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Abstract: Acquisition of microarray data is prone to systematic errors. A correction, called 
normalisation, must be applied to the data before further analysis is performed. With many 
normalisation techniques published and in use, the best way of executing this correction remains an 
open question. In this study, a variety of single-slide normalisation techniques, and different 
parameter settings for these techniques, were compared over many replicated microarray 
experiments. Different normalisation techniques were assessed through the distribution of the 
standard deviation of replicates from one biological sample across different slides. It is shown that 
local normalisation outperformed global normalisation and that intensity-based ‘ lowess’  
outperformed trimmed mean and median normalisation techniques. Overall, the top performing 
normalisation technique was a print-tip-based lowess with zero robust iterations. Lastly, we 
validated this evaluation methodology by examining the ability to predict oestrogen receptor-
positive and -negative breast cancer samples with data that had been normalised using different 
techniques. 
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Introduction 
 
Oligonucleotide and cDNA microarray technologies allow simultaneous measurement of 
thousands of gene transcripts from a single sample. This high-throughput technology 
allows for large-scale screening of individual genes implicated in various biological 
conditions (Botwell and Sambrook 2003). After analysing medically relevant samples, 
statistical models of gene expression can be built, which can then be used for subsequent 
medical diagnosis or prognosis (van’ t Veer et al 2002). A short probe of cDNA or 
oligonucleotide for each gene is spotted onto a glass slide. Typically, the RNA sample of 
interest is converted to cDNA and labelled with one fluorescent dye, while a reference 
sample is labelled with a different fluorescent dye, and the two are mixed and hybridised to 
the microarray slide. The measurement of interest is then the ratio of the fluorescence level 
of the sample relative to that of the reference. Use of a reference channel helps to control 
for sources of experimental variation such as spot size and probe quality. The reference 
cDNA may make biological sense, as is seen where two closely related cell lines are 
hybridised to a slide, or individual patient cancer samples are hybridised with a pool of all 
patient cancer samples used as the reference. Alternatively, the reference RNA may be an 
ad hoc mixture of RNAs chosen to maximise spot hybridisation. In this study, we have used 
the latter technique. 

Microarray data are prone to systematic experimental errors that introduce a signal 
imbalance between the two data channels. This error results from variation in RNA quality, 
efficiency of dye labelling, photobleaching and physical properties of the scanning in each 
of the two channels, which in turn is complicated by varying scanning parameters. Two-
channel microarray normalisation, a critical step to further analysis (Zien et al 2001; Bilban 
et al 2002; Tahi et al 2002; Yang et al 2002), corrects these errors. Many normalisation 
techniques for microarray data now exist (Tseng et al 2001; Zien et al 2001; Bilban et al 
2002; Kroll and Wölfl 2002; Yang et al 2002; Bolstad et al 2003), although there is no 
known optimal choice. There are no standard methods of evaluating normalisation 
strategies; this impedes objective proof of validity across published techniques. In this 
paper we systematically compared a variety of single-slide, global and local, intensity-
based and non-intensity-based normalisation techniques for two-channel oligonucleotide 
microarray data. While the utility of a particular normalisation technique is dependent on 
the type of slides used and the nature of experiment conducted, a quantitative 
benchmarking exercise of this nature has not been reported previously in the microarray 
literature. 

Evaluation of microarray normalisation techniques has typically only been useful 
for pairwise comparisons of microarray slides (eg using correlation between slides 
hybridised with the same sample (Schuchhardt et al 2000; Tahi et al 2002)). Furthermore, 
correlation measures, such as Pearson correlation, do not allow assessment of absolute 
agreement between datasets; they only allow measurement of the degree to which two 
datasets are related in a linear fashion. Most techniques assume that the data should appear 
in a certain way (eg with a horizontal best-fit line in a Ratio-Intensity plot) and then judge 
the merits of a particular normalisation technique by plotting the data after normalisation to 
determine if the data satisfy the original assumptions. Kroll and Wölfl (2002) introduced 
Rank Intensity Plots (RIPs) to evaluate different normalisation techniques. Similar to 
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histogram matching, RIPs are useful as a visual, exploratory tool rather than a quantitative 
evaluation technique. The main concern in using it for a rigorous evaluation of 
normalisation is that it matches distributions of intensity ratios. It compares the distribution 
of ratios on one slide with that of another, or several others, and does not compare 
individual repeated gene measurements with each other. Thus it assumes that different 
RNA samples should have identical overall expression profiles and that matching a given 
gene to itself is not critical. Such evaluation of normalisation techniques, while useful, 
should not be used as an objective, final method of evaluation. Very recently, Park et al 
(2003) performed a similar comparison to the one reported here. As in the present study, 
they used variation across replicates to assess different normalisation techniques (global, 
local, intensity-dependent: linear and non-linear, scaling), visualising the results with dot 
plots. Variation was assessed in two ways: (1) a pooled variance estimator and (2) analysis 
of variance. They also conducted simulation studies in an effort to examine the bias and 
mean squared error in addition to variance. We discuss their results in the Discussion and 
Conclusion. 

