CSC238:Discrete Mathematics for Computer Science — Spring 2003

Solutions for Assignment 2

1. Prove that the Mod(x, m) program defined below is correct.

Mod(xz, m)
Precondition: x, m are natural numbers, m > 0.
Postcondition: Mod(z, m) returns a natural number 7,
with 0 < r < m, such that there exists an integer n with x = nm + r.
ri=ux
while r > m do
ri=r—m
end while
return r

U= W N~

A loop invariant is L: “x = nm + r for some natural number n”. In order to write the
proof it is convenient to explicitly refer to the number of iterations the loop has performed,
say 4, and let ; denote the values of variables r after iteration i. (We use i = 0 to denote
the state of the variables just before the loop begins execution for the first time.) That
is, we define:

L(7): If the loop body has executed i times, then & = im + r; with r; a natural
number.

Lemma 1. If 2, m satisfy the precondition then L(7) is true for each natural number i.

Proof of Lemma 1. Suppose x and m satisfy the precondition. We will use mathematical
induction to prove L(i) is satisfied for each natural number 1.

Base Case: i = 0. From line 1 of the program we have rqy = x. Therefore, the first time
the loop is reached (at line 2) we have = O0m +r, as desired. Also, by the precondition,
x is a natural number, therefore ry is a natural number. Therefore L(0) is true.

Let ¢ > 0 be a natural number.
Induction Hypothesis. Suppose L(i) is true.
Induction Step. We need to prove L(i + 1) is true. There are three cases.

Case 0. The loop may have terminated before completing ¢ iterations, in which case
L(i + 1) is trivially true (i.e. the “if” clause is not satisfied).

Case 1. The loop has executed exactly ¢ times and r; < m. From line 2 we see the loop
terminates. Therefore the loop never completes 7 + 1 iterations, and L(i + 1) is trivially
true.

Case 2. The loop has executed exactly 7 times and r; > m. Then line 3 is executed, and
Tit1 = T5 — M. (1)

Since r; > m it follows that ;.1 > 0. Also, since r; is a natural number (by the induction
hypothesis), and m is a natural number (by the precondition), we have r;,; is a natural
number. Furthermore, we see by the induction hypothesis L(i) that

T =im+r;
=im + 1;41 +m, by equation (1),
=G+ 1)m+ 7.

Therefore L(i + 1) is true.
Since these cases cover all the possibilities, we conclude that L(i + 1) must be true.

It follows from mathematical induction that L(7) is true for all natural numbers ¢ > 0.
This completes the proof of Lemma 1.

We can use Lemma 1 to prove partial correctness. Indeed, if the precondition holds
and if the loop terminates after i steps then, from Lemma 1, L(i) must be true. Also,
since the loop terminates on this iteration, the loop condition r; > m must fail to hold.
That is, 7; < m. But from L(i) we know r; must be a natural number, so r; > 0. Also,
from L(i) we find that x = m + r;. Therefore the postcondition holds with n = i.

Finally, we need to prove termination (i.e. the program terminates after a finite number
of steps). Define the sequence < rg,ry,79,... > consisting of one term r; for each itera-
tion ¢ which the algorithm performs (along with ry for the initial condition). From the
precondition, the loop invariant, Lemma 1, and equation (1), it follows that the sequence
< rg,Tr1,T9,... > is a decreasing sequence of natural numbers. Hence it must be finite.
This proves termination.

2. Use a loop invariant to prove that the following program is correct.

Precondition: z is natural number.
Postcondition: y = 0.

1 Y= *T
2 while y # 0 do
3 r=z—1

4 y=y—2xzx—1
3 end while

We use z; and y; to denote the values of variables z and y after the ** iteration. Consider
the loop invariant:

L(3): If the loop body has executed ¢ times, then z; is a natural number and

Lemma 2. If z satisfies the precondition then L() is true for each natural number i.

Proof of Lemma 2. Suppose z satisfies the precondition, i.e. z is a natural number.
We will use mathematical induction to prove L(7) is satisfied for each natural number 3.

Base Case: ¢ = 0. When the loop at line 2 of the program is first reached we have, from

line 1, that o = x and y, = x3. By the precondition z is a natural number, and so g is
too. Thus L(0) holds.

