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Many practical problems over a wide range of domains require synthesizing information

from time series data. Two distinct, yet related, problems in time series data are those of

alignment and difference detection. These tasks may be coupled together so that a solution to

one is difficult without a solution to the other.

We introduce a unified, probabilistic approach to the problems of alignment and of align-

ment with difference detection. This approach takes the form of a class of models called Con-

tinuous Profile Models for simultaneously analyzing sets of sibling time series – those which

contain shared sub-structure, but which may also differ. In this type of generative model, each

time series belonging to one class is generated as a noisy transformation of a single latent trace

in the model. A latent trace can be viewed as an underlying, noiseless representation of the

set of observable time series belonging to one class, and is learned from the data. If multiple

classes of data exist, then one latent trace per class is learned, and these are aligned to each

other during inference. The latent traces lie at the core of this class of models, and provide the

basis for alignment and difference detection.

Our approach to alignment has several benefits over traditional approaches. It provides

a principled method for finding parameters in the model, such as the reference template and

error/distance function, rather than specifying these in an a priori and/or ad hoc manner. It

simultaneously aligns all data in one go, rather than aligning them in a greedy, incremental

fashion. It corrects scaling of signal intensity while performing alignment. Additionally, the

probabilistic framework allows us the option of using fully Bayesian inference, if desired, so
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that we may gauge uncertainty in our model parameters, integrate out model parameters, and

avoid cross-validation, which can be problematic with limited data. Lastly, the CPM is the

first model, to our knowledge, to tackle the simultaneous problems of alignment and difference

detection.

We focus on Liquid-Chromatography-Mass Spectrometry proteomics data, for examination

and demonstration of our methods, although our methods are not confined to this domain.
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Chapter 1

Continuous Profile Models

1.1 The Alignment Problem

Many practical problems in many domains require synthesizing information from data sampled

over time or space. An example of such time series are speech waveforms, in which the digital

representation of a vocal utterance is represented by real-valued numbers at a sequence of

discrete time points. Time series data are often noisy, and in particular, the timing of salient

events can be extremely variable. This variability arises because timing during collection of

the data cannot be accurately controlled, or, if it can be controlled, the measured time does not

correspond to the timing of the underlying processes we wish to model and understand. For

example, speech recognition needs to account for the fact that different people speak at different

rates. The underlying processes producing speech are the utterances of particular syllables (or

phonemes), which can span more or less time, depending on the particular speaker. It is useful

to find some canonical/reference time frame to which all the time series can be mapped, so as

to make them directly comparable to one another. We refer to the problem of making two or

more time series comparable to one another by changing their relative timing as the alignment

problem.

It is valuable to note that the alignment problem is ill-posed. That is, there does not exist a

single, best solution which could be agreed upon. If one has speech data from several speakers,

say with each speaking at his/her own uniform rate, then what would be the best reference time

frame to which to map all of these speech time series? One could just as well use the slowest

person’s time frame, or the fastest person’s, or any of the ones in between. Or one could use a

time frame that was never observed. One could even devise a pathological time frame in which

the original data was mapped non-monotonically (i.e., the relative timing of events in a given

1



CHAPTER 1. CONTINUOUS PROFILE MODELS 2

time series would change so that the future with respect to one event becomes the past in the

pathological time frame).

Are any of these reference frames better than the others? One could argue quite convinc-

ingly that the pathological time frame is not desirable because we would like a reference time

frame which maps events monotonically. But beyond this criterion, can we reasonably argue

for one time frame over another? One could appeal to the Occam’s razor principle which states

that simplicity is best – all else being equal. In the alignment setting, this principle could be

translated into the desideratum that a reference time frame should be one in which the least

‘complex’ mappings from observed time series to the reference time is achieved, provided the

quality of the alignment is not sacrificed (the best quality alignment would be one in which the

underlying processes are in perfect correspondence with each other). Indeed, adherence to Oc-

cam’s principle would rule out our pathological reference frame since swapping past and future

is surely a complex mapping by any definition. This idea of keeping it simple enters into tradi-

tional alignment algorithms, under the guise of ‘regularization’, in which model complexity is

held at bay.

The alignment problem is a pervasive one, spanning not only speech and music processing,

but also, for example, equipment and industrial plant diagnosis/monitoring, and analysis of bio-

logical time series from microarray and liquid/gas chromatography-based laboratory (LC/GC)

data (such as mass spectrometry (LC-MS) and ultraviolet diode arrays). A main contribution

of this thesis is to provide a robust model and algorithm for alignment of time series data.

1.2 Amplitude Normalization

In addition to the need for correction of time, one may also need to correct for systematic dif-

ferences in the amplitude of the signal at each time point. This is the problem of normalization.