However, their study differs from the present study in that it did not examine the 
effects of different parameter settings for each given technique and it did not examine the 
effects of normalisation on downstream analysis. This latter step is a crucial validation test 
of evaluation of normalisation techniques on the basis of variation over replicates.  
 Evaluation of microarray normalisation should have the following properties: 
1. It should be bias free and make no underlying assumptions about the biology or 

experimental setup. The evaluation method must not make the same assumptions as the 
normalisation technique. Many normalisation techniques assume that overall expression 
distributions of different samples are identical or, at least, highly similar. Most force all 
ratio distributions to have a centre (eg mean) of zero in logarithmic scale. If the 
evaluation of such normalisation techniques is a measure of how close all distribution 
centres are to zero, then the evaluation is simply determining how well the algorithm 
forced the data to adhere to its possibly incorrect assumptions. 

2. It should not require any external measurements, such as Northern blot analysis or 
quantitative RT-PCR, since not all genes can feasibly be measured in this way.  

In this work we satisfied these requirements for evaluation by using the standard 
deviation of repeated measurements over one gene in one biological sample hybridised to 
three different slides. This standard deviation was calculated for each unique spot on a 
slide, defined by block, column and row, across repeated measurements using aliquots from 
the same sample. We repeated this experiment in multiple samples, each with multiple 
aliquots. The resulting distribution of standard deviations of replicate measurements was 
examined. The smaller the overall standard deviations of replicates, the better the 
normalisation was taken to be. 

 
Materials and methods 
 
Microarray hybridisation 
 
Microarray slides of the Operon (Alamadea, CA, USA) Human 70-mer oligonucleotide set, 
version 1.1, representing 13 971 genes, were printed by the Gene Array Facility of Genome 
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British Columbia. The oligos were printed in duplicate on each ArrayIt SuperAmine slide 
(TeleChem, Sunnyvale, CA, USA) using a Microgrid TAS 2 (Biorobotics, Woburn, MA, 
USA) array printer.  

Tumour samples were collected from patients undergoing surgery for primary breast 
cancer. Patients prospectively provided written informed consent for tissue banking and 
analysis plans that were approved by the local Institutional Review Board. To ensure RNA 
integrity, the time from devitalisation to storage of the sample in liquid nitrogen did not 
exceed 20 min. Total RNA was isolated from 25 samples using Trizol followed by 
purification on an RNeasy column (Qiagen, Mississauga, Ontario, Canada), according to 
the manufacturer’s recommendations. Human total RNA prepared from ten human tumour 
cell lines (Stratagene, La Jolla, CA, USA) was used as a reference sample. 

Microarray slides were probed in triplicate with labelled cDNA prepared from 30 
g each of tumour and reference total RNA. Superscript II was used to prepare cDNA, 

which was then labelled with Cy3 or Cy5 using an indirect amino allyl technique (Botwell 
and Sambrook 2003). After hybridisation, the microarray slides were scanned with an Axon 
4000B using GenePix 3.0 software.  

 
Processing and evaluation methods 
The benchmarking dataset was derived from 75 oligonucleotide microarray slides 
containing 28 704 spots; genes were in duplicate, side-by-side. GenePix gpr (tab-delimited 
text files) files for this dataset are available at 
http://www.cs.toronto.edu/~jenn/normalizationStudy/normalization.htm. Each slide had 48 
blocks with 23 rows and 26 columns. All spots in a given block were printed using the 
same print-tip. RNA from 25 breast tumour samples, each arrayed in triplicate, was used in 
this study. Thus, for each patient/spot combination, a maximum of three replicate 
measurements were available. For the purposes of this experiment, duplicate gene 
measurements on a single slide were treated separately since the focus of the study was to 
assess inter-slide variability as a result of normalisation. Thus spots on a slide were 
uniquely identified by block, column and row. Replicates were considered to be spots from 
the same sample (with the same block, column and row) hybridised on different slides. 