Let ¢ > 0 be a natural number.
Induction Hypothesis. Suppose L(i) is true.
Induction Step. We need to prove L(i + 1) is true. There are three cases.

Case 0. The loop may have terminated before completing ¢ iterations, in which case
L(i + 1) is trivially true.

Case 1. The loop has executed exactly ¢ times and z; = 0. By the induction hypothesis,
y; = 22, 80 y; = 0. Therefore the loop terminates on line 2, never completes i+ 1 iterations.
Thus L(i + 1) is trivially true.

Case 2. The only remaining case is that the loop has executed exactly 7 times and z; > 0.
(Note that z; cannot be negative since the induction hypothesis L(i) ensures that x; is a
natural number.) By the induction hypothesis, y; = z?, and so y; > 0. Therefore lines 3
and 4 are executed, and cause the variables x and y to be updated to z;;; and y;11. Just
before line 5 is executed we have

Tiy1 = X4 — 1. (2)
Since z; > 0 we know z;,; > 0 is a natural number. Also

Yit1 =Yi — 22441 — 1,
=z? — 2(x; — 1) — 1, by L(i) and equation (2) ,

=z7 — 2z; + 1 = (2; — 1)?, by algebra.
2

=y, ,, by equation (2) again.

Therefore we have proven that L(i + 1) must be true.
Since these cases cover all the possibilities, we conclude that L(i + 1) must be true.

Lemma 2 now follows by mathematical induction.

To prove partial correctness note that if the loop terminates it must be the case that

y = 0. Therefore the postcondition must be satisfied. (Note, we did not need Lemma 2
here!)

To prove termination note that, if the precondition is satisfied, then from Lemma 2,
equation (2), and the loop invariant L(i), we have < zg,z1,Z9,... > is a decreasing
sequence of natural numbers. Hence this sequence must be finite. Therefore the loop
must terminate.

. Prove that the loop below terminates if the precondition is satisfied before the loop starts.

Precondition: z,y are natural numbers, and z is even.

1 while x # 0 do
2 if y > 1 then
3 y=y—3
4 T:=1x+2
5 else

6 Ti=x—2
7 end if

8 end while

Using z; and y; to denote the values of variables x and y after the i iteration, consider
the loop invariant:

L(7): If the loop body has executed ¢ times, then z; is an even natural number
and y; > —2 is an integer.

Lemma 3. If z, y satisfy the precondition then L(i) is true for each natural number i.

Proof of Lemma 3. Suppose x and y satisfy the precondition, that is, they are both
natural numbers and z is even. We will use mathematical induction to prove L(7) is
satisfied for each natural number 1.

Base Case: 7 = 0. When the program starts and the loop in line 1 is reached for the first

time we have, from the precondition, that o > 0, xy is even, and y, > 0 is an integer.
Thus L(0) holds.

Let ¢ > 0 be a natural number.
Induction Hypothesis. Suppose L(i) is true.
Induction Step. We need to prove L(i + 1) is true. There are three cases.

Case 0. The loop may have terminated before completing 7 iterations, in which case
L(i + 1) is trivially true.

Case 1. The loop has executed exactly 7 times and x; = 0. Therefore the loop terminates
and never completes ¢ + 1 iterations, and L(i + 1) is trivially true.

Case 2. The only remaining case is that the loop has executed exactly 7 times and z; # 0.
Note that the induction hypothesis ensures that z; > 0 is an even natural number. It
follows that x; > 2. Therefore the loop body is executed for the (7 + 1) time.

By the induction hypothesis y; > —2 must be an integer. There are two subcases.
Case 2a. If y; > 1 then lines 3 and 4 are executed and it follows that
Yirr =¥ — 3, and x4 = x; + 2. (3)

Therefore y;11 > —2 is an integer. Moreover, since we established above that z; > 2 and
x; is even, we find from (3) that x;,; > 4 and z;,; must also be even. Therefore L(i+ 1)
must be true in this subcase.

Case 2b. Otherwise y; < 1. In this case line 6 is executed, and it follows that
Yir1 = Yi, and Tip1 = x; — 2. (4)

Since we established above that x; > 2 and z; is even, we find from (4) that z;;; > 0 and
x;+1 must also be even. Clearly, from L(i) and ;11 = v;, we have y;;1 > —2 is an integer.
Therefore L(i + 1) must also be true in this subcase.

