CSC238:Discrete Mathematics for Computer Science - Spring 2003

Solutions for Assignment 1

1. Consider the function f(n) defined by

$$f(0) = 5,$$

$$f(n) = f(n-1) + 6n - 3, \text{ for } n \ge 1.$$
(1)

Using mathematical induction, prove that $f(n) < 10n^2$ for all natural numbers $n \ge 1$.

Proof. Let S(n) be the statement that $f(n) < 10n^2$.

Base Case: n = 1. From (1) above, it follows that f(1) = f(0) + 6 - 3 = 5 + 3 = 8. Since $10n^2 = 10$ for n = 1, it follows that S(1) is true.

Let n be a natural number, $n \geq 1$.

Induction Hypothesis. Suppose S(n) is true.

Induction Step. We need to prove S(n+1) is true.

From equation (1) it follows that

$$f(n+1) = f(n) + 6(n+1) - 3$$
, by (1), since $n+1 \ge 1$,
 $< 10n^2 + 6(n+1) - 3$, by the IH,
 $= 10n^2 + 6n + 3$, by algebra,
 $= 10((n+1)^2 - 2n - 1) + 6n + 3$, by algebra,
 $= 10(n+1)^2 - 14n - 7$, by algebra,
 $< 10(n+1)^2$, since $n \ge 1$.

Therefore S(n+1) is true.

It follows by mathematical induction that S(n) is true for all natural numbers $n \geq 1$.

2. Consider the function f(n) defined by

$$f(0) = 5,$$

 $f(1) = 4,$
 $f(n) = 3f(\lfloor n/2 \rfloor) + 2^n, \text{ for } n \ge 2.$ (2)

Here $\lfloor n/2 \rfloor$ equals the largest natural number less than or equal to n/2. So $\lfloor 3/2 \rfloor = 1$, $\lfloor 4/2 \rfloor = 2$, and so on. Using mathematical induction, prove that $f(n) \leq 2^{n+2}$ for all $n \geq 1$.

It is useful to first prove the following:

Lemma 2.1. For natural numbers $n \ge 2$ the integer $m = \lfloor (n+1)/2 \rfloor$ satisfies $1 \le m \le n-1$.

Proof of Lemma 2.1. For n=2 we have $m=\lfloor (2+1)/2\rfloor=1$. Therefore $1\leq m\leq n-1$ for this case.

Suppose $n \geq 3$. By the definition of floor, m is an integer such that $(n+1)/2 = m + \delta$, where $\delta \in 0, 1/2$. Therefore,

$$m = (n+1)/2 - \delta$$

 $\leq (n+1)/2 \text{ since } \delta \geq 0,$
 $\leq (n+1)/2 + (n-3)/2 \text{ since } n \geq 3,$
 $= n-1 \text{ by algebra}.$

A lower bound for m can be obtained as follows,

$$m = (n+1)/2 - \delta$$

 $\geq (n+1)/2 - 1/2$ since $\delta \leq 1/2$,
 $= n/2$
 ≥ 1 since $n \geq 3$.

Therefore we have shown $1 \le m \le n-1$ for $n \ge 3$. This completes the proof of Lemma 2.1.

Proof for Question 2. Let S(n) be the statement that $f(n) \leq 2^{n+2}$.

Base Cases: n = 1, 2. From (2) above, it follows that f(1) = 4, and $f(2) = 3f(1) + 2^2 = 16$. Since 2^{n+2} equals 8 and 16 for n = 1 and 2, respectively, it follows that both S(1) and S(2) are true.

Let n be a natural number, $n \geq 2$.

Induction Hypothesis. Suppose S(k) is true for each integer k with $1 \le k \le n$.

Induction Step. We need to prove S(n+1) is true.

