CSC238:Discrete Mathematics for Computer Science — Spring 2003

Assignment 4: Predicate Logic and Regular Expressions

Due: 10 a.m., Thurs., April 10

This assignment is worth 10 percent of the total marks for this course.

This assignment provides basic exercises in predicate logic, regular expressions, and
finite state automata. We will mark only a (secret) subset of the questions below. As always
in this course, your proofs will be marked for correctness, along with brevity and clarity.

Your answers can be handwritten. Use standard 8.5 by 11 inch paper. Please staple
all the sheets together, and hand them to your tutor at the beginning of the tutorial on
the due date. If you cannot make it to that tutorial, then leave your assignment at your
instructor’s office (Pratt, Room 283) before 10am on the due date. Since the tutors will be
discussing the solutions in the tutorial immediately after your assigments are due, we will
not accept late assignments (the course homepage describes what you should do in case of
medical or other emergencies which prevent you from completing an assignment on time).

1. For each of the following assertions, state whether it is true or false, and justify your
answer. You can use any means of justification you like, but if you use the logical equiv-
alences stated in the course notes then clearly specify which ones. Here A(z) and B(x)
are unary predicates in the first order language L.

(a) Vz(A(x) — B(z)) logically implies Jz(A(x) A B(z)).

(b) Jz(A(x) — —B(x)) is logically equivalent to —=Vz(A(z) A B(x)).
(c) JdzA(z) A Jx—A(z) is logically equivalent to Jz(A(x) A ~A(z)).
(d) JzA(z) v Jz—A(z) is logically equivalent to Jz(A(x) V —A(z)).

2. Convert the following first order formula into a logically equivalent formula in Prenex Nor-
mal Form (PNF) which only uses the connectives =, A and V (along with the quantifiers
3 and V, of course). In particular, do not use the connective —.

(Vz-T(z,2) = S(z,y,2)) A (mFYVzR(y, z,x) — JzU(z)).
Show the steps through which you obtained your PNF formula.

3. Consider a first order language £ with predicates S(s,n,a), C(c,n), E(s,c,y,m) and
T(n,c,y), and the equality relation =x. Consider a structure for £ which consists of the
following relations corresponding to the predicates S, C', E, and 7', respectively:

e Student(s,n,a) — each student corresponds to a unique triple (s, n, a), where s is the
unique student number, n the student’s name, and a is the student’s address (all in
the form of character strings).



e Course(c,n) — each course corresponds to a unique pair (¢, n) where c is the unique
course identifier (e.g. “CSC238”) and n is the course title (e.g. “Discrete Mathe-
matics for Computer Science”).

e Enrolled(s,c,y,m) — a quadruple (s, ¢,y, m) indicates that the student with student
number s was enrolled in the course ¢ in the year y and obtained the mark m. If the
course is currently being taken by the student, then the mark is recorded as an “I”
for incomplete.

e Teaches(n,c,y) — a triple (n,c,y) indicates that a professor named n taught the
course named c in the year y.

The domain D for this structure is the set of strings that form entries in this database. For
example, these strings include all the student numbers, names, addresses, course names,
course identifiers, years, and so on. We will also use these same strings as constants in the
first order language, so a formula such as (n &= “Jepson”) is true only when the valuation
o is such that o(n) is the string “Jepson” in the domain D.

For a more complex example, consider the first order formula
JyE(s, “CSC238",y,m) A (m =~ “A”)V (m =~ “B”)).

Since s and m are the only free variables, we will refer to this formula as simply F'(s, m).
Given the above structure, F'(s, m) is true for any valuation o for which the pair (o(s), o(m))
consists of the student number o(s) and the mark o(m) such that the student with that
number took CSC238 in some year and got a mark of either A or B.

In this manner it is natural to associate the first order formula F'(s,m) with the set of
all such student number and mark pairs (o(s),o(m)) which make F(s,m) true for some
valuation 0. That is, the formula F(s, m) determines a relation in D x D consisting of all
such pairs of student numbers and marks. This is equivalent to thinking of the first order
formula F'(s,m) as expressing a database query of finding all the student numbers and
marks for all the students who have ever taken CSC238 and received a mark of either A
or B in it.

In a similar fashion, write down a first order formulas expressing each of the following
queries:

Find the name and address of every student who took CSC238 in 2001.

Find the names of all the courses ever taught by Cook.
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Find the names of all the courses taught only by Cook.
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Find the names of every student who has received an “A” or an “I” in every course
he/she has taken.

(e) Find the names of every course that has neither been taken, nor is still incomplete,
by any student who has ever enrolled in CSC238.



4. Consider the alphabet ¥ = {0, 1} and the language
L = {z €¥* : 01 and 10 are both substrings of z}.

For example, 0001110010101 and 11101 are in L. Note that 010 € L since 01 and 10 are
both substrings of 010, even though these substrings overlap on the character 1. Construct
a regular expression that denotes L, and prove that it is correct.

5. For each of the following languages over the alphabet X = {0, 1}, construct a regular
expression that denotes it and construct a DFSA that accepts it. You do not need to
provide proofs that your constructions are correct.

(a) L ={z € X* : z #¢, and the first and last symbols of = are different },
(b) L ={ze€X* : x=0"1" with n,m > 0 and n + m is odd},
(¢) L ={x€X* : every 0in z (if any) is immediately followed by a 1 }.

6. Consider the alphabet 3 = {0, 1}, and language
Ly={z € ¥ : z=ylzwith y,z € ¥* and z has length |z| = 2}.

That is, Lz is the language of binary strings of length at least 3 for which the third last
character is 1.

(a) Write a regular expression which denotes Ls.
(b) Construct a NFSA with 4 states which accepts Ls.

(c¢) Construct a DFSA with 8 states which accepts Ls. (Hint: Label the eight nodes 000,
001, ..., 111, and define the DFSA such that the last three characters by_o, bx_1, by
processed by the DFSA correspond to the label abc of the state. Note that in order
to start processing input you need to determine the corresponding state for inputs
of length less than 3. To do this, treat any leading zeros in the state label abc as
potentially a missing item. For example, the start state should be the one labelled
000, and if the first character is a 1 then the DFSA should then move to state 001.)

(d) Consider generalizing the definition of L by defining Ly to be the language in 3*
such that the k™ bit from the right end is 1. Show the form of a k£ + 1 state NFSA
which accepts L, for each £ > 1. How many states are required for a DFSA which
accepts Ly (see the hint in part ¢ above)? Explain (but you do not need to prove
anything here).



