CSC238:Discrete Mathematics for Computer Science — Spring 2003

Solutions for Assignment 1

1. Consider the function f(n) defined by

f(n)=f(n—1)+6n-3, forn>1. (1)

Using mathematical induction, prove that f(n) < 10n? for all natural numbers n > 1.

Proof. Let S(n) be the statement that f(n) < 10n2.

Base Case: n = 1. From (1) above, it follows that f(1) = f(0)+6 -3 =5+ 3 = 8.
Since 10n? = 10 for n = 1, it follows that S(1) is true.

Let n be a natural number, n > 1.
Induction Hypothesis. Suppose S(n) is true.
Induction Step. We need to prove S(n + 1) is true.

From equation (1) it follows that

f(n+1)=f(n)+6(n+1)—3, by(l),sincen+12>1,
<10n* +6(n+1) — 3, by the IH,
=10n% + 6n + 3, by algebra,
=10((n +1)*> —2n — 1) + 6n + 3, by algebra,
=10(n+1)® — 14n — 7, by algebra,
<10(n +1)?, since n > 1.

Therefore S(n + 1) is true.

It follows by mathematical induction that S(n) is true for all natural numbers n > 1.




2. Consider the function f(n) defined by

f(0) =5,
fQ) =4, (2)
f(n) =3f(|n/2]) +2", forn > 2.

Here |n/2| equals the largest natural number less than or equal to n/2. So |3/2] = 1,

|4/2] = 2, and so on. Using mathematical induction, prove that f(n) < 2"*2 for all
n > 1.

It is useful to first prove the following:

Lemma 2.1. For natural numbers n > 2 the integer m = |(n + 1)/2] satisfies 1 < m <
n— 1.

Proof of Lemma 2.1. For n = 2 we have m = [(2+1)/2| = 1. Therefore 1 <m <n-—1
for this case.

Suppose n > 3. By the definition of floor, m is an integer such that (n +1)/2 = m + ¢,
where 6 € 0,1/2. Therefore,

m=(Mn+1)/2-0
<(n+1)/2 since 6 > 0,
<(n+1)/24 (n—3)/2 since n > 3,

=n — 1 by algebra .
A lower bound for m can be obtained as follows,

m=(n+1)/2-9
>(n+1)/2—1/2 since § < 1/2,
=n/2
>1 since n > 3.

Therefore we have shown 1 < m < n — 1 for n > 3. This completes the proof of Lemma
2.1.

Proof for Question 2. Let S(n) be the statement that f(n) < 2"+2.

Base Cases: n = 1,2. From (2) above, it follows that f(1) = 4, and f(2) = 3f(1) +2% =
16. Since 2" equals 8 and 16 for n = 1 and 2, respectively, it follows that both S(1)
and S(2) are true.

Let n be a natural number, n > 2.

Induction Hypothesis. Suppose S(k) is true for each integer k& with 1 < k < n.
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Induction Step. We need to prove S(n + 1) is true.

Since n > 2 it follows that n + 1 > 2 and the bottom equation in (2) implies

fin+1)=3f([(n+1)/2]) + 2"

Define m = |(n+1)/2]. Since n > 2 we know from Lemma 2.1 that m satisfies 1 < m <
n—1. Therefore, by the induction hypothesis, S(m) is true. That is, f(m) < 2™*2. Using
this in the equation above we find

fn+1)=3f(m)+ 2", sincen+1>2
<3(2™t?) 42"t by theIHand 1 <m <n—1,
<3(2" 1) + 2" sincem <n —1
=2+ (3 4 1) = 2+U+2 " by algebra.

Therefore we have proved that S(n + 1) is true.

By mathematical induction it follows that S(n) is true for all natural numbers n > 1.

. Consider the function f(n) defined by

)
(0) ’
fa)=1, (3)
f(n)=f(n—1)+ f(n—2), forn>2.

Using mathematical induction, prove that
fm)f(n+1)=) f*(k), (4)

for all natural numbers n > 0. (Since we want you to practice induction, proofs which do
not rely on induction will receive zero marks.)

Proof. Let S(n) be the statement that f(n)f(n+ 1) = >_7_, f2(k).

Base Case: For n = 0, it follows from (3) that f(0)f(1) = 0% 1 = 0, and f(0)? = 0.
Therefore S(0) is true.

