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ABSTRACT
Hereditary predisposition and causative environmental

exposures have long been recognized in human malignan-
cies. In most instances, cancer cases occur sporadically,
suggesting that environmental influences are critical in de-
termining cancer risk. To test the influence of genetic poly-
morphisms on breast cancer risk, we have measured 98
single nucleotide polymorphisms (SNPs) distributed over 45
genes of potential relevance to breast cancer etiology in 174
patients and have compared these with matched normal
controls. Using machine learning techniques such as support
vector machines (SVMs), decision trees, and naı̈ve Bayes, we
identified a subset of three SNPs as key discriminators
between breast cancer and controls. The SVMs performed
maximally among predictive models, achieving 69% predic-
tive power in distinguishing between the two groups, com-
pared with a 50% baseline predictive power obtained from
the data after repeated random permutation of class labels
(individuals with cancer or controls). However, the simpler
naı̈ve Bayes model as well as the decision tree model per-
formed quite similarly to the SVM. The three SNP sites most
useful in this model were (a) the �4536T/C site of the
aldosterone synthase gene CYP11B2 at amino acid residue
386 Val/Ala (T/C) (rs4541); (b) the �4328C/G site of the aryl
hydrocarbon hydroxylase CYP1B1 at amino acid residue
293 Leu/Val (C/G) (rs5292); and (c) the �4449C/T site of the
transcription factor BCL6 at amino acid 387 Asp/Asp
(rs1056932). No single SNP site on its own could achieve
more than 60% in predictive accuracy. We have shown that
multiple SNP sites from different genes over distant parts of

the genome are better at identifying breast cancer patients
than any one SNP alone. As high-throughput technology for
SNPs improves and as more SNPs are identified, it is likely
that much higher predictive accuracy will be achieved and a
useful clinical tool developed.

INTRODUCTION
Malignant transformation occurs through the accumulation

of mutations in genes regulating cell division, apoptosis, inva-
siveness, or metastasis. These can occur as primary events or as
a consequence of defects in “caretaker” genes that function in
the maintenance of genomic stability (1). Inherited cancer pre-
disposition from the inheritance of single genes almost exclu-
sively results from abnormalities in DNA maintenance genes
such as DNA double-strand break repair factors BRCA1 or
BRCA2, which are abnormal in familial breast cancer (2); the
check point kinase ATM, which is mutated in ataxia telangiec-
tasia (3); the double-strand break repair gene MRE11, which is
abnormal in a variant of ataxia telangiectasia (4); the helicase
BLM, which is mutated in Bloom’s syndrome (5); NBS1, impli-
cated in the Nijmegen breakage syndrome (6); the XP excision
repair enzymes in Xeroderma pigmentosum (7); the mismatch
repair enzymes MSH2 and MLH1 in hereditary nonpolyposis
colon cancer (8, 9); and the transcription regulator p53 in the Li
Fraummeni syndrome (10).

Whereas mutations that render DNA repair enzymes com-
pletely inactive can lead to obvious clinical consequences, poly-
morphisms in these genes that produce subtle alterations in their
effectiveness may result in environmental sensitivities, resulting
in cancer. The consequence of mutagen exposure may vary
between individuals depending on the effectiveness of intrinsic
detoxification and repair of induced DNA damage. For instance,
procarcinogens such as N-nitrosoamines are metabolized into
intermediate carcinogenic metabolites by the Phase I cyto-
chrome P450 enzyme 2E1 and are excreted with enhanced
solubility through the actions of Phase II enzymes such as
glutathione S-transferase M1 (11). Increasingly the relationship
between the mutagenic potential of genotoxins and inherited
allelic variability in carcinogen metabolizing and DNA repair
genes is becoming recognized (12–14). The consequence of the
“gene-environment” interaction is likely to differ between indi-
viduals because of the inheritance of polymorphic alleles and
various environmental exposures (15).

With ongoing high-throughput human gene sequencing
efforts, human genome variability can now be measured. As
many as 3 million sites of “single nucleotide polymorphism”
(SNP) have been identified, thus defining the allelic complexity
of the human gene pool. Many epidemiological studies have
attempted to attribute single alleles to cancer risk. Typically,
prior knowledge of tumor pathophysiology permits selection of
a candidate gene for which allelic variability has been described.
A classic case–control study may be performed after the meas-
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urement of specific alleles in tumors and age-matched control
groups. Using such techniques, investigators have linked
CYP3A4 and hOGG1 alleles to prostate cancer risk (16, 17), a
RET allele to papillary thyroid carcinoma (18), a P2X7 allele to
chronic lymphocytic leukemia (19), a kallikrein 10 allele to
gonadal tumors (20), a cyclin D1 allele to bladder tumors (21),
p53 and MMP-1 alleles to lung cancer (22, 23), and CDKN2A to
melanoma (24).

Such association studies are dependent on prior knowledge
of cancer pathogenesis and fortuitous selection of specific poly-
morphisms for study. Large-scale SNP analytical tools now
exist, allowing the simultaneous measurement of many alleles.
Interpretation of significant differences in allele distribution
between affected individuals and normal controls is difficult
because of the hazards of multiple testing (25). When hundreds
of alleles are measured and related to even a single clinical
patient characteristic, spurious, statistically significant associa-
tions may be identified by chance alone. With many clinical
patient characteristics, the problem is exacerbated.

Risk for the development of sporadic breast cancer may
have a significant inherited component, with as many as 10% of
cases having a significant familial component (26, 27). Of these,
as few as 13% of cases may be attributable to known BRCA1 or
BRCA2 mutations (28). The proportion of breast cancer in the
general population that can be explained by these high pen-
etrance genes is relatively small. Variant genotypes in genes that
may be involved in the molecular etiology of cancer may confer
a relatively smaller degree of cancer risk when considered
individually but, when considered collectively, may explain a
large component of inherited and sporadic breast cancer (29).
Because these genes may be carried by a larger proportion of the
general population, the proportion of breast cancer that could be
explained by these genes may be relatively large.

To identify polymorphisms in unrecognized breast cancer-
associated genes we have measured 98 SNPs distributed over 45
genes in 174 patients with breast cancer and compared these
with 158 normal controls. We have compared a variety of
machine learning techniques: support vector machines (SVMs),
decision trees, and naı̈ve Bayes, and have identified a subset of
SNPs that have predictive power in distinguishing breast cancer
patients from controls. Many of the genes containing these SNPs
are implicated in DNA transcription and repair or in steroid
metabolism, suggesting a genetic predisposition to breast cancer
in some “nonfamilial” sporadic breast cancers. In this study, the
SNP site most able to discriminate between populations, as
measured by information gain (described later), was the
�4536C/T polymorphism in the aldosterone synthase gene
CYP11B2 at amino acid position 386 (Val/Ala). Alone, evalu-
ation at this site resulted in a naı̈ve Bayes prediction accuracy of
56% as compared with a baseline of 50%. Accuracy was in-
creased to 69% with two additional SNP-based allele determi-
nations in conjunction with a quadratic kernel SVM. Thus, we
have shown that machine learning techniques may be used to
successfully model relationships between inherited genetic
polymorphisms and clinical disease. As high-throughput tech-
nology for SNPs improves and, as more SNPs are identified, it
is likely that much higher predictive accuracy could be achieved
and useful clinical tools be developed with this methodology.

