11. "Advanced" i* \& BIM Goal Model Reasoning

UNIVERSITÀ DEGLI STUDI DI TRENTO
Dipartimento di Ingegneria e Scienza dell'Informazione

Part 1: Reasoning with i*

Recap:
 i*

How can we use the model to answer

questions?

...especially for large models

Outline

- Reasoning with Goal Models
- Qualitative Forward Reasoning
- Backward Reasoning
- Reasoning Visualizations in OpenOME
- Quantitative Reasoning
- Recall: BIM
- Reasoning in BIM
© J. Horkoff -- OIS 2014

A2

- The first objective is to analyse the chosen organization so as to identify weaknesses, bottlenecks, and under-performance. You will do so by using the analysis and simulation components of ADONIS.
- ...Ideally, the system will overcome the identified limitations. In order to do so, you will use a technology or a modelling/reasoning framework of your choice among those presented in the second part of the course.
- 2. Analyse your i* models or $B I M / t-B I M$ models to determine goal satisfaction or denial. What organisational changes can be made to better achieve goals? Describe how these changes affect your business processes.
-Revise your models to address identified bottlenecks (in terms of cost, time, security, risk, ...). Re-run some of the previous analyses to show that the new models outperform the previous ones INIVESITA DEGU STuD

Iterative, Interactive Analysis of Agent-Goal Models for Early Requirements Engineering

Model Analysis

- Several approaches to analysis in GORE
- Example approach: Use labels to represent degree of satisfaction

- Use algorithms to propagate labels throughout the model using propagation rules
- Use human judgment to resolve conflicts

Propagation Rules

Dependency

- Direct transfer of the evaluation value from dependee to dependum to depender.

Decomposition/Means-Ends

- Decomposition: And relationship, used to indicate the selection of the "minimum" value amongst the values of all of the contribution elements.
- Means-Ends: Or evaluation relationship, taking the "maximum" value of its children.

$$
x<x<i<2<\sigma_{0}<\boldsymbol{d}
$$

Propagation Rules

Contribution Links

- Source label, link type, Destination label
- Positive links (Make, Some+, Help) propagate the same polarity evidence, possibly weakening evidence
- Negative links (Brea, Some-, Hurt) propagate the inverse polarity, possibly weakening evidence

Source Label ($\mathrm{e}_{5} \cdot \mathrm{~V}$)		Contribution Link Type (l.type)						
	Name	Make	Help	Some+	Break	Hurt	Some-	Unkn.
\checkmark	Satisfied (S)	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\boldsymbol{X}	\underline{X}	$\underline{ }$?
\checkmark	Partially Satisfied (PS)	$\sqrt{ }$.	$\sqrt{ }$	\checkmark	\underline{X}	$\underline{ }$	$\underline{ }$	$\stackrel{\square}{7}$
\geq	Conflict (C)	<	\%	\%	2	\%	\%	?
?	Unknown (U)	?	?	?	?	?	?	?
¢	Partially Denied (PD)	\underline{d}	$\underline{1}$	\underline{r}	$\sqrt{ }$	$\sqrt{6}$	$\sqrt{6}$?
\boldsymbol{X}	Denied (D)	\boldsymbol{X}	$\underline{\chi}$	$\underline{*}$	$\sqrt{ }$	\checkmark	\checkmark	?

Propagation Rules

Contributions from a Mixture of Link types

- It is common in i^{*} to see a single element involved in more than one type of link relationship.
- When dependency links are mixed with means-ends or decomposition links the results of each individual link type are combined with an And relationship.

- In the case of mixing contribution links and dependency links it is recommended that the dependency is treated as an additional contribution, such as would be made by a make link.

Example: Forward i* Evaluation

- evaluation based on an analysis question:
- If the Application implements Restrict Structure of Password, but not Ask for Secret Question, what effect will this have on Attract Users?
- Place Initial Labels reflecting Analysis Question

Example: Forward i* Evaluation

- Propagate labels
- Resolve labels
- Iterate on the above steps until all labels have been propagated

Human Intervention
Usability Receives the
following Labels:
Partially denied from Restrict
Structure of Password
Partially denied from Åsk for
Secret Question
Select Label...
Select denied

Example: Forward i* Evaluation

- Analyze result
- If the Application implements Restrict Structure of Password, but not Ask for Secret Question, Attract Users is partially denied, as Usability, considered important by the evaluator, is denied.
- This is not a viable design alternative.
- Next Steps:
- Repeat with new analysis question...