Let n be a natural number, n > 1.

Induction Hypothesis. Suppose S(n — 1) is true.



Induction Step. We need to prove S(n) is true.

From equation (3) it follows that

f(n+1)f(n) =(f(n)+ f(n—1))f(n), by (3) sincen+1 > 2,
<f(n)®>+ f(n—1)f(n), by algebra,
n—1
=f(n)>+ Y f?(k), by the IH, since, n—1>0,
k=0
= i]‘ﬂ(k), by algebra.

k=0
Therefore S(n) is true.

It follows by mathematical induction that S(n) is true for all natural numbers n.

. The height of a non-empty tree is defined to be the maximum number of edges in any
path from the root of the tree to a leaf node. For an empty tree, we define the height to
be -1. Prove that, for each integer h > —1, if n is the number of nodes in a full binary
tree of height h then n < 2"*! — 1. Your proof must rely on mathematical induction.

Proof. Let S(h) be the statement that a full binary tree of height h has at most 2! —1
nodes.

Base Case: Consider h = —1. Any tree that has height —1 must be empty. Therefore
it has n = 0 nodes. Note 27!t —1 =1 —1 = 0. Therefore S(—1) is true.

Let h be a natural number.
Induction Hypothesis. Suppose S(k) is true for —1 < k < h.
Induction Step. We need to prove S(h) is true.

Let T be any tree of height h. Since h > 0, T cannot be empty. Therefore T has a root
node, along with (possibly empty) left and right subtrees R and L, respectively. Since T
has height h it follows that R and L must have height at most h — 1. Also, since R and
L are trees their heights must each be at least —1. Therefore the induction hypothesis
applies to both L and R. That is, they each must have at most 2D+ —1 = 2% —1 nodes.
Since the nodes in 7T just consist of the root node and any nodes in the left and right
subtrees, we have the total number of nodes in 7" must be at most 1+2(2% —1) = 2h+1 -1,
as desired. Therefore, S(h) is true.

It follows by mathematical induction that S(h) is true for all integers h > —1.
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5. Let K, denote the set of all binary strings of length n. That is,
K,={a : a=<ay,a9,...,a, >, witha; =0or 1foreachi=1...n}.
Here < a1, a9, ...,a, > denotes a sequence, as defined in Chapter 0 of the course notes.

Suppose a and b are elements of K,,. Let d(a,b) be the distance between a and b, which
is defined to be the number of indices 7 at which a; # b;. In particular,

d(a,b) =|{i : 1 <i<nanda; # b;, where a =< a1, as,...,0, >, b=<by,by,..., b, >}

(5)

For each natural number n > 1, prove that there exist two sets A, and B,, for which all
of the following properties are satisfied:

(a) [An| =By =27
(b) K, =A,UB, and ) = A, N B,.

(c) Any two distinct elements of A, are at least a distance of 2 apart, and similarly for
any two distinct elements of B,,. That is, if z,y € A, with z # y then d(z,y) > 2.
Similarly, if z,y € B, with = # y then d(z,y) > 2.

(d) For each element z € A, there exists y € B, such that d(z,y) = 1. (Note the choice
of y may depend on the z.) Similarly, for each element z € B, there exists y € A,
such that d(z,y) = 1.

Your proof must rely on mathematical induction.

Proof. Let S(n) be the statement that there exist subsets A4, and B,, of K,, which satisfy
properties (a-d) in Question 5 above.

Base Case: Consider n = 1. Let Ay = {< 0 >} and B; = {< 1 >}. Then properties
(a) and (b) are clearly satisfied. Since there is only one element in each of A; and B,
property (c) is trivially satisfied. Property (d) follows since the distance d(< 0 >, < 1 >)
=d(<1>,<0>) =1

Let n be a natural number, n > 1.
Induction Hypothesis. Suppose S(n) is true.
Induction Step. We need to prove S(n + 1) is true.

Let A, and B, be any two sets that satisfy properties (a-d) in Question 5. The induction



hypothesis guarantees that such a pair must exist. Define

Apir ={s:s=<ay,a9,...,a,,0> for a =< ay,a9,...,a, >€ A, }U
{SZS:< bl,bg,...,bn,1> for b:<b1,b2,...,bn >€ Bn};
B, ={s:s=<ay,a9,...,a,,1 > for a =<ay,a9,...,a, >€ A, }U

{S 15 =<by,by, ..., 0,,0> for b=<by,by,...,b, >€ Bn}
We need to show that these sets A, and B, satisfy properties (a-d).