MATERIALS AND METHODS
Patient Identification. The PolyomX Program5 of the

Alberta Cancer Board systematically archives peripheral blood
and tumor samples with informed consent from patients and
with local institutional review board approval. For this study,
174 local sequentially registered patients with banked breast
cancer who were not known to have BRCA1 or BRCA2 abnor-
malities, were enrolled between January 2001 and June 2002.
Blood samples from local age-matched persons not known to
have breast cancer were used as controls.

Tissue Accrual. Breast tumors removed at the time of
primary surgery were identified by gross appearance and placed
into liquid nitrogen within 20 min of devitalization. Breast
cancer was confirmed histologically on adjacent tissue by two
independent pathologists. Peripheral blood was collected into
EDTA. Buffy coat cells were isolated by centrifugation and
were immediately stored in liquid nitrogen.

Clinical Informatics. Clinical parameters were prospec-
tively collected on all patients by multidisciplinary review of
imaging studies, histology and by patient interviews conducted
by members of the Northern Alberta Breast Cancer Program.
Categorical clinical information was entered via web-based in-
formation forms and included a detailed family history, disease
risk factors, presentation details, pathology, treatment adminis-
tered, and outcome.6

SNP Measurement. Polymorphism analysis for various
gene SNPs was carried out by the Qiagen genomics service.7

The assay reproducibility was more than 95% (30). QIAmp
DNA blood kit (Qiagen) was used for DNA isolation. DNA was
quantitated using the Pico green fluorescence assay (31). The
SNPs selected from Human Genome Variability Database were
validated using control panel of DNA obtained from Coriell Cell
Repositories. From a total of 245 SNPs selected from this public
domain database, polymorphisms at 98 sites were reproducibly
measured in one or all of the ethnic groups tested from the above
panel of DNA, as selected for study in our study subjects. These
include 45 well-characterized genes from tumor suppressors,
receptors, transcription factors, DNA metabolism enzymes, on-
cogenes, and other signal transduction pathways.

Data Analysis. Correlation of SNPs with presence of can-
cer was assessed through use of information gain (32), with statis-
tical significance calculated through use of random permutation
simulations followed by multiple comparison corrections (33–36).
Two-class discriminative models for patients with breast cancer
and controls were built and tested using 20-fold cross-validation in
conjunction with several machine learning algorithms: naı̈ve Bayes
(37), SVM (38), and decision tree (39). The prior in naı̈ve Bayes
and decision tree was always set to 50:50. A variety of kernels were
used with the SVM, with the quadratic kernel performing maxi-
mally. Data analysis was performed with Matlab and SVMLight
(40). Relative risk associated with particular genotypes and allele

5 Internet address: http://www.polyomx.org/.
6 The complete clinical data template can be found at http://www.
cancerboard.ab.ca/polyomx/breastCancerSnpStudy/breastCancerTem-
plate.html (best viewed with Internet Explorer).
7 Internet address for the Qiagen genomics service: http://www.qiagen.com.
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frequencies were estimated by calculating odds ratios with 95%
and 99% confidence intervals (CIs). Because odds ratios could not
be computed with any genotype or allele frequencies that were
zero, a “pseudo-count” of 0.5 was added to these genotype or allele
counts to make the calculation feasible (and biased); this is a typical
“Laplacian correction.” Multiple comparisons were not taken into
account for the odds ratio CIs.

SNP calls at each site were converted into numeric values
assigned according to control population frequencies in the
present study: homozygous major allele, 1; heterozygous, 2;
homozygous minor allele, 3; ambiguous. Data analysis using
this coding convention makes certain assumptions. For models
that treat the SNPs as continuous variables, such as SVMs, it
makes an additive assumption: heterozygotes are half-way be-
tween the homozygotes. Also the two alleles are not treated
symmetrically by such models. For models such as naı̈ve Bayes
and decision trees, which consider the SNPs to be nominal data,
the coding is unimportant. Unknown values refer to data points
with poor signal:noise ratio in the genotyping assays. These
missing values were ignored in all of the calculations and, thus,
were not used as informative. The naı̈ve Bayes algorithm natu-
rally adapts to missing values. It was used with all of the data,
as well as with a smaller data set consisting only of patients with
all SNP measurements present. SVM and decision tree algo-
rithms were only used with this latter, smaller data set.

RESULTS
Description of Breast Cancer and Control Populations.

The 158 control bloods were anonymous, nonduplicated dis-
carded samples obtained from patients attending the University
of Alberta Hospital in Edmonton. We selected this tertiary-
referral center to obtain control samples because (a) breast
cancer patients are not included in the clinical population, and
(b) the control and test participants were derived from the same
geographical region and referral area. The mean age of the
controls was 57.9 years. The 174 samples from patients were
derived from women with newly diagnosed invasive breast
cancers who consented to primary tumor and blood banking and
analysis and attended the Cross Cancer Institute in Edmonton,
Canada. All of the tumor samples were independently reviewed
to confirm malignancy and histological features. Mean age was
55 years; the mean tumor diameter was 2.2 cm; 74% of tumors
were hormone receptor positive (either estrogen receptor and/or
progesterone receptor positive) by centralized immunohisto-
chemical analysis, and 59% had node positive disease. Thirty
percent of patients were premenopausal, 11% were perimeno-
pausal, and 59% were postmenopausal. American Joint Com-
mittee on Cancer stage (fifth edition) was stage II in 89%, stage
III in 10%, and stage IV in 1% of patients.

Predictive SNPs. Correlation of individual SNPs with
occurrence of cancer was computed using information gain
(32).8 Information gain is based on the entropy, H, of a distri-
bution {pi}: H (p,. . . , pn

) � �[summ]ipi log pi. In this case, pi is

the probability of one genotype (e.g., heterozygote) in one
population, i, (e.g., breast cancer patients), and n � 2, because
there are two classes (breast cancer patients and controls). The
entropy of a distribution represents the amount of uncertainty in
the distribution. In the present context, a high entropy value for
a particular genotype for a single SNP would indicate that this
genotype is providing information about whether a person has
cancer or not. Information gain combines the entropy of each
feature value (common homozygous, heterozygous, variant) to
form a single number representing the informativeness of the
feature (SNP) with respect to the class (cancer patients/con-
trols). Information gain is a measure of the “purity” of the split
that a particular feature creates in the data set. For example, if
SNP_1 is present 100% of the time as the minor allele in the
breast cancer population and 0% of the time in the normal
population, then SNP_1 creates a perfectly pure split; it is very
informative. Conversely, if SNP_2 is present 30% of the time as
the minor allele in breast cancer patients and likewise at 30% in
a normal population, then SNP_2 creates a very impure split; it
is completely uninformative. Formally, information gain is cal-
culated by summing the entropy of the split distribution for each
possible value of the feature (common homozygous, heterozy-
gous, homozygous variant), weighted by the proportion of val-
ues that fall into each possible feature value. This value is then
subtracted from the entropy of the split created by the labels
alone. The higher the information gain, the more informative the
feature and, thus, the more predictive power it has.

