notation to mean w = €). Also, since the first index for the substring 01
is k it follows that u; = 0. Moreover, since the first occurrence of the string 10 in s is at
j > k, this string 10 cannot appear in u. It therefore follows that u must be all zeros. (We
can prove this by contradiction. Suppose u is not all 0’s. Let 7 be the maximum index of a
1in u, so u; = 1. Notice we already know u; = 0 so ¢ < k. Since ¢ is the maximum index
for which u; = 1, and 7 < k, we infer u;;; = 0. Therefore 10 is a substring of u starting
at index ¢ < k. This contradicts the assumption that the first index of the substring 10 is
at index j > k. Therefore u must be all 0’s.) Note that uy = 0 so u is not the null string.
Thus v € £(00%).

Since 01 is a substring of s with index £, it follows that s, ; = v; = 1. From the fact that
the substring 10 first appears at index j > k it follows that v € £(11*). (This is proved by
contradiction, in a similar fashion to the argument above that v must be all 0’s. We omit
the details.) Therefore we have shown that wv0 is a prefix of s and wv0 € L£(00*11*0).
The suffix w of s starting at index j + 2 (or the null string if n = j + 1) is clearly in
L((0+ 1)*). Therefore it follows that s € £(00*11*0)L((0 + 1)*) = L(R).

For the second case we have j < k. A similar argument shows that s = wvlw with
u € L(11*), v € L(00*), and w € L((0 + 1)*). We omit the details. It again follows that
s € L(R).

Therefore in both cases we have shown s € £(R) and, since s was an arbitrary element
of L, we conclude that L C L(R).

To show the reverse, namely £L(R) C L, suppose s € L(R). Then by the definition of
regular expressions s = zw with w € L((0 + 1)*) and either z € L£(00*11*0) or z €
L£(11*00*1).

There are therefore two cases for the prefix z. In the first case, x € £(00*11*0). Thus
x = w0 with u € £(00*), v € L(11*). Let k = |u| and j = |v|. Tt follows that k,j > 1.
Therefore xxxr1 = ugvy = 01, and 01 must be a substring of x. Moreover, since x = uv0
and |v| = j > 1 we find that v;0 is a suffix of z. Since v € L£(11*) it follows that v; =1
and therefore 10 is a suffix of x. Thus we have shown that 01 and 10 are both substrings
of . Since x is a prefix of s, they must also be substrings of s. Therefore s € L for the
current case x € £(00*11*0).

Alternatively, in the second case, x € £(11*00*1). A similar argument to the one in the
previous paragraph shows that 10 and 01 must be substrings of the prefix and hence of
the original string s. We omit the details. Therefore, in both cases, s € L. Since s was
an arbitrary element of L(R), it follows that L(R) C L.

Since we have shown that L C L(R) and L(R) C L we conclude that £L(R) = L, as
desired.

. For each of the following languages over the alphabet ¥ = {0, 1}, construct a regular
expression that denotes it and construct a DFSA that accepts it. You do not need to
provide proofs that your constructions are correct.

(a) L ={xz € X* : z# ¢, and the first and last symbols of = are different },
Answer:

R = (0(0 + 1)"1) + (1(0 + 1)*0).
1
1 b)) 1 ©

(&) 0
07d) 4
o)~ U

0

o

(b) L ={zxe€X* : £ =0"1" with n,m > 0 and n + m is odd},
Answer:
R = (0(00)*(11)*) + ((00)*1(11)%).
1

oo

0

@ , ®

U A
1

CAC

(c) L ={xe€X* : every 0in z (if any) is immediately followed by a 1 }.
Answer:
R =17(011%)"

ot
N, ®

6. Consider the alphabet 3 = {0,1}, and language
Ly={z € X" : x=ylzwith y,z € ¥* and z has length |z| = 2}.

That is, L3 is the language of binary strings of length at least 3 for which the third last
character is 1.

(a) Write a regular expression which denotes Ls.

Answer:
R;=(0+1)*1(0+ 1)(0 + 1)

(b) Construct a NFSA with 4 states which accepts Ls.

0,1
\% 01 01
t® ©
(c) Construct a DFSA with 8 states which accepts Ls.

(Jo

1

0 (y 1

11 1

4307 X ()

(d) Consider generalizing the definition of L by defining L; to be the language in 3*
such that the k™ bit from the right end is 1. Show the form of a k + 1 state NFSA
which accepts Ly for each £ > 1. How many states are required for a DFSA which
accepts Ly (see the hint in part ¢ above)? Explain (but you do not need to prove
anything here).

Answer:

An NFSA that accepts L, has k£ + 1 nodes and is similar to the NFSA shown in the
solution for part 6b above. The only change needed is to adjust the length of the
chain of nodes after the state b. In order to accept Lj this chain should have length
k — 1. Each of the intermediate nodes in this chain should have the same form as
the node c in the solution to part 6b, with incoming and outgoing branches having
the labels 0, 1. Only the last of node in this chain is an accepting node.

A DFSA which accepts Ly must have distinct states for (at least) each of the possible
suffixes of length k. To see this, suppose z is an input sequence. After processing
a prefix of x, the decision of whether or not x will be accepted can depend on the
precise value of each of the symbols in the suffix of length k. That is, if no more
symbols occur, then the k™ bit from the end will determine acceptance. If only one
more symbol is left in z, then the acceptance is determined by the (k — 1) bit from
the end of the current prefix. Similarly for the symbols £ — 2,...,1 from the end of
the prefix. Therefore the DFSA must have distinct states for each of these possible
symbol strings of length k.

Since the alphabet has two symbols, the number of strings of length k is 2¥. There-
fore, any DFSA which accepts L, must have at least 2¢ states. Note that this is
exponentially larger than the number of states (namely & + 1) required by an NFSA
which accepts Lj.