Since these cases cover all the possibilities, we conclude that L(i + 1) must be true.

It follows from mathematical induction that L(7) is true for all natural numbers ¢ > 0.
This completes the proof of Lemma 3.

In order to prove termination, suppose x and y satisfy the precondition. Let ¢ > 0
be a natural number and suppose the program has executed the loop ¢ times. Define
pi = x; +y; + 2. Then, from Lemma 3, the loop invariant L(7) is true. It follows that
pi = x; +1y; + 2 is an integer. Furthermore, the loop invariant ensures z; > 0 and y; > —2,
so we have p; > 0+ (—2) +2 = 0. Therefore p; is a natural number. Moreover, if the loop

5

body executes at least one more time, namely the (7 + 1)** time, then a similar argument,
shows that p;;; is a natural number.

Finally, from the program it is clear that the loop body causes the variables x and y to
be updated according to either equation (3) or equation (4). Therefore, we have

Pi+1 =Tit1 + Yit1 + 2,
<max{(y; — 3) + (x; + 2),y; + (x; — 2)} + 2, from equations (3, 4),
=(y; + z; — 1) + 2, by algebra,
=p; — 1, by algebra and the definition of p;.

Therefore it follows that the sequence < pg, p1, p2, . . . > is a decreasing sequence of natural
numbers. Hence it must be finite. This proves the loop terminates after a finite number
of steps.

4. Consider the following precondition, postcondition pair:

BeLow(A, n, y)

Precondition: n > 1 and A is an array of length n sorted in non-decreasing
order. That is, for any integer ¢ with 1 <4 < n, we have A[i] < A[i+1]. Finally,
y is an integer such that y < A[n].

Postcondition: BeLow(A, n, y) returns the minimum integer £ > 1 such
that A[k] > v.

(a) Write a binary search style algorithm for solving this problem. That is, your al-
gorithm must run in O(log(n)) time, like binary search does. Algorithms which
require time Q(n) will receive a mark of 0. (Hint: First write a loop invariant for
your program, and then write the loop body.)

(b) Write a loop invariant for your program and use it to prove that your program is
correct.

(c) Prove that your program executes in O(k) steps when the length of A is n = 2*.

Solution 4a. We will maintain two indices f and [such that the answer lies between f
and [. In particular, suppose the following loop invariant is satisfied:

L(7): If the loop body has executed ¢ times, then f;, [; are natural numbers such
that 0 < f; < l; < n = length(A), with A[l;] > y and if f; > 0 then A[f;] < .

With this loop invariant in mind, we can write the program.

BeLow(A, n, y)

Precondition: n > 1 and A is an array of length n sorted in non-decreasing
order. That is, for any integer ¢ with 1 <4 < n, we have A[i] < A[i+1]. Finally,
y is an integer such that y < A[n].

Postcondition: BeLow(A, n, y) returns the minimum integer £ > 1 such

that A[k] > y.

1 f:=0

2 l:=n

3 while f+1 <[do
4 m = (f +1)div 2
5 if A[m| > y then
6 l:==m

7 else

8 f=m

9 end if

10 end while

11 return 1

Solution 4b. We will use the loop invariant in part (a) to prove the program is correct.

Lemma 4.1. Suppose A, n, and y satisfy the preconditions. Then for each natural
number 4 the loop invariant L(i) is true.

Proof of Lemma 4.1. Suppose A, n and y satisfy the precondition. We will use
mathematical induction to prove L(7) is satisfied for each natural number ;.

Base Case: i = 0. From the precondition we have A[n] > y. From lines 1 and 2 we see
fo =0 and [y = n. Therefore it follows that A[lg] > y. Since n > 1 by the precondition
we have 0 = fy < lyp = n. Thus L(0) holds.

Let ¢ > 0 be a natural number.
Induction Hypothesis. Suppose L(i) is true.
Induction Step. We need to prove L(i + 1) is true. There are three cases.

Case 0. The loop may have terminated before completing ¢ iterations, in which case
L(i + 1) is trivially true.

Case 1. The loop has executed exactly 7 times and f; +1 > [;. By the condition on line
3 the loop terminates and never completes ¢ + 1 iterations. Thus L(i+ 1) is trivially true.