Statistical significance was assigned to the information
gain values by modeling the null distribution of each SNP with
random permutation tests. The significance of each SNP as a
predictor for breast cancer versus normal was assessed by ran-
domly permuting the labels of the breast cancer and normal SNP
data, and then calculating the resulting information gain of each
SNP with respect to this random partition. This type of random
permutation technique has gained prominence in the microarray
community, in which an overabundance of features and feature
scoring methods are present (33–36). Ten thousand permuta-
tions were performed producing a simulated probability distri-
bution over information gain values for the null hypothesis that
the two groups are the same. From this distribution, it was
inferred that each of 13 SNPs was individually significant at the
P � 0.05 level (Table 1; see Table 2 for full SNP information).
Because the number of tests was high, a correction for multiple
testing was applied so that the overall family of hypotheses has
a reasonable false discovery rate. The most conservative such
correction is Bonferroni. This correction showed two SNPs to be
significant (P � 0.05; Table 1, SNPs 1–2). Less conservative
step-down Bonferroni and Sidak corrections arrived at the same
result, with two significant SNPs (Table 1, SNPs 1–2). A less
conservative adjustment, the Benjamini-Hochberg step-up false
discovery rate indicated that 11 SNPs were significant (Table 1,
SNPs 1–11). All of these adjustments, except for Benjamini-
Hochberg false discovery rate are known to be highly conserv-
ative to preserve the Type I error rate at the expense of increas-
ing the Type II error rate. Benjamini-Hochberg false discovery
rate assumes that the Ps across SNPs are independent and
uniformly distributed under their respective null hypotheses. In
generic association studies, significant differences between pop-
ulations for a given SNP are often measured using a �2 test on

8 A complete listing of all SNPs studied in this experiment can be found
at http://www.cancerboard.ab.ca/polyomx/breastCancerSnpStudy/
snpData.html.
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the 2 � 3 SNP table with subsequent look-up in a �2 distribution
table. Use of the �2 distribution makes more stringent assump-
tions about the structure of the underlying data than use of
permutation tests. However, for comparison, we here also ap-
plied a �2 analysis. Uncorrected Ps resulting from the �2 test
were of the same order of magnitude as those from the infor-
mation gain tests. Furthermore, application of multiple correc-
tion testing to the �2 Ps provided almost identical results, with
the only exception being the Benjamini-Hochberg step-up false
discovery rate, which indicated that only SNPs 1–9 in Table 1

were significant, rather than SNP 1-11 which the information
gain provided (data not shown).

Diagnostic Classifiers. Machine learning techniques
seek to semi-automatically build and validate mathematical
models of data. Once a model has been built and validated, the
model can then be used for classification or regression or for
examining which parts of the data were relevant and in what
way. Application of machine learning techniques to a data set
involves four steps: (a) positing a class of mathematical or
statistical models appropriate for the data; (b) “learning” which
particular model in the class is most suitable for the data (this
typically involves a numerical optimization of some objective
function to produce a fixed set of parameters identifying a
specific model within the model class; and (c) validation of the
model by use of a test set or cross-validation (explained below).
At this point, one has a model, and no longer needs the training
data. The final and fourth step can be performed: (4) application
of the final model to new data.

Cross-validation is a way to make the most use of a data set
for both learning and validation. Rather than separating the data
into a single learning set (called the “training” set) and a single
test set, n-fold cross-validation separates the data into n training
sets and n test sets. If n were equal to five, cross-validation
would work as follows: The entire data set would be divided
into five equal-sized groups. The first four groups would be used
as training data, and the fifth as test data. The second through to
fifth groups would then be used as training data and the first
group as test data. This procedure is continued until each group
has been used as test data. The aggregate test results from all
n � 5 phases of the cross-validation would be used to obtain a
final estimate of the predictive accuracy. Cross-validation pro-
vides an estimate of how a particular model might do on a new,
unseen data set drawn from the same statistical distribution. If
the cross validation process produces an estimated accuracy that

Table 1 The significance of 13 single nucleotide
polymorphisms (SNPs)

SNPs found to have significant information gain values (relative to
breast cancer patients versus controls) as determined by permutations
tests. SNPs 1–13 are significant at a P � 0.05 level. With adjustments
for multiple hypothesis testing through use of Bonferroni, step-down
Bonferroni, or Sidak, SNPs 1–2 are significant at a P � 0.05 level. With
the Benjamin-Hochberg false discovery rate step-up adjustments, SNPs
1–11 are significant at a P � 0.05 level. Full information on SNPs is
provided in Table 2.

dbSNPa SNP designation

1 rs4541 CYP11B2 (�)4536T/C
2 rs1056836 CYP1B1 (�)4328C/G
3 rs1056932 BCL6 (�)4449C/T
4 rs10046 CYP19A1 (�)32123 (3�UT)
5 rs4545 CYP11B2 (�)5215G/A
6 rs1799977 MLH1 (�)18529A/G
7 rs1800935 MSH6 (�)12742T/C
8 rs5182 AGTR1 (�)572C/T
9 rs1799939 RET (�)37412G/A

10 rs17607 CD68 (�)1786G/A
11 rs6405 CYP11B1 (�)28G/A
12 rs6163 CYP17 (�)194G/T
13 rs1800051 CD38 (�)55806A/C
a dbSNP, double-strand SNP; UT, untranslated.

Table 2 Information on all single nucleotide polymorphisms (SNPs) reported by name in this paper
In the present study, in the control population, SNPs shown in bold were found to have the minor and major alleles opposite from what was

reported in the database. References to genotypes in this paper use minor and major alleles as determined by the control population in the present
study. For example, BCL6 homozygous variant refers to CC.