Since $n \geq 2$ it follows that $n+1 \geq 2$ and the bottom equation in (2) implies

$$f(n+1) = 3f(\lfloor (n+1)/2 \rfloor) + 2^{n+1}.$$

Define $m = \lfloor (n+1)/2 \rfloor$. Since $n \geq 2$ we know from Lemma 2.1 that m satisfies $1 \leq m \leq n-1$. Therefore, by the induction hypothesis, S(m) is true. That is, $f(m) \leq 2^{m+2}$. Using this in the equation above we find

$$f(n+1) = 3f(m) + 2^{n+1}$$
, since $n+1 \ge 2$
 $\le 3(2^{m+2}) + 2^{n+1}$, by the IH and $1 \le m \le n-1$,
 $\le 3(2^{n-1+2}) + 2^{n+1}$, since $m \le n-1$
 $= 2^{n+1}(3+1) = 2^{(n+1)+2}$, by algebra.

Therefore we have proved that S(n+1) is true.

By mathematical induction it follows that S(n) is true for all natural numbers $n \geq 1$.

3. Consider the function f(n) defined by

$$f(0) = 0,$$

$$f(1) = 1,$$

$$f(n) = f(n-1) + f(n-2), \text{ for } n > 2.$$
(3)

Using mathematical induction, prove that

$$f(n)f(n+1) = \sum_{k=0}^{n} f^{2}(k), \tag{4}$$

for all natural numbers $n \ge 0$. (Since we want you to practice induction, proofs which do not rely on induction will receive zero marks.)

Proof. Let S(n) be the statement that $f(n)f(n+1) = \sum_{k=0}^{n} f^2(k)$.

Base Case: For n = 0, it follows from (3) that f(0)f(1) = 0 * 1 = 0, and $f(0)^2 = 0$. Therefore S(0) is true.

Let n be a natural number, $n \geq 1$.

Induction Hypothesis. Suppose S(n-1) is true.

Induction Step. We need to prove S(n) is true.

From equation (3) it follows that

$$f(n+1)f(n) = (f(n) + f(n-1))f(n)$$
, by (3) since $n+1 \ge 2$,
 $\le f(n)^2 + f(n-1)f(n)$, by algebra,
 $= f(n)^2 + \sum_{k=0}^{n-1} f^2(k)$, by the IH, since, $n-1 \ge 0$,
 $= \sum_{k=0}^n f^2(k)$, by algebra.

Therefore S(n) is true.

It follows by mathematical induction that S(n) is true for all natural numbers n.

4. The height of a non-empty tree is defined to be the maximum number of edges in any path from the root of the tree to a leaf node. For an empty tree, we define the height to be -1. Prove that, for each integer $h \ge -1$, if n is the number of nodes in a full binary tree of height h then $n \le 2^{h+1} - 1$. Your proof must rely on mathematical induction.

Proof. Let S(h) be the statement that a full binary tree of height h has at most $2^{h+1} - 1$ nodes.

Base Case: Consider h = -1. Any tree that has height -1 must be empty. Therefore it has n = 0 nodes. Note $2^{-1+1} - 1 = 1 - 1 = 0$. Therefore S(-1) is true.

Let h be a natural number.

Induction Hypothesis. Suppose S(k) is true for $-1 \le k < h$.

Induction Step. We need to prove S(h) is true.

Let T be any tree of height h. Since $h \ge 0$, T cannot be empty. Therefore T has a root node, along with (possibly empty) left and right subtrees R and L, respectively. Since T has height h it follows that R and L must have height at most h-1. Also, since R and L are trees their heights must each be at least -1. Therefore the induction hypothesis applies to both L and R. That is, they each must have at most $2^{(h-1)+1}-1=2^h-1$ nodes. Since the nodes in T just consist of the root node and any nodes in the left and right subtrees, we have the total number of nodes in T must be at most $1+2(2^h-1)=2^{h+1}-1$, as desired. Therefore, S(h) is true.

It follows by mathematical induction that S(h) is true for all integers $h \geq -1$.