Given r =< x1,Zs, ..., 2, > we will use the shorthand < z,0 > to denote the sequence
< T1,%9,...,Ty, 0>, and similarly for < z,1 >.

Note that if z € A, ; then either z =< a,0 > for some a € A,, or x =< b,1 > for some
b € B,. The number of different elements of the form < a,0 > is exactly the number
of different a’s, that is |A,|. Since A, satisfies property (a), |4,| = 2"~!. Similarly, the
number of distinct elements of the form < b,1 > is also 2"!. Since any elements of
the form < a,0 > and < b,1 > differ (at least in the last place), the total number of
elements in A, is [Apy1| = 2771 + 27~ = 2", Similarly, it can be shown that |B, 1| =
2", Therefore A, 1 and B, satisfy property (a).

Next we wish to show ) = A,,,1 N B, 4. Let z € A1 and y € B,,,1, and suppose = = y.
Then the last element of x and y must be equal, that is it must be either a 0 or a 1.
Suppose 1 is that last digit in z and y. By construction of A, ., and B,,.; we must then
have x =< b,1 > for some b € B,,, and y =< a,1 > for some a € A,,. But since x =y we
must have ¢ = b. This implies that a € A, N B, contradicting property (b) for A, and
B,,. Therefore 1 cannot be the last element in z and y. The case in which 0 is the last
element of x and y is similar, and also leads to a contradiction. Therefore, it must be the
case that 0 = A, 11 N Byt

To complete the proof of property (b) for A,,; and B,;; we need to show K, 1 =
Api1 U B,yq. By construction, every element of A,,; and B,y is a binary sequence of
length n+1, and therefore A,,.1UB,,+1 C K,11. To show the reverse, let z € K, ;. Then,
x must end in either 0 or 1, that is, there must be a y € K,, such that + =< y,0 > or
r =<y,1>. Suppose x =< y,0 >. By the choice of A4,, and B,,, we have K, = A,, U B,,
and therefore y € A,, U B,,. There are two cases, either y € A,, or y € B,,. In either case
it follows from the construction of A,,; and B,; that r =< y,0 >€ A,,1 UB, ;1. A
similar argument shows that if z =< y,1 > then x must be an element of A, U B, ;.
Since these are the only two cases for z, and x was an arbitrary element of K, 1, it follows
that K11 C Api1 U By, as desired. Therefore A, 1 and B,,; must satisfy property

(b).

Consider property (c) next. Let z,y € A,.1 and suppose z # y. We need to show that
d(z,y) > 2. By the construction of A1, x =< 4,0 > or z =< b,1 >, and y =< ¢,0 >
ory =<e,1>, where a,c € A, and b,e € B,,. Therefore there are four cases for z and y.

Suppose r =< a,0 > and y =< ¢,0 > with a,c € A,,. Since z # y it must be the case



that a # c. Therefore by property (c) for A4,, d(a,c) > 2. By the definition of distance, it
follows that d(< a,0 >, < ¢,0 >) = d(a, c) and therefore d(z,y) > 2. A similar argument
applies to x =< b,1 > and y =< e, 1 >, with b,e € B,,, showing d(z,y) > 2 holds in this
case too.

Suppose r =< a,0 > and y =< e,1 > with a € A, and e € B,. By the definition of
distance, it follows that d(< a,0 >,<e,1>) =1+ d(a,e). But, since A, and B, satisfy
property (d), and a € A,, e € B,, we have d(a, e) > 1. Therefore d(x,y) > 2 in this case.
A similar argument applies to x =< b,1 > and y =< ¢,0 >, with b € B,, and ¢ € A,,
showing d(z,y) > 2 holds in this case too.

Since these are all the possible cases for z,y € A, 1, it follows that d(z,y) > 2 for all
distinct elements x and y in A, 1, as required. A similar argument applies to B, ;.
Therefore property (c) must hold for A,,; and B, ;.