After hybridisation and scanning, image processing was performed in GenePixPro 
3.0. Background estimation used local measurements surrounding each spot (GenePixPro 
3.0 User’s Manual). Median foreground and background intensities were exported for each 
spot for each channel and their difference treated as the channel intensity. Saturation levels 
were also exported. Spots on each slide were filtered on the basis of the following criteria: 
(1) GenePixPro flag was greater than zero (ie the spot-finding algorithm in GenePix found 
a spot with diameter greater than 50 µm and less than 300 µm and composite intensity 
greater than zero); (2) saturation in either channel was less than five percent; (3) Cy5 (red) 
background subtracted intensity was less than 70; and (4) Cy3 (green) background 
subtracted intensity was less than 60. This left an average of 5 416 spots per slide (this is 
typical for the slides being used). Next, the ratio measurements, ysni = rsni/gsni (where s = 
1,…, 25 denotes the biological sample, n = 1,…,3 denotes the slide replicate number of the 
sample, and i = 1,…,28 704 denotes a unique three-tuple of block, column and row) on 
each slide were normalised, one slide at a time (one block at a time for local methods). All 
normalisation was performed inside a custom database set up for and by the PolyomX 
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project (www.polyomx.org), using Perl, MySQL and R Statistical Language. Post-
processing was done in Matlab™. 

Evaluation of different normalisation techniques used the standard deviation of 
replicates from one biological sample across either two or three different slides (if a spot 
was only present on one slide, then the spot was ignored). Thus, for one gene, i, and for one 
biological sample, s, the standard deviation is: 
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where vsni = log2(ysni), and the sum is only over spots that pass the filters. A given 
normalisation technique was assessed by examining the distribution of the log-transformed 

�
si over all samples, s, and spots, i. The log transformation was performed to improve 

visualisation of the results. We call this distribution the ‘distribution of standard deviation 
errors’ , or the DSDE. The DSDE is parameterised by the normalisation technique, T. Thus, 
DSDE = DSDE(Tj), where j denotes the different normalisation techniques. For the 
purposes of comparison, we display the DSDE using a histogram of the �

si where the counts 
are converted to percentages (for example, Figure 1). If one DSDE(T1) lies systematically 
to the left of another DSDE(T2) (ie it is shifted by a negative amount), we say that 
normalisation technique, T1 is better than technique T2. Since this strict requirement is often 
not completely satisfied, we are sometimes more lenient in the ranking of different 
normalisation techniques. 

While use of only three observations per calculation may cause concern about 
instability, the validity of these calculations is supported by the second part of this study 
where prediction accuracy is examined. Agreement between these completely different 
assessments of normalisation leads us to believe that the standard deviations computed are 
sufficient and representative of the true underlying differences. 

Note that it is common in the microarray community to use the coefficient of 
variation (the standard deviation divided by the mean, denoted by CV) as a measure of 
reproducibility. However, the CV can only be applied to single channel data: two-colour 
ratios should be logged, and the log of a ratio equal to one is zero. The CV for these cases 
would be undefined. Thus, we here use the standard deviation. The assumption behind use 
of the CV is that the standard deviation scales linearly with the mean. Whether or not this is 
the case for microarray data and, in particular, the data in this study, is irrelevant since we 
are looking at the distribution of standard deviations across all spots on a slide, regardless 
of their mean. Since each normalisation technique is using exactly the same dataset, this 
should not bias the comparison. 

A second assessment was done on a subset of the normalisation techniques. The 
microarray data, which were derived from breast cancer tumour samples, were used to 
build a predictive model for oestrogen receptor (OR) status. Each normalisation technique 
applied to slides in this study led to a different dataset. Normalisation techniques were 
ranked according to how high their respective dataset’s predictive accuracy was using the 
Nearest Shrunken Centroid (NSC) model (Tibshirani et al 2002). 
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Normalisation techniques studied 
 
Because the reference RNA used in this study was pooled from ten different cell lines, we 
did not expect the true average ratio to lie near one. We did not seek the absolute 
expression ratios on individual slides, but instead sought the relative expression ratios on 
different slides.  

We chose normalisation techniques that could be applied to any one slide, that do 
not require any specific internal or external controls, set of genes, matched dye-reversals or 
pre-selected set of hybridised slides.  