Gene name
SNP designation
(as in dbSNP)a

Common allele in
control population dbSNP identification Chromosome Codon

1 CYP11B2 (�)4536T/C T rs 4541 8 386Val/Ala
2 CYP1B1 (�)4328C/G C rs 5292 8 293 Leu/Val
3 BCL6 (�)4449C/T T rs 1056932 3 387 Asp/Asp
4 CYP19A1 (�)32123 (3�UT)T/C C rs 10046 15 NA
5 CYP11B2 (�)5215G/A G rs 4545 8 435 Gly/Ser
6 MLH1 (�)18529A/G A rs 1799977 3 219 Ile/Val
7 MSH6 (�)12742T/C T rs 1800935 2 180 Asp/Asp
8 AGTR1 (�)572C/T C rs 5182 3 191 Leu/Leu
9 RET (�)37412G/A G rs 1799939 10 691 Gly/Ser

10 CD68 (�)1786G/A G rs 17607 17 340 Ala/Thr
11 CYP11B1 (�)28G/A G rs 6405 8 10 Cys/Tyr
12 CYP17 (�)194G/T G rs 6163 10 65 Ser/Ser
13 CD38 (�)55806A/C A rs 1800051 4 168 Ile/Ile
14 ADPRT (�)22266T/C T rs1805414 1 284Ala/Ala
15 ERCC2 (�)17966C/T C rs1052555 19 50Asp/Asp
16 CYP11B2 (�)2703C/T C rs4546 8 168 Phe/Phe
17 CYP11B2 (�)344UT T/C T rs1799998 8 5Flank
18 Tp53 (�)35946G/T G rs1802434 15 693 Leu/Leu

a dbSNP, double-strand SNP; NA, not applicable.
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is sufficiently high to warrant the construction of an actual
clinical model, one would then use all of the available data to
train a final, usable model.

It is impossible to determine, a priori, which class of
models is most appropriate for a data set. For the current study,
three machine learning models, naı̈ve Bayes, SVMs, and deci-
sion trees were applied to the SNP data to discriminate normal
controls from female breast cancer patient samples. Naı̈ve Bayes
is one of the simplest classes of models; it assumes independ-
ence of each of the features (SNPs). SVM and decision trees can
both create extremely rich, complex models that allow many
interactions between the features. Each class of model can work
well or perform poorly in different contexts. The models used
are described in the “Discussion” section.

Entire Data Set. In the entire data set consisting of 174
breast cancer patients and 158 controls, 1.6% of breast cancer
patient calls and 0.9% of control calls were missing because of
poor signal:noise ratios in the genotyping assays. Because naı̈ve
Bayes naturally handles missing data, we first ran naı̈ve Bayes
on this entire data set. This allowed us to use all of our data and

to see how well we could do in the presence of missing data.
Later we modified this data set to eliminate missing values.

Twenty-fold cross-validation was used. In each fold, SNPs
were incrementally selected based on their information gain
values. Feature selection was performed once for each fold of
the cross-validation rather than once for the whole data set so as
not to bias the learner. Feature selection is part of training and,
hence, must be performed inside the cross-validation loop. Be-
cause creation of cross-validation groups has a stochastic ele-
ment, the 20-fold cross-validation was repeated five times.
Results are reported as mean � SD. Results are shown graph-
ically in Fig. 1.

Maximal performance was achieved using both 3 and 31
SNPs. The former led to a cross-validation accuracy of 63 �
2%, with 67 � 2% sensitivity and 59 � 4% specificity, whereas
the latter led to a cross-validation accuracy of 63 � 2%, with
58 � 2% sensitivity and 66 � 2% specificity.

Feature selection was performed inside of each fold of the
cross-validation and was, thus, performed 100 times (5 trials �
20 folds). Feature selection was stable across different folds and

Fig. 1 Incremental discriminating power of 98
single nucleotide polymorphisms (SNPs) using a
naı̈ve Bayes prediction algorithm with 174 breast
cancer patients and 158 controls. This is the larger
data set, in which roughly 1% of the SNP meas-
urements were missing. Permuted Label Predic-
tion shows the mean and SD of the performance of
the naı̈ve Bayes model on the real SNP data, but
with the labels (breast cancer patient/control) per-
muted at random (see “Results”). OOO, 2 SDs;
�, naı̈ve Bayes prediction; E, permuted label pre-
diction.

Fig. 2 Predictive accuracy for individual single
nucleotide polymorphisms (SNPs), one at a
time, using 174 breast cancer patients, 158 con-
trols, and a naı̈ve Bayes algorithm.OOO, Na-
ı̈ve Bayes prediction; �, 2 SDs; ‚, baseline.
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trials. In 96 of 100 feature selections performed, the top three
SNPs were CYP11B2 � 4536T/C, CYP1B1 � 4328C/G, and
BCL6 � 4449C/T, indicating a robust selection process. These
three polymorphisms were also identified when the entire data
set was used to rank the SNPs by information gain.

Naı̈ve Bayes was also used on each individual SNP, one at
a time, with 20-fold cross-validation and five trials. The maxi-
mum predictive accuracy reported was for CYP1B1 � 4328C/G
at 61 � 4%, with sensitivity 71 � 1 and specificity 49 � 1.
Results for each individual SNP are shown in Fig. 2.

To determine further whether our results were observed by
chance, we also conducted a random permutation test for the
naı̈ve Bayes classifier. That is, we conducted 100 random trials
in which each trial consisted of the following: (a) random
permutation of the labels of the data (cancer/control) so that the
labels no longer match the real data in any meaningful way; (b)
running of the naı̈ve Bayes classifier algorithm on the data with
these random labels; and (c) assessment of the predictive per-
formance. The results are shown in Fig. 1 and labeled “Per-
muted Label Predictions.” We see that these random data sets
have predictive accuracy that is centered on the 50% line and
that they are clearly well separated and below the results from
the true label partition. Thus it is highly unlikely that the
predictive results from the true labels could have arisen by
chance alone. In the particular case of three SNPs, which pro-

duces our maximal predictive accuracy, only a single randomly
permuted data set, of the 100 such sets, matches the mean value
of 63% that the true data partition obtains.

Smaller Data Set. Whereas some algorithms such as
naı̈ve Bayes and decision trees are amenable to missing values,
the missing values can have an adverse effect on the perform-
ance of the predictive model. Because SVMs do not naturally
handle missing data, it was necessary either to impute missing
values or to remove subjects with any missing data before
comparing other algorithms to SVMs. We chose the latter so as
not to depend on unknown characteristics of the missing data,
such as whether or not the missing data are missing completely
at random (as opposed, say, to being the result of some exper-
imental bias). This removal of all persons with any missing data
resulted in 63 breast cancer patients and 74 controls.

The data partitioning procedure used in the previous sec-
tion for training and testing was also used with naı̈ve Bayes and
SVM (i.e., 20-fold cross-validation, with incremental informa-
tion gain feature selection, and five separate cross-validation
trials). Because SVMs are computationally very intensive,
rather than adding a single SNP at a time throughout, we added
one SNP at a time until 15 SNPs, and then we increased the
number by 5 SNPs at a time (still adding SNPs according to
their individual information gain). In the earlier analysis, the
critical number of SNPs was approximately three, justifying this
approach. For decision trees, feature selection is an inherent part
of the algorithm (39). As the tree is being built, features are
chosen one at a time on the basis of information content relative
to the target classes and the previous features that were selected.
This is similar to ranking of features except that interactions
between features are considered and can, therefore, be more
powerful. SVMs are often touted as doing feature selection as an
inherent part of the SVM algorithm. However, in our study, we
found that adding an extra layer of feature selection on top of the
SVM training algorithm was advantageous (i.e., using the in-
cremental addition of SNPs on the basis of information gain).