Case 2. The only remaining case is that the loop has executed exactly i times and
fi +1 < I;. In this case the loop body is executed.

On line 5 the value of the variable m is set to m; = (f; + [;) div 2. Since f; + 1 < [; and
fi, l; are both natural numbers (by the induction hypothesis L(7)), we have [; > f; + 2.
Therefore m; satisfies

fi+1 =(fi+ fi+2)div2, by algebra,
<(fi+1;)div2, since f; +2 <1,
=m,;, by defn of m;,
= (fi + ;) div2, by defn of m;,
< (i —2+1;)div2, since f; <Il;—2,
=1; —1, by algebra.

Therefore m; is a natural number, and

The inequalities on the far left and right in (5) above arise from f; > 0 and /; < n, which
in turn follow from the induction hypothesis L(i).

After computing m; on line 4, the program continues execution on line 5. Notice that
from (5) we know the array index m; is within bounds for the array access A[m;]. There
are two cases for line 5:

Case 2a. A[m;] > y. Then line 6 is executed, and it follows that

fix1 = [fi and [= m,. (6)

Using inequality (5) and the induction hypothesis L(7) it now follows that L(7 4+ 1) must
be satisfied.

Case 2b. A[m;] < y. Then line 8 is executed, and it follows that
fixr=m; and ;11 =1I;. (7)

Using inequality (5) along with the induction hypothesis L() it again follows that L(i+1)
must be satisfied.

Since these cases cover all the possibilities, we conclude that L(i + 1) must be true.

It follows from mathematical induction that L(7) is true for all natural numbers ¢ > 0.
This completes the proof of Lemma 4.1.

To prove partial correctness of the program in part 4a note that, if the loop terminates
on the i'* iteration, it must be the case that f; +1 > [; (since this is the only way the
loop condition on line 3 fails). By Lemma 4.1 and the loop invariant L(i) we find that
fi + 1 <;. Therefore, on termination we must have

fi+1=1. (8)

8

There are now two cases to consider:

Case 1. Suppose f; = 0. Then, by (8), [; = fi+1 =1 and, by the loop invariant L(7), we
have A[l;] > y. Thus k = [; = 1 is the smallest index such that A[k] > y, and the value
l; =1 returned on line 11 is correct (i.e. the postcondition is satisfied).

Case 2. Alternatively, f; # 0. Since the loop invariant ensures f; is a natural number we
must have f; > 0. Moreover, from L(i) we also have f; < n and A[f;] < y. In addition,
from L(7) and (8) it follows that A[f; + 1] = A[l;] > y. Therefore k£ = I; is the smallest
index at which A[k] > y. And therefore the postcondition is again satisfied.

Since these are the only two possible cases for f; on termination, we have proven partial
correctness.

To prove termination assume the precondition is satisfied. Consider the sequence <
do,dy, ... >, where d; = l; — f; is defined only if the loop executes at least ¢ times. Note
that, if the loop executes 7 times, then Lemma 4.1 and the loop invariant L(7) ensure that
d; is a natural number. If the loop executes at least ¢ + 1 times then a similar argument
shows that d;,; is also a natural number. Moreover, we have

0 <d;y1, by Lemma 4.1 and the loop invariant L(i + 1),
< max{l; —m;,m; — f;}, since equation (6) or (7) must apply,
< max{l; — (fi+1),(l =1)— fi}, by (5),
=d; — 1, by algebra.

Therefore < dgy,dy,ds,... > is a decreasing sequence of natural numbers. Hence this
sequence must be finite. Therefore the loop in BeLow must terminate, and hence BeLow
itself must terminate.

Solution 4c. Consider the predicate:
P(i): The loop body executes at least i times, and I; = f; + 28

Lemma 4.2 If the A, n, and y satisfy the preconditions for BeLow and the length of A is
n = 2F for some integer k > 0, then P(i) is true for i = 0,1,..., k.

Before proving Lemma 4.2 we will use it to prove that Below executes in O(k) steps. Here
we take a step to be a simple operation such as an assignment, an arithmetic operation,
a comparison opertation, an array reference, or the return statement. Therefore, it takes
a bounded number of steps to execute any individual line in the program once. In partic-
ular, the initialization (lines 1 and 2), the loop body (lines 4 through 9), and the return
statement, each execute in a bounded number of steps. Therefore each of these blocks of
code execute in O(1) steps.