Each normalisation technique was applied in a global manner, ie over the whole 
slide, as well as in a local manner, ie block by block (Yang et al 2002). We implemented a 
trimmed mean normalisation that set the trimmed mean log intensity ratio to zero for trim = 
0, 0.05, 0.10, 0.30. A mean with a trim of 0.05 is the mean of all values after having 
discarded the smallest and largest five percent. We also used a median normalisation where 
the median log intensity ratio was set to zero. The commonly used intensity-based, ‘ lowess’  
(locally weighted regression) normalisation (Yang et al 2002) using a variety of parameter 
settings was also implemented. Lowess normalises different intensity ranges separately, but 
in a similar way to mean normalisation, and in such a way that the transition is smooth as 
one varies from one intensity range to another. Two parameters for the lowess were varied:  
1. The smoothing fraction, S, which determines how local the linear regression is. For 

example, if S = 0.4, a typical setting for microarray normalisation, then each point on 
the regression curve is calculated using only the 40 percent of points that lie closest to 
it. We used S = 0.1, 0.4, 0.7 and 0.9. 

2. The number of robust iterations, R, in which outliers are discarded from the regression 
set, as, for example, one can set as a parameter in the Statistical Language R function 
‘ lowess’ . We set R = 0 and 20. 

Finally, we tried to improve upon all of the aforementioned techniques by scaling the data 
distributions. This was accomplished by dividing every log intensity ratio on a given slide 
(block for local normalisation) by the median absolute deviation (MAD – a robust standard 
deviation) of logged intensity ratios on that slide (block for local normalisation), inspired 
by Yang et al (2002). Scaling was performed as a post-processing step after the main 
normalisation technique had been applied. For slides hybridised with the same biological 
sample, it intuitively makes sense that their distributions should be scaled to the same width 
since they should have identical values. However, it is difficult to know the appropriate 
scaling just as it is difficult to choose the value to shift the distributions to (eg shifting the 
mean to one). Since the standard deviations on all slides were close in value to one before 
normalization, we chose, in an admittedly ad hoc manner, to drive the standard deviation of 
each slide to one.  

Other normalisation techniques are being rapidly published. We feel that the 
techniques listed above are representative of the core ideas in the area of normalisation: (1) 
global versus local (accounting for spatial biases); (2) intensity-dependent normalisation, or 
not; and (3) scaling of data. Newer techniques are typically modifications or extensions of 
these ideas. Park et al (2003) provide a list of some of the recent extensions. 
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Results and discussion 
 
Comparison of mean-like normalisation techniques 
Figure 1 shows a comparison of global normalisation techniques with different trim values, 
global median, global lowess based normalisation and no normalisation. Performing no 
normalisation is clearly inferior as we would expect. Lowess is superior to the mean and 
median techniques. The mean, with different trim, and the median perform extremely 
similarly, and it is difficult to choose a clear ordering of these. Upon closer examination, 
one may venture to say that the median outperforms all trimmed means, and that the larger 
the trim, the better the normalisation. An analogous comparison of the local techniques 
reveals the same pattern (data not shown). 
 
Comparison of intensity-based lowess normalisation techniques 
Figures 2 and 3, respectively, show a comparison of global and local normalisation 
techniques. Each figure shows lowess normalisation with different values of the smoothing 
parameter, S, different values of the number of robust iterations, R, no normalisation and 
median normalization. Of the global techniques, we observe that median normalisation 
performs only better than no normalisation. The different lowess normalisation techniques 
all perform extremely similarly, and it is difficult to choose a clear ordering of these. Upon 
close examination, use of twenty robust iterations appears to be better than zero, and a 
larger smoothing parameter appears better than a smaller one. Figure 3 shows that 
performing no normalisation is the worst performer. The other techniques are very difficult 
to differentiate from each other, though median normalisation appears to perform more 
poorly than the lowess. The different lowess normalisations are intertwined, but the two 
with S = 0.1 are worse than the others, and between these two, use of zero robust iterations 
appears possibly to be worse than use of twenty iterations. 
 