We recall that the naı̈ve Bayes model with maximal per-
formance used three SNPs and produced 67 � 2% accuracy,
with 54 � 2% sensitivity and 79 � 2% specificity.

The SVMs with quadratic kernel performed better than the
other kernels tried. It had maximal performance with the use of

Fig. 3 Optimal decision tree as determined by 20-fold cross-validation
over five trials. One can think of the decision tree as a series of ordered
tests that one performs on a person to predict whether or not that person
has cancer. The first test performed is the test at the root (top) of the tree,
in this case, the single nucleotide polymorphisms (SNP)-type for
CYP11B1 � 4328C/G. If this SNP is variant, then one traverses the right
side of the tree to a leaf node, which denotes what category the person
falls into. In this case, if a person is variant for CYP11B1 � 4328C/G,
then the leaf node indicates that the model predicts the presence of
cancer. Alternatively, if the first tests shows that the person is common
homozygous or heterozygous for CYP11B1 � 4328C/G, then one
traverses the left side of the tree and finds that another test is needed
before making a classification, namely, the SNP-type for BCL6 �
4449C/T. The BCL6 � 4449C/T test, in turn, leads to two leaf nodes,
one predicting normal tissue, and the other, breast cancer, for the
common homozygous/heterozygous (left) and variant (right) branches,
respectively. In summary, this small decision tree leads to a very simple
rule: if a person is variant for CYP11B1 � 4328C/G or BCL6 �
4449C/T, then predict that she has breast cancer; otherwise, predict that
she does not.

Table 3 Discrimination of breast cancer patients from normal
controls using machine learning techniques. The mean and SD of five

20-fold cross-validation trials.

Algorithm

Maximal
accuracy

(%) Sensitivity Specificity

Number of
SNPsa used for

maximal
accuracy

Naı̈ve Bayes 67 � 2 54 � 2% 79 � 2% 3
Decision tree 68 � 1 64 � 2% 70 � 4% 2
SVM linear

kernel
62 � 2 57 � 2% 57 � 2% 60

SVM quadratic
kernel

69 � 4 53 � 2% 83 � 7% 3

SVM cubic
kernel

67 � 4 47 � 2% 84 � 4% 3

a SNP, single nucleotide polymorphism; SVM, support vector ma-
chine.
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Table 4 Single nucleotide polymorphisms (SNPs) with significant (95 or 99%) genotype odds ratio (OR)a

The “Sig” column indicates whether the particular genotype OR was significant. Significant results are shown in bold.

SNP Genotype Control Breast cancer OR 95% CIb Sig 99% CI Sig

1 CYP11B2(�)4536T/C 1 114 99 1.00 (reference) (reference)
(�)4536T/C 2 42 48 1.32 0.80–2.16 0.69–2.52

3 0 19 44.88 2.68–752.89 Yes 1.10–1826.23 Yes

2 CYP1B1 1 77 50 1.00 (reference) (reference)
(�)4328C/G 2 56 78 2.15 1.31–3.52 Yes 1.12–4.11 Yes

3 21 45 3.30 1.76–6.19 Yes 1.44–7.54 Yes

3 BCL6 1 67 82 1.00 (reference) (reference)
(�)4449C/T 2 81 60 0.61 0.38–0.96 Yes 0.33–1.11

3 10 28 2.29 1.04–5.05 Yes 0.89–6.47

4 CYP19A1 1 49 43 1.00 (reference) (reference)
(�)32123 2 77 67 0.99 0.59–1.68 0.50–1.98
(3�UT) 3 31 59 2.17 1.19–3.94 Yes 0.99–4.75

5 MLH1 1 76 89 1.00 (reference) (reference)
(�)18529A/G 2 75 64 0.73 0.46–1.15 0.40–1.32

3 5 17 2.90 1.02–8.24 Yes 0.74–11.44

6 MSH6 1 90 77 1.00 (reference) (reference)
(�)12742T/C 2 55 82 1.74 1.10–2.75 Yes 0.96–3.18

3 13 7 0.63 0.24–1.66 0.18–2.25

7 AGTR1 1 51 36 1.00 (reference) (reference)
(�)572C/T 2 72 84 1.65 0.97–2.81 0.82–3.32

3 33 53 2.28 1.24–4.18 Yes 1.02–5.07 Yes

8 RET 1 116 109 1.00 (reference) (reference)
(�)37412G/A 2 32 54 1.80 1.08–2.99 Yes 0.92–3.51

3 9 5 0.59 0.19–1.82 0.13–2.59

9 CYP17 1 68 54 1.00 (reference) (reference)
(�)194G/T 2 73 89 1.54 0.96–2.46 0.82–2.86

3 17 30 2.22 1.11–4.45 Yes 0.89–5.53

10 CD38 1 138 163 1.00 (reference) (reference)
(�)55806A/C 2 19 8 0.36 0.15–0.84 Yes 0.12–1.10

3 1 1 0.85 0.05–13.66 0.02–32.73

11 ADPRT 1 48 73 1.00 (reference) (reference)
(�)22266T/C 2 82 77 0.62 0.38–0.99 Yes 0.33–1.16

3 27 20 0.49 0.25–0.96 Yes

12 ERCC2 1 90 77 1.00 (reference) (reference)
(�)17966C/T 2 53 80 1.76 1.11–2.80 Yes 0.96–3.24

3 14 17 1.42 0.66–3.07 0.52–3.90

13 CD68 1 148 152 1.00 (reference) (reference)
(�)1786G/A 2 7 18 2.50 1.02–6.17 Yes 0.77–8.19

3 1 0 0.32 0.01–8.03 0.00–22.01

14 CYP11B1 1 134 161 1.00 (reference) (reference)
(�)28G/A 2 23 13 0.47 0.23–0.96 Yes 0.18–1.21

3 1 0 0.28 0.01–6.87 0.00–18.83

15 CYP11B2 1 34 57 1.00 (reference) (reference)
(�)2703C/T 2 95 87 0.55 0.33–0.91 Yes 0.28–1.07

3 29 29 0.60 0.31–1.16 0.25–1.43

16 CYP11B2 1 34 56 1.00 (reference) (reference)
(�)344 UT 2 94 86 0.56 0.33–0.93 Yes 0.28–1.10

3 30 28 0.57 0.29–1.11 0.24–1.36

17 Tp53 1 102 128 1.00 (reference) (reference)
(�)35946G/T 2 50 35 0.56 0.34–0.92 Yes 0.29–1.08

3 6 6 0.80 0.25–2.54 0.17–3.67
a 1, common homozygous; 2, heterozygous; 3, variant.
b CI, confidence interval; Sig, significant.
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three SNPs and produced 69 � 4% accuracy, with 53 � 2%
sensitivity and 83 � 7% specificity. The use of a linear kernel
resulted in maximal performance using 60 SNPs with 62 � 2%
accuracy, with 57 � 2% sensitivity and 67 � 2% specificity.
The use of a cubic kernel had maximal performance using three
SNPs and produced 67 � 4% accuracy, with 47 � 2% sensi-
tivity and 84 � 4% specificity.