Finally, we are left with property (d). Let z € A, 1. Then by the construction of A,
there are two cases, namely x =< a,0 > or x =< b, 1 > for some element a € A,, or some
b € B,. Suppose, r =< a,0 > with a € A,. Let y =< a,1 >. Then by construction
y € Bpy1. Moreover d(z,y) =d(< a,0 >, < a,1 >) =1+d(a,a) =1+0 = 1. A similar
argument applies to the case x =< b,1 > with b € B,,, showing that y =< b,0 >€ B,
satisfies d(z,y) = 1. Therefore we have shown that for any = € A,,; there exists a
y € Bpy1 such that d(z,y) = 1. A similar argument shows that the roles of A,.; and
By, 11 can also be reversed. Therefore we have proven that A, and B, satisfy property

(d).
Therefore A, and B, satisfy all properties (a-d), and hence S(n + 1) is true.

It follows by mathematical induction that S(n) is true for all integers n > 1.

. Consider the set of binary strings of length n, namely K, along with the distance function
d(z,y), as defined in problem 5. Define the parity function p : K, — {even, odd} to have
the value p(x) = even when the binary string x has an even number of 1’s; and p(z) = odd
otherwise. We say z has even (or odd) parity if and only if p(z) = even (or p(x) = odd,
respectively).

Let n > 1 be a natural number. Suppose A C K, such that, for any x,y € A, either
x =y or d(z,y) > 2. Prove that both of the following statements are true:

(a) [A] <277,

(b) If |A| = 2! then the elements in A all have the same parity, that is, they are all
even parity or all odd parity.

For a change, you don’t need to use mathematical induction for this question.



The proof of both parts will rely on the properties of a graph formed using elements of
K, as the nodes. Two nodes in the graph, say corresponding to elements x,y € K,, are
connected by an edge if and only if z and y differ in exactly one place, that is, d(z,y) = 1.
An important property of this graph is given in Lemma 6.1 below.

Lemma 6.1. Every node in this graph defined on K, is an endpoint of exactly n edges.

Proof of Lemma 6.1. Consider any node in the graph, that is, any x =< x1, 29, ..., 2, >€
K,,. Define the set N(z) to be

N(z)={y:y =<1, -, Ti1,Ti, Tiz1, .-, Tp >,
where 1<i<mn, and Z; # z;}.

Here Z; denotes the complement of the bit z,, that is if z; = 0 then Z; = 1 and vice versa.
For each y € N(z) it follows from the definition of distance that d(z,y) = 1. So there is
an edge in the graph between z and y.

Moreover, by the definition of distance, if y =< y1,ya, ..., y, >€ K, is such that d(z,y) =
1 then there must be exactly one index 7 at which z; # y;. Since z;,y; € {0,1} it follows
that y; = Z;. Therefore y € N(z). Therefore N(z) is the set of all elements in K, that
are a distance 1 away from x. These elements are all the nodes connected to z by an edge
in the graph. We refer to N(z) as the set of neighbours of z.

The number of edges terminating at x is therefore |N(z)|. And from the construction of
N(z) we have |[N(x)| = n. Since this is true for an arbitrary z € K, the lemma follows.

Proof of part a. We will prove this by contradiction. Suppose A C K, with the
properties that |A| > 2"~! and, for every two distinct elements z,y € A, d(z,y) > 2. Let
B = K, — A be the complementary set to A. Then |B| = |K,,| —|A| < 2" — 2"~ = 2"~1,
(Here we have used |K,| = 2", which follows from problem 5.)

Let z € A and consider the set of neighbours N(z). By definition of N(z), if y € N(z)
then d(z,y) =1 and = # y. Therefore y cannot be an element of A. Thus N(z) C B for
each z € A.

Let m equal the number of edges in the graph on K, between elements in A and elements
in B. We have shown above that each element z € A has exactly n distinct neighbours
in B. Thus m = |A|n > n2" L.

But, by Lemma 6.1, each element of B has exactly n neighbours and thus m, the total
number of edges between A and B, must be bounded by m < |B|n. From above we
know |B| < 27!, Therefore we have m < n2"~!, contradicting the inequality m > n2"~1
derived previously.

Therefore |A| < 2"~ proving part a.



For part b we will use the following lemma.

Lemma 6.2. Let z € K,, and y € N(z). Then the parities p(z) and p(y) are different
(i.e. one is even and the other is odd).