Global versus local normalisation 
Figure 4 shows a comparison of global versus local for median normalisation and two 
lowess normalisations. Both lowess normalisations outperform all other techniques, with 
the local lowess performing better than the global lowess. Similarly, the local median 
performs better than the global median. However, these results should be interpreted with 
caution: as a given normalisation technique, say median normalisation, progresses from 
using all spots on the slide (called global in this paper), to using fewer and fewer spots at a 
time, (called local in this paper), the DSDE analysis may become less trustworthy. Taken to 
the extreme limit of using only one spot at a time for normalisation (as opposed to one 
slide, or one print-tip block), local normalisation would, in this case, force every gene ratio 
to be one. Thus, the standard deviation would be zero, and the normalisation perfect 
according to this assessment. In the present study, an average of 86 spots per block, out of a 
possible 598, were used for normalisation. Thus it seems unlikely that such a pathological 
situation exists. Furthermore, these results closely match the results in the next section, 
where prediction accuracy is examined. Were a normalisation scheme to overfit the data (ie 
force the data to adhere to some fixed, incorrect pattern), no discriminative power would be 
present in the resulting dataset, and such a normalisation scheme would appear worse; this 
does not occur as the reader will shortly see. In particular, the normalisation schemes most 
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prone to overfitting (ie local and intensity-dependent techniques) end up having superior 
classification accuracies. 
 The overall results presented here closely match those results reported by Park et al 
(2003), who found that intensity-dependent normalisation often performed better than 
global normalisation, and that linear and non-linear methods performed similarly (which is 
somewhat akin to our changing the smoothing parameter for the lowess method). They did 
not examine the sensitivity of the measured reproducibility, to changes in parameters for 
each of their techniques. Next we examine the effects of scaling, and the effects of 
normalisation on downstream analysis. 
 
Effect of scaling 
Figure 5 shows a comparison of global mean and a global lowess normalisation performed 
with and without scaling as a post-processing step. In all cases, scaling the data clearly had 
an adverse effect on the reproducibility of ratio measurements. In fact, scaling was worse 
than not performing any normalisation. An analogous comparison for local methods reveals 
the same pattern (data not shown). 
 
Effect of normalisation on downstream analysis 
Without a gold standard by which to assess each and every gene, it is very difficult to 
properly assess the value of any normalisation technique. Measures of variation ultimately 
confer only precision, not accuracy. Since the goal of many microarray studies is to make 
sense of gene patterns in different datasets, we took our normalisation study one step 
further by analysing our dataset, which comprises breast cancer samples, for prediction of 
OR status, a known, dominant signal in microarray data (Gruvberger et al 2001; West et al 
2001; van’ t Veer et al 2002). By using the same dataset, but varying the normalisation 
technique applied to all slides in the dataset, we hoped to shed further light on which 
normalisation technique resulted in the most accurate representation of the dataset. Thus, 
for a subset of the normalisation techniques studied, we used the nearest shrunken centroid 
(Tibshirani et al 2002) method to build a predictive model of OR status. The geometric 
mean of replicates within a single slide was used as the expression ratio for that gene. The 
log of this mean ratio was used as a feature in the predictive model. Each slide was 
considered to be a unique sample (though there were three repeat samples per patient, each 
with the same OR status). Any genes that were not present in at least 40% of tumour 
samples were removed from analysis; this left 2295 distinct genes. 

Nearest shrunken centroid, a supervised analytical technique, is particularly suitable 
for microarray data because it naturally handles missing and noisy data. A known class 
category (such as oestrogen receptor positive/negative), along with labelled instances of the 
data (eg microarray data for individual patients along with corresponding OR status), are 
used to build a predictive model of the data for the specified class. The model is then 
validated, in the present case, using leave-one-out cross-validation (where one sample at a 
time is left out for testing and the remainder of the data used to train, until every sample has 
been left out). The nearest centroid method is a simple, classical technique where the 
multivariate mean of each class is calculated, after the variables have been standardised by 
their pooled within-class standard deviations. A new sample is classified according to 
which centroid its standardised variables lies closest to. The nearest shrunken centroid 
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method is a modification of this: individual components of centroids that lie close (within 
some threshold) to the overall centroid for that component are shrunken to match the mean, 
and hence play no discriminatory role. Features further away (above some threshold) are all 
shrunken toward the overall mean by the same amount. This has the effect of reducing the 
role of noisy genes and embedding feature selection into the algorithm in a very natural 
way. By performing varying amounts of shrinkage, all datasets, except the one that was not 
normalised, were able to achieve 100% cross-validation accuracy (data not shown). Thus, 
for the purposes of assessing normalisation, we omitted the shrinkage component because 
we did not want the algorithm to be so robust as to overcome the deficits of any given 
normalisation technique; thus, we reverted to the simple nearest centroid method. 
 Table 1 shows the results of using the NSC technique for prediction of ER status. 
With no normalisation, the predictive accuracy was only 68%. With use of any 
normalisation technique the accuracy immediately jumped to 88%. The ranking of 
normalisation techniques here according to predictive accuracy closely mirrors the coarse 
findings in the previous section. In particular, the local techniques marginally outperform 
the global techniques, and the lowess outperforms both the mean and median techniques. 
For the global and local lowess, performing zero robust iterations marginally improved 
predictive performance over 20 robust iterations. A smoothing parameter, S = 0.7 
marginally outperforms S = 0.4. Contrary to our other observations, scaling seems to have 
little effect on the predictive accuracy.  