For both naı̈ve Bayes and SVMs, the same feature selection
method was used (ranking with information gain). In more than
90 of 100 of the feature selections performed, the top three SNPs
identified using each of the algorithms were the same as in
the previous section in which the entire data set was used:
CYP11B2 � 4536T/C, CYP1B1 � 4328C/G, and BCL6 �
4449C/T.

The decision tree with maximal performance used two
SNPs (CYP1B1 � 4328C/G and BCL6 � 4449C/T), achieving
68 � 1% accuracy, with 64 � 2% sensitivity and 70 � 4%
specificity. A graphical picture of the tree is shown in Fig. 3.
Results for all algorithms are shown in Table 3.

As an added measure of rigor, permutation tests were
applied to the quadratic kernel SVM classifier with the use of
three SNPs. The labels of the data (cancer or normal) were
randomly permuted, then the three-SNP, quadratic kernel clas-
sifier algorithm was run and a model was built in an identical
manner to that used with the real data labels. This was repeated
100 times. No random permutation of the labels was able to tie
or outperform the mean accuracy of 69% reported above (for
three SNPs, quadratic SVM). Average prediction accuracy over
100 trials was 50% with SD of 6.6%.

Genotype Odds Ratio and Frequency of Genotypes.
SNP studies often report results in the form of odds ratios for
individual SNPs in relation to the presence or absence of a

disease (41, 42). Whereas information gain provides a summary
statistic of all genotypes for a particular SNP, odds ratios break
this information down into individual genotypes. Table 4 shows
odds ratios for all SNPs with at least one genotype (heterozy-
gous or variant) the odds ratio of which, relative to the common
homozygous genotype, deviates from unity at a minimum of a
95% significance. Both 95% and 99% confidence intervals, not
adjusted for multiple comparisons, are also shown. Table 5 is
the same as Table 4 but shows odds ratios for allele frequencies
rather than genotype frequencies.

In Table 6 we report the frequency and odds ratio of all
occurring genotypes specified by the three SNPs found to be
most important for classification in the machine learning sec-
tion, CYP11B2 � 4536T/C, CYP1B1 � 4328C/G, and BCL6
4449C/T. The odds ratio is reported relative to the homozygous
common genotype as defined by the control population in this
study.

DISCUSSION
Human genome analysis and high-throughput techniques

have spawned a mass of complex, biological data. Analysis of
these data creates the bottleneck of many studies at present.
Whereas these data are unwieldy, seemingly intractable, and not
amenable to traditional methods of statistical analysis, the data
are well suited to the application of machine learning algo-
rithms. These algorithms are designed to tease out a variety of
patterns, both linear and nonlinear, from large, noisy, and com-
plex data sets that may also contain a great deal of irrelevant
information. Traditionally seen in the context of microarray
analysis, DNA sequence analysis, protein function, and structure

Table 5 Single nucleotide polymorphisms (SNPs) with significant allele (95 or 99%) odds ratio (OR)
The “Sig” column indicates whether the particular allele OR was significant. Significant results are shown in bold.

SNP Allele Control Breast cancer OR 95% CIa Sig 99% CI Sig

1 CYP11B2 (�)4536T/C N 270 246 1.00 (reference) (reference)
V 42 86 2.25 1.50–3.38 Yes 1.32–3.84 Yes

2 CYP1B1 (�)4328C/G N 210 178 1.00 (reference) (reference)
V 98 168 2.02 1.47–2.78 Yes 1.33–3.08 Yes

3 CYP19A1 (�)32123 (3�UT) N 175 153 1.00 (reference) (reference)
V 139 185 1.52 1.12–2.07 Yes 1.01–2.28 Yes

4 CYP11B2 (�)5215G/A N 286 331 1.00 (reference) (reference)
V 28 13 0.40 0.20–0.79 Yes 0.16–0.98 Yes

5 AGTR1 (�)572C/T N 174 156 1.00 (reference) (reference)
V 138 190 1.54 1.13–2.09 Yes 1.02–2.30 Yes

6 CYP17 (�)194G/T N 209 197 1.00 (reference) (reference)
V 107 149 1.48 1.08–2.03 Yes 0.98–2.24

7 CD38 (�)55806A/C N 295 334 1.00 (reference) (reference)
V 21 10 0.42 0.19–0.91 Yes 0.15–1.16

8 ADPRT (�)22266T/C N 178 223 1.00 (reference) (reference)
V 136 117 0.69 0.50–0.94 Yes 0.45–1.04

9 CYP11B1 (�)28G/A N 291 335 1.00 (reference) (reference)
V 25 13 0.45 0.23–0.90 Yes 0.18–1.12

a CI, confidence interval; Sig, significant; N, common; V, variant; UT, untranslated.
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prediction, the machine learning algorithms have now been
applied to SNP data.

Description of Algorithms. Naı̈ve Bayes is a simple
model that uses the frequencies of different values of each
feature, within known classes, to predict the class of a new
sample with specified features but no label. It provides a prob-
abilistic framework that assumes that each feature is independ-
ent from every other feature, given the class. Although this
assumption is typically false, naı̈ve Bayes has been found to
work well in practice. Naı̈ve Bayes is generally used as a first
pass “naı̈ve” attempt at solving a classification problem. Very
simply, naı̈ve Bayes tabulates the number of times a particular
SNP occurs as common homozygous, heterozygous, or variant
within one population (say, cancer). This directly provides prob-
abilities of the form p(SNP � heterozygous�class � cancer),
called the class conditional probabilities. To classify a new
example, one uses Bayes Rule:

p�class � Y�data � X	 �
p�data � X�class � Y	p�Y	

p�X	

with the assumption that the SNPs are independent,

p�SNP1 � x, SNP2 � y, . . . ,SNPn � z�class � Y	

� p�SNP1 � x�class � Y	p�SNP2 � y�class � Y	p�SNP3

� z�class � Y	

to obtain class probabilities. The class with the higher probabil-
ity is the one to which the new example is classified. p(X) need
never be computed because it maintains the same value as we
change the class, Y. p(Y) is simply the probability that a sample
came from a particular class, say cancer and can be computed
from the relative proportion of samples in the data, or directly
set to some known value (e.g., it may be known that in the
general population that 5% of persons have cancer).