5. Let K_n denote the set of all binary strings of length n. That is,

$$K_n = \{a : a = \langle a_1, a_2, \dots, a_n \rangle, \text{ with } a_i = 0 \text{ or } 1 \text{ for each } i = 1 \dots n\}.$$

Here $\langle a_1, a_2, \dots, a_n \rangle$ denotes a sequence, as defined in Chapter 0 of the course notes.

Suppose a and b are elements of K_n . Let d(a, b) be the distance between a and b, which is defined to be the number of indices i at which $a_i \neq b_i$. In particular,

$$d(a,b) = |\{i : 1 \le i \le n \text{ and } a_i \ne b_i, \text{ where } a = < a_1, a_2, \dots, a_n >, b = < b_1, b_2, \dots, b_n > \}|.$$
(5)

For each natural number $n \geq 1$, prove that there exist two sets A_n and B_n for which all of the following properties are satisfied:

- (a) $|A_n| = |B_n| = 2^{n-1}$.
- (b) $K_n = A_n \cup B_n$ and $\emptyset = A_n \cap B_n$.
- (c) Any two distinct elements of A_n are at least a distance of 2 apart, and similarly for any two distinct elements of B_n . That is, if $x, y \in A_n$ with $x \neq y$ then $d(x, y) \geq 2$. Similarly, if $x, y \in B_n$ with $x \neq y$ then $d(x, y) \geq 2$.
- (d) For each element $x \in A_n$ there exists $y \in B_n$ such that d(x, y) = 1. (Note the choice of y may depend on the x.) Similarly, for each element $x \in B_n$ there exists $y \in A_n$ such that d(x, y) = 1.

Your proof must rely on mathematical induction.

Proof. Let S(n) be the statement that there exist subsets A_n and B_n of K_n which satisfy properties (a-d) in Question 5 above.

Base Case: Consider n = 1. Let $A_1 = \{ < 0 > \}$ and $B_1 = \{ < 1 > \}$. Then properties (a) and (b) are clearly satisfied. Since there is only one element in each of A_1 and B_1 , property (c) is trivially satisfied. Property (d) follows since the distance d(< 0 >, < 1 >) = d(< 1 >, < 0 >) = 1.

Let n be a natural number, $n \geq 1$.

Induction Hypothesis. Suppose S(n) is true.

Induction Step. We need to prove S(n+1) is true.

Let A_n and B_n be any two sets that satisfy properties (a-d) in Question 5. The induction

hypothesis guarantees that such a pair must exist. Define

$$A_{n+1} = \{s : s = < a_1, a_2, \dots, a_n, 0 > \text{ for } a = < a_1, a_2, \dots, a_n > \in A_n\} \cup \{s : s = < b_1, b_2, \dots, b_n, 1 > \text{ for } b = < b_1, b_2, \dots, b_n > \in B_n\},$$

$$B_{n+1} = \{s : s = < a_1, a_2, \dots, a_n, 1 > \text{ for } a = < a_1, a_2, \dots, a_n > \in A_n\} \cup \{s : s = < b_1, b_2, \dots, b_n, 0 > \text{ for } b = < b_1, b_2, \dots, b_n > \in B_n\}.$$

We need to show that these sets A_{n+1} and B_{n+1} satisfy properties (a-d).

Given $x = \langle x_1, x_2, \dots, x_n \rangle$ we will use the shorthand $\langle x, 0 \rangle$ to denote the sequence $\langle x_1, x_2, \dots, x_n, 0 \rangle$, and similarly for $\langle x, 1 \rangle$.

Note that if $x \in A_{n+1}$ then either $x = \langle a, 0 \rangle$ for some $a \in A_n$, or $x = \langle b, 1 \rangle$ for some $b \in B_n$. The number of different elements of the form $\langle a, 0 \rangle$ is exactly the number of different a's, that is $|A_n|$. Since A_n satisfies property (a), $|A_n| = 2^{n-1}$. Similarly, the number of distinct elements of the form $\langle b, 1 \rangle$ is also 2^{n-1} . Since any elements of the form $\langle a, 0 \rangle$ and $\langle b, 1 \rangle$ differ (at least in the last place), the total number of elements in A_{n+1} is $|A_{n+1}| = 2^{n-1} + 2^{n-1} = 2^n$. Similarly, it can be shown that $|B_{n+1}| = 2^n$. Therefore A_{n+1} and B_{n+1} satisfy property (a).