Proof of Lemma 6.2. By definition of N(z), y must be the same sequence as = but
with one bit changed. That is, for some i € {1,2,...,n}, v =< z1,...,2, > and y =<
Y1y - -5 Yn > with y, = x4 for k # 7 and y; = Z;. If x; = 0 then Z; = 1 and y has exactly
one more bit equal to one than x does. Therefore the parity of x and y must be different.
Similarly, if x; = 1 then y; = z; = 0 and y has exactly one fewer bits equal to one than z
does. Again the parity must be different. Since 0 and 1 are the only two possible values
for z;, the result follows.

Proof of part b. Suppose A C K,, with the properties that |A| = 2"~ and, for every
two distinct elements z,y € A, d(x,y) > 2. Define B = K,, — A to be the complementary
set to A. Moreover, define

Ae ={x:z € A, and p(z) = even},
A, ={z:z € A, and p(x) = odd},
B, ={z : z € B, and p(z) = even},
B, ={z : z € B, and p(z) = odd}.

By the definitions of A, B and parity, it follows that these four sets are all disjoint and
their union is K,,. In particular, since |K,| = 2" (see problem 5), |B| = 2" — 2"~ 1 =271,
Therefore we have
Al = [Ae] + Ao =277, (6)
Bl = |B.| + |B,| = 2. (7)

Let z € A, and consider the set of neighbours N(z). By the definition of A, any other
element in A must have a distance of at least 2 from z, and therefore N(z)N A = (). Thus
N(x) C B. Moreover, by Lemman 6.2, since x € A, has even parity, y € N(z) must have
odd parity.

For any set S C K,, we define
N(S) ={y:y € K, such that there exists an x € S with d(z,y) = 1}.
Thus we have shown above that N(A.) C B,. Similarly, we can show that N(A,) C Be.

Since each element of A, has n neighbours in B, there are |A.|n edges between A, and
B,. Since each element in K, has at most n neighbours (by Lemma 6.1), it follows that
there are no more than |B,|n edges between A, and B,. Therefore |B,| > |A.|. A similar
argument shows that |B,| > |A4,|. However, from equations (6) and (7), |A¢| + |A4,| =
|Be| + | B,|. Together with the previous inequalities we find that it must be the case that

|B,| = |Ae| and |B,| = | A4,|.
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Finally, since there are | B,|n edges with endpoints in B,, and we know that there are | A.|n
edges between A, and B, with |A.| = |B,|, it follows that all the edges with endpoints in
B, must be between elements in A, and B,. That is, there can be no edge between B,
and B,. Therefore N(B,) C A,. Similarly, we can show that N(B,) C A,. Together with
the relations N(A,) C B, and N(A,) C B, proved above, we find that

N(A,) = B,, N(B,) = A, N(A,) = B., N(B,) = A,. (8)

We need to prove that either A, or A, is empty. We will do this by contradiction.

Suppose A, and A, are both non-empty. Let z =< z,...,2, >€ A, and y =<
Yi, .-, Yo >E€ A,. Consider the sequence < e’ e!,... e" > with e’ = z, e" = y, and
eF =< Y1, Yk oty .., Tn > for 1 < k < m. Since K, = A, U A, U B, U B, and
these four subsets are all disjoint, we must have e* in precisely one of these four subsets
of K, for each k. Also, for any k € {1,...n}, either y, # x, in which case ef~1 # e*
and d(e*~',e*) = 1, or y;, = 74 and eF~! = €*. Therefore e* € N(e*~') U {e*~'} for all
ke{l,...n}.

Define L = {k : ¢¥ € A, U B.}. Notice that e* =z € A, implies 0 ¢ L, and e" =y € A,
implies n € L. Therefore L is a non-empty subset of the natural numbers. Thus it must
have a minimal element j € L. Since 0 ¢ L the minimal element cannot be 0, so j > 0. By
the definition of L we then have ¢/=! € A,U B, and ¢/ € A,U B,. In particular e/=! # ¢/
and therefore e/ € N(e/1).

Therefore we have shown /! € A, U B,, equation (8) holds, and ¢/ € N(e’™!). Together
these imply ¢/ € N(A.) UN(B,) = A.U B,. But, since the sets A, 4,, B, and B, are all
disjoint, this contradicts ¢’/ € A, U B,.

Therefore one of A, or A, must be empty, completing the proof.
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