The decision tree models patterns by examining a single
feature at a time in a hierarchical manner, typically including
features on the basis of information content related to the
desired classification. For example, in the given context, the
building of the decision tree (using only training data) would
start by finding the single SNP that was most discriminative for
classifying cancer versus control. This would be at the “root” of
the tree (see, e.g., Fig. 3). Next, for each of the possible results
of ‘traversing’ this ‘root’ (e.g., go right if the SNP for the given
example is variant; to left, otherwise), the same idea is applied
again: find the SNP that is the most discriminative for the
examples that have traversed to this part of the tree. This
criterion is repeatedly applied, each time adding a new “node”
(SNP) to the tree. A decision tree also has “leaf nodes,” which,
in the present context, would be SNPs for which no tree exists
below them. Once an example has traversed to a leaf node, the
example is classified as belonging to the class for which the
majority of the examples that end up at that leaf node belong.

Table 6 Frequency of genotypes resulting from single nucleotide polymorphisms CYP11B2 �4536 T/C, CYP1B1 �4328C/G and
BCL6 �4449C/Ta

Total of 161 Breast Cancer and 152 Control (genotypes containing a “no call” were omitted). Odds ratios (ORs) are reported relative to the
“normal” genotype of “111.”

Genotype Control
Breast
cancer OR 95% CIb Sig 99% CI Sig

113 4 3 1.45 0.29–7.34 0.17–12.21
213 1 2 3.87 0.32–46.18 0.15–100.66
313 0 2 9.52 0.43–210.81 0.16–558.05
123 1 9 17.40 2.01–150.57 Yes 1.02–296.64 Yes
223 1 4 7.73 0.79–75.47 0.39–154.42
133 2 1 0.97 0.08–11.54 0.04–25.17
233 1 4 7.73 0.79–75.47 0.39–154.42
333 0 2 9.52 0.43–210.81 0.16–558.05
112 21 10 0.92 0.35–2.45 0.25–3.33
212 11 5 0.88 0.26–3.00 0.18–4.41
312 0 1 5.71 0.22–148.61 0.08–413.80
122 23 18 1.51 0.63–3.64 0.48–4.79
222 10 9 1.74 0.58–5.20 0.41–7.34
322 0 4 17.13 0.87–339.17 0.34–866.71
132 9 4 0.86 0.23–3.26 0.15–4.95
232 4 4 1.93 0.42–8.84 0.26–14.24
332 0 1 5.71 0.22–148.61 0.08–413.80
111 29 15 1.00 (reference)
211 9 7 1.50 0.47–4.84 0.32–6.98
311 0 3 13.32 0.65–274.72 0.25–711.02
121 18 17 1.83 0.74–4.54 0.55–6.04
221 3 7 4.51 1.02–20.00 Yes 0.64–31.94
321 0 3 13.32 0.65–274.72 0.25–711.02
131 5 18 6.96 2.16–22.44 Yes 1.49–32.41 Yes
231 0 5 20.94 1.09–403.86 0.43–1023.58
331 0 3 13.32 0.65–274.72 0.25–711.02

a 1, common homozygous; 2, heterozygous; 3, variant. Genotype � “123” means that CYP11B2 �4536T/C � 1, CYP1B1 �4328C/G � 2, and
BCL6 �4449C/T � 3. Genotype � “323” means that CYP11B2 �4536T/C � 3, CYP1B1 �4328C/G � 2, and BCL6 �4449C/T � 3.

b CI, confidence interval; Sig, significant.
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When building a decision tree model, the building phase of the
tree can be stopped using a variety of criteria, such as that a
certain maximum number of leaf nodes exist, or that each leaf
node must contain at least some minimum number of examples.
Additionally, with some algorithms, the tree is pruned back after
construction to make sure that the model is not overfitting to
noise in the data set. Because the decision tree chooses only one
SNP at a time, starting with the root, and never changes any
nodes, the optimal sequence of SNPs for prediction may not be
chosen.

SVMs extend the notion of a simple linear classifier (e.g.,
Fisher’s linear discriminant) to more complex classifiers by
projecting the input data into a user-selected, higher-dimen-
sional space (the space is determined by the choice of ‘kernel’).
SVMs treat the input data (e.g., SNP values for one person) as
continuous values rather than ordinal or discrete. Although this
may not always make intuitive sense (e.g., is a common ho-
mozygote really a specific amount “larger” than a variant ho-
mozygote, or vice versa?), it can nevertheless prove powerful in
practice. The simplest SVM is one with a linear kernel. Suppose
the data had only two features (e.g., transcript levels for two
genes; we use this example at this point for illustrative purposes
because transcript level are naturally continuous valued vari-
ables), measured over many controls and many cancer patients.
Then one could plot the data in two dimensions (an example of
how this might look is shown in Fig. 4). For this example (Fig.
4), the data can be separated by a straight line, and hence a linear
kernel, implying no transformation of the data, is appropriate. In
circumstances in which there is no straight line that can separate
the two classes, such as illustrated in Fig. 5, a more powerful
model is required. With SVMs, this more powerful model is
created by modifying the input space. For example, a quadratic

kernel would convert the two-dimensional data points to a
three-dimensional space as follows: {gene1, gene2}3{gene1 �
gene1, gene1 � gene2, gene2 � gene2}. The SMV would at-
tempt to partition the cancer and control data points in this new
space using a hyperlane (a line in more than two dimensions).
Clearly the choice of kernel is very important with SVMs.
Changing the kernel changes the data transformation, which, in
turn, dictates whether a line can be used to separate the data in
this new space. With the data shown in Fig. 5, a quadratic
transformation turns out to be a suitable one, whereby the data
in the new quadratic space can be perfectly separated with a line.
In addition to their ability to model complex patterns by chang-
ing the input space, SVMs are said to have good generalization
bounds because of the principle of “margin maximization,”
which is at the core of their theoretical development. General-
ization refers to the ability of a learned model to generalize to
new data (i.e., will it work well on unseen data). The principle
of margin maximization states that of all of the linear classifiers
that can separate the input data, one should choose the one
which lies farthest from all of the training points. For example,
in Fig. 4, two lines are shown that separate the data, but one is
very close to the boundary of one of the classes. The line that is
very close to one of the classes will likely have a weaker ability
to predict new examples according to the theory of SVMs.

All three of these algorithms use supervised learning in
which the algorithm is told the actual outcome (e.g., whether
this patient had cancer or not) during construction of the model.
The learned system then predicts the outcome of a sample, given
only the feature values and not the target class. Many machine
learning methods, including those used in the present study, are
related to more traditional statistical methods, such as Fisher’s
linear discriminant analysis, quadratic discriminant analysis,
and logistic regression.