From Lemma 4.2 we find that {; — f; = 2¥~. Therefore [; — f; > 1 for i < k and
Il — fr, = 1. Thus, from P(i) and the loop condition on line 3, we see that the loop must
execute exactly k£ times, exiting when ¢ = k.

Since each iteration of the loop requires O(1) steps, we can use the rule of products to
conclude that all £ iterations of the loop require a total of kO(1) = O(k) steps. Since the
initialization and return statements each require O(1) steps, we find the total number of
steps for Below is O(1) + O(k) + O(1). By the rule of sums, this is just O(k). Therefore
the overall number of steps for Below is O(k), as desired.

Proof of Lemma 4.2 Let A, n, and y satisfy the preconditions for BeLow and suppose
the length of A is n = 2* for some integer k£ > 0. We will use induction to prove P(i) is
true for 0 <3 < k.

Base Case: i = 0. From lines 1 and 2 we see f; = 0 and Iy = n = 2¥. Therefore
lo — fo = 2¥79. Clearly the loop must execute at least 0 times. Thus P(0) holds.

Let 0 <1 < k be a natural number.
Induction Hypothesis. Suppose P(i) is true.
Induction Step. We need to prove P(i + 1) is true.

By the induction hypothesis P(i) the loop executes at least i times, resulting in l; =
fi+2%% Sincei < k we have k —¢ > 1 and [; = f; + 287" > f, + 2'. Therefore the loop
condition on line 3 is satisfied, and it follows that the loop body is executed at least one
more time, namely the (i + 1)* time. Immediately after line 4 during this execution of
the loop body we have

m; = (fi+1;)div 2,
= (fi+ fi + 259 div 2 since l; = f; + 2F 7,
=f; + 287" since k —i > 1. (9)

As in the proof of Lemma 4.1, depending on whether or not A[m;] > y, we have either
(6) or (7). If line 6 is executed then equation (6) is satisfied and l;41 — fi1 = m; — fi =
2k=1=1 Here we have used (9). Alternatively, line 8 is executed and equation (7) must be
satisfied. In this case l;11 — fix1 = l; — m;. By (9) and the induction hypothesis P(7), we
have I; —m; = (f; +2F %) — (fi +2F ¢ 1) = 2k-¢ — 2k—¢-1 — 9k~i~1 Therefore, in both
cases, we have shown that l; 11 — fi;1 = 25 ¢F1). Since these are the only two possible
cases, we conclude that the loop executes at least ¢ + 1 times and I, = fi,q + 287041,
That is, P(i + 1) must be satisfied.

Therefore it follows by mathematical induction that P(i) is true for each i such that
0 <i < k. This completes the proof of Lemma 4.2.

10

5. Show that for every real number d > 0, the function fz(n) = >_,_, k¢ satisfies fy(n) €

@(nd+1).

Let d > 0 be a real number.

First we will prove that fy(n) € O(n®!). In particular,

n) = de
k=0
< an, since d > 0 and 0 < k < n imply k¢ < n¢,
=(n+1)n% by algebra,

< (n+n)n*
— 2nd+1

so long as n > 1,

, by algebra.
Therefore fy(n) < 2n4*! for all n > 1 and thus fy(n) € O(ndt1).

Next we will prove that fy(n) € Q(n?!). In particular,

fa(n) = de Z ke,
k=0 k=[n/2]

Z (n/2)¢, since d > 0 and each k > [n/2] > n/2,
k=[n/2]

= [n/2] +1)(n/2)",

— (n/2+1/2)+1)(n/2)¢4, since [n/2] < n/2+1/2,
n/2+1/2)(n/2)* > (n/2 4+ 0)(n/2)%,

n/)d+1_

Y

(
> (
= (
= (

Therefore fy(n) > (n/2)4*! for all n > 0 and thus fy(n) € Q(ndt!).

Since fy4(n) € O(n%*t) and fy(n) € Q(n!), it follows from the definition of ©() that
fa(n) € ©(n**).