For example, in a laboratory experiment, it may be the case that an instrument is slightly mis-

calibrated one day, and that all measurements are thus systematically larger than on a previous

day. Or it may be the case that some speaker’s volume trails off at the end of a sentence, while

others’ remains constant, or takes on some other pattern. These are not variations in the timing

of events, but in the amplitude of events at each time point. Normalization might be viewed as

an easier, or less critical problem than alignment, although the two can be intertwined – that

is, one may only be able to do ‘optimal’ alignment after normalization, and one may only be

able to do ‘optimal’ normalization after alignment. Indeed, there is a degeneracy arising from

performing both of these corrections, since one could imagine putting an observation in one
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time series into corespondance with that in another either by moving it in time, or by changing

its scale.

1.3 Alignment of Liquid-Chromatography Experiments

As mentioned, the problem of alignment arises in many biological or chemical experimental

settings, such as experiments which measure the expression of genes at various points in the

cell cycle (using microarrays). In this thesis, liquid-chromatography based experiments are

the primary application. In liquid chromatography, some solution of interest (e.g., serum) is

passed through a chromatography column which separates parts of the solution on the basis

of some chemical property (for example, hydrophobicity). At discrete time intervals, solu-

tion is collected as it exits the column, and then is analyzed by an instrument (e.g., a mass

spectrometer). Analysis by the instrument at each discrete time point can provide a feature

vector (e.g., mass/charge ratios in mass spectrometry), or scalar values (e.g., UV absorbance at

a single wavelength).

If a single specimen of solution is split into two parts, and each of these are then run through

the same liquid chromatography column, they will not travel through the column in identical

ways. Their paths are affected by chemical and physical properties of the column which may

not remain identical from run to run or even within a run, as well as by ambient factors such as

temperature and pressure in the laboratory. Thus data collected from LC experiments can be

extremely variable in time.

Liquid-chromatography (LC) techniques are currently being developed and refined with

the aim of providing a robust platform with which to detect differences in biological organ-

isms – be they plants, animals or humans. Detected differences can reveal new fundamental

biological insights, or can be applied in more clinical settings. LC-mass spectrometry technol-

ogy has recently undergone explosive growth in tackling the problem of biomarker discovery

– for example, detecting biological markers that can predict treatment outcome or severity of

disease, thereby providing the potential for improved health care and better understanding of

the mechanisms of drug and disease. In botany, LC-UV data is used to help understand the

uptake and metabolism of compounds in plants by looking for differences across experimental

conditions.

Many of the models and algorithms introduced in this thesis are examined in the context of

LC data, although our models and algorithms are very general, and could of course be applied

to any number of domains.
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1.4 The Difference Detection Problem

In many time series settings, one is interested in aligning data for the purpose of comparison.

Comparison could take the form of a simple yes/no response. For example, does a particular

speech utterance match a stored record – for the purpose of, say, biometric identification.

Alternatively, comparison could take on a more detailed form – what are all of the differences

between LC-MS profiles from aggressive prostate cancer serum samples and those arising from

a more benign form of the disease. The first type of comparison, classification, is an easier

task, since it requires only that we be able to model sufficient information so as to reliably

distinguish between two categories. The second type of comparison, difference detection, is

more challenging since it requires finding all patterns which systematically differ between

categories, even if these are rare, noisy or of little value for classification (e.g., are redundant

given other information).

Note that there are different ways in which one could define the problem of difference de-

tection. For example, one could define it as looking for all single features which appear in

Category A, but not in Category B. Alternatively, one might define it as looking for all feature

combinations (i.e., including sets of features) which systematically differ between categories.

In other words, there may be individual features which do not differ between categories, but

perhaps two such features in combination with one another do provide a systematically differ-

ent pattern. Technically, we are distinguishing between first order difference detection (using

single features), and higher order difference detection (in which sets of features are sought).1

In this thesis, we consider only the first order difference detetecion problem, which is by far

the easier problem, since looking for all combinations of features is intractable.

Difference detection manifests itself in many of the same domains as alignment (e.g., bio-

metric speech analysis, industrial plant diagnosis/monitoring, LC-based biomarker discover).

When the difference detection problem arises in static data (i.e., not time series data), one can

appeal to traditional statistical or machine learning methods to model any systematic differ-

ences. However, when one wants to perform difference detection on time series data requiring

alignment, the problem can become much more difficult. Difficulty arises if the systematic

differences which exist between categories make it difficult to align the data, producing a

chicken/egg scenario – to find differences between categories, one may need to first align the

data, but to align the data, one may first need to know where the differences are so that they do

not disturb the alignment.

1Analogously, classification is routinely performed using first order features, or higher order features, or both.
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Previous approaches to this problem ignore this chicken-egg scenario, choosing to start

with the alignment problem (while ignoring differences between time series), followed by dif-

ference detection. That is, people typically apply a single class alignment algorithm to the

data, assuming that differences need not be accounted for, and then perform difference detec-

tion following alignment. A main contribution of this thesis is to present a unified solution to

these two, simultaneous problems.

We use the term sibling time series to refer to sets of time series which share common

substructure, but may also differ from one another. Thus difference detection (and alignment)

operate on sibling time series data.