Example 2

- Analysis question captured via initial labels
- Effects of selection are propagated "forward" through model links
- Interactive: user input (human judgment) is used to decide on partial or conflicting evidence
 "What is the resulting value?"

UNIVERSITÀ DEGLI STUDI DI TRENTO
Dipartimento di Ingegneria
e Scienza dell'Informazione16

Satisfaction Analysis

- Target(s) are propagated "backward" through model links
- Asks for human judgment "What incoming values could produce the target value?"
- Model is iteratively encoded in CNF and passed to a SAT solver

Is this possible...? How?
[Horkoff \& Yu, iStar'08, ER'10, REJ]

Back to KHP

A Methodology for Goal Model Creation and
 Analysis

Apply the following steps iteratively:

- Stage 1: Purpose and Elicitation
- Identify scope or purpose of the modeling process.
- Identify modeling participants and/or model sources.
- Stage 2: Model Creation
- Identify relevant actors and associations.
- Identify relevant dependencies.
- Identify actor intentions.
- Identify relationships between intentions.
- Stage 3: Analysis
- Alternative Effects (Forward Analysis)
- Identify all leaf intentions in the model, evaluate:
- Implementing as much as possible.
- Implementing as little as possible:
- Reasonable Implementation Alternatives.
- Achievement Possibilities (Backward Analysis)
- Identify all roots in the model, evaluate:
- Maximum targets.
- Minimum targets.
- Iteration over minimum targets.
- Domain-Driven Analysis (Mixed)
- Use the model to answer interesting domaindriven questions.

UNIVERSITÀ DEGLI STUDI DI TRENTO
Dipartimento di Ingegneria
e Scienza dell'Informazioned 9

Trade-off Analysis

OpenOME: Visualization Techniques for Analysis

Starting Points for Analysis

- How or where to start analysis
- Suggested analysis methodology
- Start forward analysis by identifying leaf intentions
- Start backward analysis by identifying root intentions
- i* models are not like regular tree-shaped graphs:
- Some links do not have an obvious direction
- Easy to ignore links across actor boundaries
- Cycles leads to non-conventional layout

Challenge: Where are the Leaves and Roots?

- Example from individual study: conference sustainability PC and Publicity Chair
- Leaf: an intention that has no "incoming" links

Visual Intervention: Automatic Leaf and

Root Intention Highlighting

- OpenOME implementation has "Mark Model Leaves" (green) or "Mark Model Roots" (blue) options

Challenge: Understanding Conflicts

- Conflict: the case where the SAT solver used in the backward analysis procedure cannot find a solution over a CNF model encoding
- For one or more intentions, i, both $v(i)$ and not $v(i)$ hold, where v is an analysis value, e.g. $S(i)$ and not $S(i)$
- "Conflict" in goal modeling is an overloaded term
- There is a conflict label, meaning roughly equal amounts of positive and negative evidence
- Two alternatives can "conflict" in relation to one goal

UNIVERSITÀ DEGLI STUDI

Challenge：Where are the Conflicts？

Challenge: Where are the Conflicts?

Visual Intervention: Conflict Highlighting

- Automatically find all intentions involved in clauses in the UNSAT core
- Highlight intentions orange in the model
- Find the "logical sources of the conflict", i.e. the intentions for which $v(i)$ is true and not true
- Highlight intentions red in the model
- Users are presented with a list of intentions involved in the conflict
- The assigned analysis value in the conflicting situation is displayed

Visual Intervention: Conflict Highlighting

Visual Intervention: Conflict Lliohliohtino

The following intentions are involved in the conflict:

Visual Intervention:

Conflicht Hiohliohtino
The following intentions are involved in the conflict:

Quantitative Evaluation

Quantitative Evaluation

(a) AND decomposition

(b) IOR decomposition

(c) XOR decomposition

(a) Contributions

(b) Contributions with a tolerance of 10

Example Evaluation 1

Example Evaluation 2

Quantitative vs. Qualitative, Automatic vs.

Interactive

- Existing approaches are often:
- Quantitative: Use numbers to express goal satisfaction
- Automatic: Set rules are used for all propagation
- Issues:

- Where do the numbers come from? What do they mean? How are they calculated?
- Will stakeholders trust or understand results?
- Will stakeholders assign mathematical precision to numbers?
- What do we learn from the reasoning process?