Next we wish to show $\emptyset = A_{n+1} \cap B_{n+1}$. Let $x \in A_{n+1}$ and $y \in B_{n+1}$, and suppose x = y. Then the last element of x and y must be equal, that is it must be either a 0 or a 1. Suppose 1 is that last digit in x and y. By construction of A_{n+1} and B_{n+1} we must then have $x = \langle b, 1 \rangle$ for some $b \in B_n$, and $y = \langle a, 1 \rangle$ for some $a \in A_n$. But since x = y we must have a = b. This implies that $a \in A_n \cap B_n$, contradicting property (b) for A_n and B_n . Therefore 1 cannot be the last element in x and y. The case in which 0 is the last element of x and y is similar, and also leads to a contradiction. Therefore, it must be the case that $\emptyset = A_{n+1} \cap B_{n+1}$.

To complete the proof of property (b) for A_{n+1} and B_{n+1} we need to show $K_{n+1} = A_{n+1} \cup B_{n+1}$. By construction, every element of A_{n+1} and B_{n+1} is a binary sequence of length n+1, and therefore $A_{n+1} \cup B_{n+1} \subseteq K_{n+1}$. To show the reverse, let $x \in K_{n+1}$. Then, x must end in either 0 or 1, that is, there must be a $y \in K_n$ such that $x = \langle y, 0 \rangle$ or $x = \langle y, 1 \rangle$. Suppose $x = \langle y, 0 \rangle$. By the choice of A_n and B_n , we have $K_n = A_n \cup B_n$, and therefore $y \in A_n \cup B_n$. There are two cases, either $y \in A_n$ or $y \in B_n$. In either case it follows from the construction of A_{n+1} and B_{n+1} that $x = \langle y, 0 \rangle \in A_{n+1} \cup B_{n+1}$. A similar argument shows that if $x = \langle y, 1 \rangle$ then x must be an element of $A_{n+1} \cup B_{n+1}$. Since these are the only two cases for x, and x was an arbitrary element of K_{n+1} , it follows that $K_{n+1} \subseteq A_{n+1} \cup B_{n+1}$, as desired. Therefore A_{n+1} and B_{n+1} must satisfy property (b).

Consider property (c) next. Let $x, y \in A_{n+1}$ and suppose $x \neq y$. We need to show that $d(x, y) \geq 2$. By the construction of A_{n+1} , x = < a, 0 > or x = < b, 1 >, and y = < c, 0 > or y = < e, 1 >, where $a, c \in A_n$ and $b, e \in B_n$. Therefore there are four cases for x and y.

Suppose $x = \langle a, 0 \rangle$ and $y = \langle c, 0 \rangle$ with $a, c \in A_n$. Since $x \neq y$ it must be the case

that $a \neq c$. Therefore by property (c) for A_n , $d(a,c) \geq 2$. By the definition of distance, it follows that d(< a, 0 >, < c, 0 >) = d(a, c) and therefore $d(x, y) \geq 2$. A similar argument applies to x = < b, 1 > and y = < e, 1 >, with $b, e \in B_n$, showing $d(x, y) \geq 2$ holds in this case too.

Suppose $x = \langle a, 0 \rangle$ and $y = \langle e, 1 \rangle$ with $a \in A_n$ and $e \in B_n$. By the definition of distance, it follows that $d(\langle a, 0 \rangle, \langle e, 1 \rangle) = 1 + d(a, e)$. But, since A_n and B_n satisfy property (d), and $a \in A_n$, $e \in B_n$, we have $d(a, e) \geq 1$. Therefore $d(x, y) \geq 2$ in this case. A similar argument applies to $x = \langle b, 1 \rangle$ and $y = \langle c, 0 \rangle$, with $b \in B_n$ and $c \in A_n$, showing $d(x, y) \geq 2$ holds in this case too.