A summary of how the normalisation and cross-validation were performed together, 
as well as a brief discussion of how cross-validation would change in the case of multi-slide 
normalisation, appear in the Appendix. Because each slide was normalised independently, 
it is not problematic having two replicates for a sample used for training, while one is being 
tested. However, out of curiosity, we also tried threefold cross-validation, where each fold 
consisted of three replicates from one biological sample (data not shown). Accuracies were 
a few percent lower on the whole. The relative ordering induced on the normalisation 
techniques was almost unchanged, with only one difference: ‘Global, Lowess, R = 20, S = 
0.7, Scale = 0’  was one percent higher than ‘Global, Lowess, R = 0, S = 0.7, Scale = 0’  and 
‘Global, Lowess, R = 0, S = 0.4, Scale = 0’ , which were tied with each other. In the earlier 
results, this former was one percent lower than these two latter, which were also previously 
tied with each other. 
 We have systematically compared a variety of global and local, two-channel 
microarray normalisation techniques. Adjusting particular algorithm parameters, such as 
the trim value for mean normalisation, or the smoothing parameter for lowess, had little 
effect on the results. Overall, the top performing normalisation technique was a local (print-
tip) based lowess. We validated these results based on variation over replicate experiments, 
through examination of the changes in predictive accuracy for estrogen receptor status in 
breast cancer samples, for different normalisation techniques. 
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Table 1 Comparison of Oestrogen Receptor Predictive Accuracy 

Normalization Technique Predictive Accuracy 
Local, Lowess, R=0, S=0.7, Scale=0 100% 
Local, Lowess, R=20, S=0.7, Scale=0 99% 
Global, Lowess, R=0, S=0.4, Scale=1 99% 
Global, Lowess, R=0, S=0.4, Scale=0 97% 
Global, Lowess, R=0, S=0.7, Scale=0 97% 
Global, Lowess, R=20, S=0.7, Scale=0 96% 
Local, Mean, Trim=0.00, Scale=0 89% 
Local, Median, Scale=0 89% 
Global, Mean, Trim=0.00, Scale=0 88% 
Global, Median, Scale=0 88% 
No Normalization 68% 

 
 

Figures 1–5 Comparison of different normalization techniques using the DSDE. Better 
techniques are those shifted more to the left. 
 
Figure 1 Comparison of Global, Mean-Like Normalization Techniques 
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Figure 2 Comparison of Global, Lowess Normalization Techniques 
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Figure 3 Comparison of Local, Lowess Normalization Techniques 
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Figure 4 Comparison of Local Versus Global Normalization Techniques 
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Figure 5 Comparison of Global Scaling versus No Scaling Normalization Techniques 
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Appendix 1 
 
Interaction of cross-validation with normalisation 
 
Pseudo-code for supervised classification 
 
• construct K validation groups, where a single training case is a single slide. 
• for each normalisation scheme, N 

• for each validation group, G 
•hold out the set G, and normalise each member of G individually (ie slide-
by-slide, ie training-case-by-training-case) 
•denote the training set as T (everything but G) 
•normalise each member of T individually (ie slide-by-slide, ie training- 
case-by-training-case) 
•train on the normalised set T 
•count test errors made on the normalised set G 

end 
• report the test accuracy of N made over all validation groups, G. 

end 
 
Because we used single-slide normalisation, in practice each slide was only normalised 
once, outside of both loops. However, if multi-slide normalisation were to be used, then 
cross-validation would become slightly more complicated. In such a case, normalisation 
would be dependent on how the validation groups were constructed, since normalisation 
would be performed on each training set as a whole, and each validation set as a whole. 