Other Methods (1/2)

- Many different analysis techniques for goal models:
- Propagate satisfaction values through the model
- What is the effect of this alternative?
- Can this goal be satisfied?
- Measure metrics over the model
- How secure is the system represented by the model?
- How risky is a particular alternative for a stakeholder?

Other Methods (2/2)

- Apply planning techniques
- What actions must be taken to satisfy goals?
- What are the best plans according to certain criteria?
- Run simulations
- What happens when an alternative is selected?
- Are there unexpected properties in a simulation?
- Perform checks over models
- Is it possible to achieve a particular goal?
- Is the model consistent?

Part 2: Reasoning with BIM

Recap: BIM

Less Simple Version

Example: Credit Card Industry Analysis

BIM Reasoning

- Reasoning with BIM allows an organization to answer strategic or monitoring questions. For example, BestTech may want to pose the following questions:
- Should we develop technology in-house or acquire technology through acquisition? Which option is better for maintaining revenue growth and reducing risks?
- Is it possible to maintain revenue growth while reducing risks? What strategies can achieve these goals?

Reasoning Overview

Evaluation of Specific Strategies

- Should we develop technology in-house or acquire technology through acquisition?

Goal Model Reasoning (Giorgini et al.), mapped to BIM

Discovery of Alternative Strategies

- Is it possible to maintain revenue growth while reducing risks? What strategies can achieve these goals?

Goal Model Reasoning (Giorgini et al.), mapped to BIM

Indicator Reasoning with Varying Levels of Information

	Reasoning Type	Unit Conversion	Required Information	
	Indicator Reasoning using Unit Conversion	Unit conversion factors	Atomic Indicator Values, Business Formulae, Unit conversion factors	
	Indicator Reasoning using Performance Levels	Unit Normalization (Performance Levels)	Atomic Indicator Values, Business Formulae	$\left\|\begin{array}{l} \overrightarrow{0} \\ \stackrel{y}{u} \\ \overrightarrow{U 2} \\ \dot{4} \end{array}\right\|$
	Indicator reasoning without Business Formula	Unit Normalization (Performance Levels)	Atomic Indicator Values	$\underset{\text { Less }}{\downarrow}$
	Hybrid Reasoning (with Incomplete Indicators)	Qualitative Normalization	Atomic Indicator Values, (Optional) \{Business Formulae, Unit conversion factors, Initial Reasoning Values\}	

Indicator Reasoning using Business Formulae and Unit Conversion

Formulae and Performance Levels

Indicator Reasoning without Business

 Formulae

Reasoning with Incomplete Indicators

- May not be feasible to have complete indicators
- May not be feasible to have complete business metrics which combine atomic indicators to calculate composite indicators

Reasoning with Incomplete Indicators

BIM Evidence

- BIM considers multiple sources and degrees of Evidence, either for or agains \dagger

- "Evidence for...?" is answered depending on the specific type of thing:
- satisfaction of goals, occurrence of situations, ...
- Use a qualitative evidence scale similar to the satisfaction/denial scale used in goal models
- Strong/Weak evidence For/Against a thing, SF, WF, WA, and SA

Reasoning with Evidence and Influence

- We use rules for propagating evidence on influence links adapted from Goal Modeling

Source	Link	Label	Contains	
Evidence Contains	++	-	--	
SF	SF	WF	WA	SA
WF	WF	WF	WA	WA
WA	WA	WA	WF	WF
SA	SA	WA	WF	SF

SF	Strong For
WF	Weak For
W A	Weak Against
SA	Strong Against

Evidence propagation depending on influence label (destination Evidence value in grey)

UNIVERSITÀ DEGLI STUDI DI TRENTO

Reasoning with Pursuit and Influence

	Link Label Contains	
Source Pursuit Set Contains	P	!P
Pur	Pur	NonPur
NonPur	NonPur	Pur

- Pursuit value propagation depending on influence label (destination Pursuit value in grey)
- http://www.cs.utoronto.ca/~jm/bim/
- Allows qualitative BIM Reasoning, not quantitative
- More of the same!!
- Wednesday 2 pm (14:00) Tutorial on i* and BIM Reasoning
- OpenOME, jUCMNav, BIM Tool