Since these are all the possible cases for $x, y \in A_{n+1}$, it follows that $d(x, y) \geq 2$ for all distinct elements x and y in A_{n+1} , as required. A similar argument applies to B_{n+1} . Therefore property (c) must hold for A_{n+1} and B_{n+1} .

Finally, we are left with property (d). Let $x \in A_{n+1}$. Then by the construction of A_{n+1} there are two cases, namely $x = \langle a, 0 \rangle$ or $x = \langle b, 1 \rangle$ for some element $a \in A_n$ or some $b \in B_n$. Suppose, $x = \langle a, 0 \rangle$ with $a \in A_n$. Let $y = \langle a, 1 \rangle$. Then by construction $y \in B_{n+1}$. Moreover $d(x,y) = d(\langle a, 0 \rangle, \langle a, 1 \rangle) = 1 + d(a,a) = 1 + 0 = 1$. A similar argument applies to the case $x = \langle b, 1 \rangle$ with $b \in B_n$, showing that $y = \langle b, 0 \rangle \in B_{n+1}$ satisfies d(x,y) = 1. Therefore we have shown that for any $x \in A_{n+1}$ there exists a $y \in B_{n+1}$ such that d(x,y) = 1. A similar argument shows that the roles of A_{n+1} and A_{n+1} can also be reversed. Therefore we have proven that A_{n+1} and A_{n+1} satisfy property (d).

Therefore A_{n+1} and B_{n+1} satisfy all properties (a-d), and hence S(n+1) is true.

It follows by mathematical induction that S(n) is true for all integers $n \geq 1$.

Let $n \geq 1$ be a natural number. Suppose $A \subseteq K_n$ such that, for any $x, y \in A$, either x = y or $d(x, y) \geq 2$. Prove that both of the following statements are true:

- (a) $|A| \leq 2^{n-1}$,
- (b) If $|A| = 2^{n-1}$ then the elements in A all have the same parity, that is, they are all even parity or all odd parity.

For a change, you don't need to use mathematical induction for this question.

^{6.} Consider the set of binary strings of length n, namely K_n , along with the distance function d(x, y), as defined in problem 5. Define the parity function $p: K_n \to \{even, odd\}$ to have the value p(x) = even when the binary string x has an even number of 1's, and p(x) = odd otherwise. We say x has even (or odd) parity if and only if p(x) = even (or p(x) = odd, respectively).

The proof of both parts will rely on the properties of a graph formed using elements of K_n as the nodes. Two nodes in the graph, say corresponding to elements $x, y \in K_n$, are connected by an edge if and only if x and y differ in exactly one place, that is, d(x, y) = 1. An important property of this graph is given in Lemma 6.1 below.

Lemma 6.1. Every node in this graph defined on K_n is an endpoint of exactly n edges.

Proof of Lemma 6.1. Consider any node in the graph, that is, any $x = \langle x_1, x_2, \dots, x_n \rangle \in K_n$. Define the set N(x) to be

$$N(x) = \{y : y = \langle x_1, \dots, x_{i-1}, \bar{x}_i, x_{i+1}, \dots, x_n \rangle,$$

where $1 \le i \le n$, and $\bar{x}_i \ne x_i \}.$

Here \bar{x}_i denotes the complement of the bit x_1 , that is if $x_i = 0$ then $\bar{x}_i = 1$ and vice versa. For each $y \in N(x)$ it follows from the definition of distance that d(x, y) = 1. So there is an edge in the graph between x and y.