1.5 Contributions of this Thesis

In this thesis, we develop a novel, unified, probabilistic framework for alignment, normal-

ization, and difference detection in sibling time series. In particular, we present a new class

of probabilistic, generative models, Continuous Profile Models (CPMs), in analogy to Profile

HMMs for discrete sequences, which simultaneously align and normalize sibling time series

data. If more than one class of data is present, one can additionally, simultaneously, perform

difference detection.

The core foundation of Continuous Profile Models is the concept of a latent trace, which

is a latent variable in these models.2 A latent trace can be viewed as a canonical, underlying

representation of a set of time series data from one class, and is inferred by our algorithms

during training/inference. By inferring the latent trace, one can obtain alignments and normal-

ize the data. In the multi-class models, there is one latent trace per class, which provides the

foundation for multi-class alignment and difference detection. In this scenario, not only are

the latent traces from each class learned, but they are also simultaneously aligned to each other

while accounting for differences between them. These class-specific latent traces are then in

correspondence with one another and can then be used to reveal differences between classes.

Continuous Profile Models use the formalisms and machinery of probabilistic, generative

modeling. This allows for a principled and unified approach to both alignment alone and align-

ment together with detection. By principled, we mean that we avoid requirements of speci-

fying a reference time frame and a distance/error function for measuring how similar a set of

2Latent variables are not directly observed, but explain commonalities among things that are observed. Also,
technically, in the first model we introduce, the latent trace might better be considered a parameter, since we are
learning only a point-estimate of it.
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observed time series are to one another in an ad hoc manner. Instead, we use parameters/latent

variables which represent these quantities, and learn them from the data in a statistically sound

way, thereby providing an algorithm tailored to the data at hand. CPMs are applicable to the

alignment problem alone, and also to the problem of simultaneous alignment and difference

detection. We emphasize both of these problems equally in this thesis.

Within the CPM framework,

1. We introduce a MAP (maximum a posteriori) -based Continuous Profile Model (EM-

CPM) for alignment of (single-class) sibling time series data, and investigate properties

of this model and algorithm through experimentation on LC-MS data. Training in this

model is done using the EM algorithm.

2. We introduce a fully Bayesian, Hierarchical Continuous Profile Model (HB-CPM) which

uses Markov Chain Monte Carlo (MCMC) for inference. This model is particularly

well suited to performing simultaneous alignment and detection under a single, unified

modeling paradigm. We investigate properties of this model and algorithm on some

NASA solenoid valve data (providing a nice illustrative example) and on LC-UV data

from a botany laboratory.

3. We apply our models to an LC-MS proteomic spike-in experiment in which known pro-

teins are added to a base of serum, providing a realistic, yet verifiable set-up to assess

different algorithms. We demonstrate the advantages of using CPMs over the more tra-

ditional Dynamic Time Warping class of algorithms for alignment. In this setting, we

are also able to demonstrate that the problem of difference detection is indeed a more

challenging one than classification.

1.6 Organization of this Document

The remainder of this thesis is structured as follows:

Chapter 2: We discuss previous work pertinent to the problem of analyzing sets of related

time series data.

Chapter 3: We provide an introduction and brief review of the field of proteomics as it

pertains to our work in Chapter 6. Readers not interested in this field can skip this chapter

without much loss.
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Chapter 4: We introduce the class of models called Continuous Profile Models (CPM) –

a class of probabilistic generative models for alignment and normalization of sets of related

time series data. We then present one specific instance of CPMs– the EM-based CPM (EM-

CPM), as well as a method to train the EM-CPM. We explore use of the EM-CPM, mainly in

the context of a liquid-chromatography mass spectrometry (LC-MS) data set, but also with a

speech data set. Lastly, we briefly explore a multi-class version of the EM-CPM as applied to

a NASA solenoid valve data set.

Chapter 5: We introduce a fully Bayesian instance of the class of CPM models, the Hier-

archical Bayesian Continuous Profile Model (HB-CPM), as well as an associated (MCMC) al-

gorithm for inference. We then explore use of this model on two data sets – a three-class liquid-

chromatography-ultraviolet-diode array data from a study of the plant Arabidopsis thaliana and

a two-class solenoid valve current data set.

Chapter 6: We present a simple technique for discovering differences between two classes

of samples, which is used after data alignment. We apply this technique to LC-MS serum pro-

teomic data without use of tandem mass spectrometry, gels, or labeling and test our technique

on a controlled and realistic (spike-in, serum biomarker discovery) experiment which is there-

fore verifiable. This set-up allows us to assess different approaches to the alignment problem,

by comparing precision-recall curves built from knowledge of the spike-in ground truth. We

are thus able to contrast the performance of Dynamic Time Warping, the EM-CPM and the

HB-CPM, demonstrating some advantages of CPMs.

Chapter 7: We wrap-up with a discussion of what we have accomplished and of future

directions.

1.7 Notations and Conventions

Forms of the standard distributions not appearing in the text can be found in the first Ap-

pendix. Most background material is also found in various Appendixes rather than in the main

manuscript so that readers already familiar with these topics can easily access the novel con-

tributions of this thesis. Additionally, some technical details and derivations required for our

models are relegated to various Appendixes in order to make for a clearer read.