. Let k be an integer and let f(n) and g(n) be positive, real-valued functions defined for nat-
ural numbers n > £ (that is, f(n), g(n) > 0 for all n > k). Suppose lim,,_,, f(n)/g(n) =
for some real number z < oo.

11

(a) Prove that f(n) € O(g(n)).

(b) Prove that if z # 0 then f(n) € O(g(n)).

(c) Prove that if z = 0 then g(n) ¢ O(f(n)).
)
)

N~

(d) Prove log(log(n)) € O(log(n)) but log(log(n)) ¢ ©(log(n)) using parts (a-c) above.
(e) Does the limit lim,,_,« f(n)/g(n) exist whenever f(n) € ©(g(n))? Explain.

Solution 6a. Let € > 0. By the definition of limit, if lim,_,+ f(n)/g(n) = x < oo, then
for there exists a N, > 0 such that |f(n)/g(n) — z| < € for all n > N,. Therefore it must
be the case that f(n)/g(n) —z < € for all n > N,. That is, f(n) < (z + €)g(n) for all
n > max{N k} (here we have used g(n) > 0 for n > k). Therefore we have shown that

f(n) € O(g(n)).

Solution 6b. Since f(n)/g(n) > 0 for n > k the limit lim, , f(n)/g(n) = z must be
in the closure of the positive real line, that is x > 0. Therefore, if x # 0 then it must be
the case that © > 0. Let ¢ = /2. Then € > 0 and, by the definition of a limit, there
must exist an N such that |f(n)/g(n) — x| < € for all n > N,. Therefore it follows that
z— f(n)/g(n) < e for all n > N,. And finally, f(n) > (z —€)g(n) for all n > max{k, N.}.
Notice that © — e =2 — x/2 = /2 > 0. Therefore it follows that f(n) € Q(g(n)). Since,
by part 6a, f(n) is also in O(g(n)) we conclude f(n) € ©(g(n)).

Solution 6c¢. Let z = 0. We will prove g(n) ¢ O(f(n)) by contradiction.

Suppose g(n) € O(f(n)). By the definition of O() there exist constants NN, c such that
g(n) < ¢f(n) for all n > N. Without loss of generality we can assume ¢ > 0 and
N > k (since otherwise we can replace ¢ and N by ¢ + 1 and max{N,k}). Therefore
1/c < f(n)/g(n) for all n > N (here we have used g(n) > 0 for n > N > k). However
lim, o f(n)/g(n) = = = 0 implies that, for ¢ = 1/(2c), there exists an N, such that
f(n)/g(n) < 1/(2¢) < 1/c for all n > N.. We therefore have the contradiction that
f(n)/g(n) <1/c < f(n)/g(n) for n = max{N, N.}. Therefore g(n) ¢ O(f(n)).

Solution 6d. Let f(y) = log(log(y)) and g(y) = log(y). Notice that both f(y) and g(y)
are increasing functions of y and lim,_, log(y) = lim,_,, log(log(y)) = co. Therefore, by
I’Hospital’s rule, we find

o log(log(y) _ . gloslosv) . (1/(ylogy) _ . 1
y—oo log(y) y—o0 diylog(y)) y—00 (1/y) y—o0 log(y)

12

Therefore, lim,,_,o, f(n)/g(n) = 0, and parts (6a) and (6¢) apply. That is, f(n) € O(g(n))
but g(n) ¢ O(f(n)). Recall that if f(n) € ©(g(n)) then g(n) € O(f(n)). Therefore, from
g(n) ¢ O(f(n)) we can conclude that it f(n) ¢ ©(g(n)), as desired.

Solution 6e. No, the limit need not exist.

Consider g(n) = 1 and f(n) = 2+ (—1)". Then, clearly, g(n) < f(n) < 3g(n) for all
n > 0. Therefore f(n) € ©(g(n)) . However, notice that f(n)/g(n) =2+ (—1)" takes on
values 3 (when n is even) and 1 (when n is odd).

Suppose the limit exists and lim,_, f(n)/g(n) = z. Consider ¢ = 1/2, then there must
be an N such that |x— f(n)/g(n)| < e for alln > N. However, this implies that |z —1| < €
and |z — 3| < e. Therefore z < 1+ €= 1.5, and z > 3 — e = 2.5. This is a contradiction,
and hence lim,,_,« f(n)/g(n) does not exist.

13