Moreover, by the definition of distance, if $y = \langle y_1, y_2, \dots, y_n \rangle \in K_n$ is such that d(x, y) = 1 then there must be exactly one index i at which $x_i \neq y_i$. Since $x_i, y_i \in \{0, 1\}$ it follows that $y_i = \bar{x}_i$. Therefore $y \in N(x)$. Therefore N(x) is the set of all elements in K_n that are a distance 1 away from x. These elements are all the nodes connected to x by an edge in the graph. We refer to N(x) as the set of neighbours of x.

The number of edges terminating at x is therefore |N(x)|. And from the construction of N(x) we have |N(x)| = n. Since this is true for an arbitrary $x \in K_n$, the lemma follows.

Proof of part a. We will prove this by contradiction. Suppose $A \subseteq K_n$ with the properties that $|A| > 2^{n-1}$ and, for every two distinct elements $x, y \in A$, $d(x, y) \ge 2$. Let $B = K_n - A$ be the complementary set to A. Then $|B| = |K_n| - |A| < 2^n - 2^{n-1} = 2^{n-1}$. (Here we have used $|K_n| = 2^n$, which follows from problem 5.)

Let $x \in A$ and consider the set of neighbours N(x). By definition of N(x), if $y \in N(x)$ then d(x,y) = 1 and $x \neq y$. Therefore y cannot be an element of A. Thus $N(x) \subseteq B$ for each $x \in A$.

Let m equal the number of edges in the graph on K_n between elements in A and elements in B. We have shown above that each element $x \in A$ has exactly n distinct neighbours in B. Thus $m = |A|n > n2^{n-1}$.

But, by Lemma 6.1, each element of B has exactly n neighbours and thus m, the total number of edges between A and B, must be bounded by $m \leq |B|n$. From above we know $|B| < 2^{n-1}$. Therefore we have $m < n2^{n-1}$, contradicting the inequality $m > n2^{n-1}$ derived previously.

Therefore $|A| \leq 2^{n-1}$, proving part a.

For part b we will use the following lemma.

Lemma 6.2. Let $x \in K_n$ and $y \in N(x)$. Then the parities p(x) and p(y) are different (i.e. one is even and the other is odd).

Proof of Lemma 6.2. By definition of N(x), y must be the same sequence as x but with one bit changed. That is, for some $i \in \{1, 2, ..., n\}$, $x = \langle x_1, ..., x_n \rangle$ and $y = \langle y_1, ..., y_n \rangle$ with $y_k = x_k$ for $k \neq i$ and $y_i = \bar{x}_i$. If $x_i = 0$ then $\bar{x}_i = 1$ and y has exactly one more bit equal to one than x does. Therefore the parity of x and y must be different. Similarly, if $x_i = 1$ then $y_i = \bar{x}_i = 0$ and y has exactly one fewer bits equal to one than x does. Again the parity must be different. Since 0 and 1 are the only two possible values for x_i , the result follows.

Proof of part b. Suppose $A \subseteq K_n$ with the properties that $|A| = 2^{n-1}$ and, for every two distinct elements $x, y \in A$, $d(x, y) \ge 2$. Define $B = K_n - A$ to be the complementary set to A. Moreover, define

$$A_e = \{x : x \in A, \text{ and } p(x) = even \},\$$

 $A_o = \{x : x \in A, \text{ and } p(x) = odd \},\$
 $B_e = \{x : x \in B, \text{ and } p(x) = even \},\$
 $B_o = \{x : x \in B, \text{ and } p(x) = odd \}.$

By the definitions of A, B and parity, it follows that these four sets are all disjoint and their union is K_n . In particular, since $|K_n| = 2^n$ (see problem 5), $|B| = 2^n - 2^{n-1} = 2^{n-1}$. Therefore we have

$$|A| = |A_e| + |A_o| = 2^{n-1}, (6)$$

$$|B| = |B_e| + |B_o| = 2^{n-1}. (7)$$

Let $x \in A_e$ and consider the set of neighbours N(x). By the definition of A, any other element in A must have a distance of at least 2 from x, and therefore $N(x) \cap A = \emptyset$. Thus $N(x) \subseteq B$. Moreover, by Lemman 6.2, since $x \in A_e$ has even parity, $y \in N(x)$ must have odd parity.