Fig. 4 Representation of a support vector machine (SVM) analysis
with a linear kernel using only two features (e.g., transcript levels for
two genes, each plotted on one axis), for which the data are immediately
separable by a line. The thicker separating line is the one that lies
farthest from the two classes (i.e., has the largest margin). The other
(thinner) line is a smaller margin and, thus, likely has a weaker ability
to predict the class of new persons. F, cancer; E, normal.

Fig. 5 An example of illustrative data points with only two features
(e.g., transcript levels for two genes, each plotted on one axis), for which
the data are not immediately separable by a line. To fix this problem, the
input data must be transformed into a different space in which it will be
linearly separable. F, cancer; E, normal.
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Comparison of Algorithm Results. With the predictive
models, we found that the use of the whole data set, including
patients with some missing SNP calls, provided a naı̈ve Bayes
predictive power of 63%, compared with a baseline of 50%. By
pruning the data set down to only complete patient genotypes,
this naı̈ve Bayes accuracy was increased to 67%, and further to
69% by using a quadratic kernel SVM. Overall, the three learn-
ing algorithms of naı̈ve Bayes, SVM, and decision tree all
performed quite similarly. The decision tree had more balanced
errors than the other models in that errors occurred more evenly
in the prediction of both cancer and noncancerous persons (i.e.,
the disparity between sensitivity and specificity was less than
for other models). The best predictive accuracy from a single
SNP using naı̈ve Bayes provided only 61% accuracy. These
results illustrate the value of predictive models of breast cancer
built from multiple SNP determinations over the whole genome.
We anticipate that this may ultimately lead to a useful clinical
tool.

Discussion of Individual SNPs. About 10% of breast
cancers cluster in families, with approximately one-fifth asso-
ciated with heterozygous germ-line mutations in either the
BRCA1 or the BRCA2 gene (27, 28, 43). Much smaller propor-
tions are due to germ-line abnormalities in other genes such as
the check point kinase CHEK2 (44), p53 (45), and the PTEN
phosphatase gene mutated in Cowden disease (41, 41, 46). Other
genetic determinants of familial breast cancer are thought to
exist, although they are yet elusive (47).

We have shown that polymorphisms in CYP 11B2 and CYP
1B1, which are important regulators of steroid metabolism,
identify patients with breast cancer. CYP 11B2 steroid hydrox-
ylase catalyzes the final step in aldosterone synthesis. Although
cytosine at a polymorphic site within the promoter region at
position �344 is associated with essential hypertension (48),
coding region variants have not yet been shown to have medical
relevance. A polymorphic site at position �1157 (C/T) has been
described within the second position of codon 386 that specifies
Ala or Val (49). We have shown that the homozygous variant
allele at position �4536C/T was the strongest discriminator, as
defined by information gain, among 98 SNPs studied in breast
cancer and normal cases.

The CYP1B1:1A1 activity ratio is a critical determinant of
the metabolism and toxicity of estradiol in mammary cells (50).
Xenoestrogens, such as the environmental contaminant dioxin
alter this ratio, upsetting the metabolism and detoxification of 17

-estradiol (50). We show that Val at position �4328 in
CYP1B1 rather than Leu, is more often observed in breast cancer
cases compared with controls, with an odds ratio of 3.3 (99% CI,
1.44–7.54) for the G/G genotype versus the C/C. Other studies
have shown that polymorphisms at position �354G/T in codon
119 Ala/Ser of this gene can predict prostate cancer risk with an
odds ratio of 4.02 observed in those men having the T/T geno-
type versus G/G (51). These observations suggest that allelic
variation in enzymes metabolizing xenobiotics can affect the
carcinogenic effects of endogenous and exogenous sex hor-
mones, affecting cancer risk.

Cytochrome P450 19A1 catalyzes the aromatization of
androgenic steroids into estrogens and is etiologically important
to postmenopausal breast cancer (52). Aromatase inhibitors are
important therapies for postmenopausal breast cancer (53). We

have identified a polymorphism within the first noncoding exon
of CYP19A1 that is predictive of breast cancer risk (double-
break SNP rs10046). In our study the presence of T rather than
C provides an OR of 1.52 (95% CI, 1.12–2.07). This suggests
that, in combination with other steroid hormone metabolizing
enzymes, CYP19A1 may be an important determinant of breast
cancer risk.

Hereditary cancer can be caused by mutations in DNA
repair enzymes. For instance, breast cancer susceptibility can be
caused by mutations in the DNA repair enzymes BRCA1 and
BRCA2, whereas abnormalities in the human mismatch repair
genes MSH2 and MLH1 are linked to hereditary nonpolyposis
colorectal cancer (HNPCC). Mutations in MSH6, which is
found in a complex with MSH2 and the proliferating cell nu-
clear antigen, may be implicated in HNPCC of early onset
(54–57). We show here that the MLH1 polymorphism
�18529A/G (double-break SNP ID rs1799977), which alters
codon 219 to Val from Ile, is associated with breast cancer. The
variant homozygous genotype of MLH1 � 18529A/G is asso-
ciated with breast cancer with an odds ratio of 2.90 (95% CI,
1.02–8.24). MLH1 codon 219 is found within the DNA binding
region of this mismatch repair enzyme.

BCL6 is a pox virus and zinc fingers-domain containing
transcriptional repressor often rearranged in B cell lymphoma
(58). Through repression of gene expression it can control
differentiation leading to malignancies of germinal center lymph-
ocytes. There are no reported associations of BCL6 with breast
cancer, although, mechanistically, gene expression in breast
tissue may contribute to disease in combination with other risk
factors. We demonstrate that the �4449C/T polymorphic site
can discriminate between women with breast cancer and those
without the disease. The CC genotype specifies a 2.29 odds ratio
compared with the TT genotype (95% CI, 1.04–5.05).

Through large scale measurement of SNPs, we have shown
that the use of multiple SNPs together, through the use of
machine learning algorithms, can achieve significantly better
predictive power than any one SNP alone. This is a crucial step
away from the traditional methods of looking at single SNP
associations, thereby allowing incorporation of disparate biolog-
ical mechanisms into a single classifier, as well as multifactorial
combinations of SNPs that, together, form a single biological
mechanism. We have also identified statistically significant
differences between women with breast cancer and normal
controls. Identified differences are found in genes known to
increase the risk for hereditary cancers and an enzyme known to
function in estrogen metabolism. If validated, these results in-
dicate the feasibility of premorbid genetic predictive testing and
guide the development of rational targeted intervention to inter-
fere with the process of carcinogenesis. For example, the data
suggest that aromatase enzyme inhibitors might be most effec-
tive for breast cancer chemoprevention in women with risk-
associated CYP 19A1 alleles. PolyomX is currently undertaking
an assembly of SNP data from a large, independent population
to validate the results presented in this report.
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