For any set $S \subseteq K_n$ we define

$$N(S) = \{y : y \in K_n \text{ such that there exists an } x \in S \text{ with } d(x, y) = 1\}.$$

Thus we have shown above that $N(A_e) \subseteq B_o$. Similarly, we can show that $N(A_o) \subseteq B_e$.

Since each element of A_e has n neighbours in B_o , there are $|A_e|n$ edges between A_e and B_o . Since each element in K_n has at most n neighbours (by Lemma 6.1), it follows that there are no more than $|B_o|n$ edges between A_e and B_o . Therefore $|B_o| \geq |A_e|$. A similar argument shows that $|B_e| \geq |A_o|$. However, from equations (6) and (7), $|A_e| + |A_o| = |B_e| + |B_o|$. Together with the previous inequalities we find that it must be the case that

$$|B_o| = |A_e|$$
 and $|B_e| = |A_o|$.

Finally, since there are $|B_o|n$ edges with endpoints in B_o , and we know that there are $|A_e|n$ edges between A_e and B_o with $|A_e| = |B_o|$, it follows that all the edges with endpoints in B_o must be between elements in A_e and B_o . That is, there can be no edge between B_o and B_e . Therefore $N(B_o) \subseteq A_e$. Similarly, we can show that $N(B_e) \subseteq A_o$. Together with the relations $N(A_e) \subseteq B_o$ and $N(A_o) \subseteq B_e$ proved above, we find that

$$N(A_e) = B_o, \ N(B_o) = A_e, \ N(A_o) = B_e, \ N(B_e) = A_o.$$
 (8)

We need to prove that either A_e or A_o is empty. We will do this by contradiction.

Suppose A_e and A_o are both non-empty. Let $x = \langle x_1, \ldots, x_n \rangle \in A_e$ and $y = \langle y_1, \ldots, y_n \rangle \in A_o$. Consider the sequence $\langle e^0, e^1, \ldots, e^n \rangle$ with $e^0 = x$, $e^n = y$, and $e^k = \langle y_1, \ldots, y_k, x_{k+1}, \ldots, x_n \rangle$ for $1 \leq k < n$. Since $K_n = A_e \cup A_o \cup B_e \cup B_o$ and these four subsets are all disjoint, we must have e^k in precisely one of these four subsets of K_n for each k. Also, for any $k \in \{1, \ldots n\}$, either $y_k \neq x_k$, in which case $e^{k-1} \neq e^k$ and $d(e^{k-1}, e^k) = 1$, or $y_k = x_k$ and $e^{k-1} = e^k$. Therefore $e^k \in N(e^{k-1}) \cup \{e^{k-1}\}$ for all $k \in \{1, \ldots n\}$.

Define $L = \{k : e^k \in A_o \cup B_e\}$. Notice that $e^0 = x \in A_e$ implies $0 \notin L$, and $e^n = y \in A_o$ implies $n \in L$. Therefore L is a non-empty subset of the natural numbers. Thus it must have a minimal element $j \in L$. Since $0 \notin L$ the minimal element cannot be 0, so j > 0. By the definition of L we then have $e^{j-1} \in A_e \cup B_o$ and $e^j \in A_o \cup B_e$. In particular $e^{j-1} \neq e^j$ and therefore $e^j \in N(e^{j-1})$.

Therefore we have shown $e^{j-1} \in A_e \cup B_o$, equation (8) holds, and $e^j \in N(e^{j-1})$. Together these imply $e^j \in N(A_e) \cup N(B_o) = A_e \cup B_o$. But, since the sets A_e , A_o , B_e and B_o are all disjoint, this contradicts $e^j \in A_o \cup B_e$.

Therefore one of A_e or A_o must be empty, completing the proof.

10