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Abstract Models are good at expressing information that

is known but do not typically have support for representing

what information a modeler does not know at a particular

phase in the software development process. Partial models

address this by being able to precisely represent uncertainty

about model content. In previous work, we developed a

general approach for defining partial models and using

them to reason about design models containing uncertainty.

In this paper, we show how to apply our approach to

managing uncertainty in requirements by providing support

for uncertainty capture, elaboration, and change. In par-

ticular, we address the problem of specifying uncertainty

within a requirements model, refining a model as uncer-

tainty reduces, providing meaning to traceability relations

between models containing uncertainty, and propagating

uncertainty-reducing changes between related models. We

describe the implementation of uncertainty management

within the Model Management Tool Framework and

illustrate our approach using two examples.

Keywords Uncertainty � i* models � Partial models �
Automation

1 Introduction

Models are advocated as part of the requirements engi-

neering (RE) process to help with elicitation, recording

current understanding, communication, requirements

development, and exploration of alternative high-level

designs. During the process of creating RE models, it is

common to have uncertainty over the content and

structure of the models. Such uncertainties are due to

gaps in domain knowledge, disagreements between

stakeholders, or unresolved decisions about their needs.

In the modeling process, such uncertainties often remain

implicit, making it difficult to ensure that they get

resolved and creating the possibility that decisions in

later development phases are made using incorrect

information. It is useful to explicitly express uncertainty

in RE models, to facilitate its resolution through further

elicitation or decision making, and to capture such

uncertainty-reducing decisions and elicited information as

part of the modeling process.

In previous work, the first two authors have developed a

language-independent approach for expressing certain

types of uncertainty [43] using partial models. The

approach is based on allowing the modeler to use annota-

tions with formal semantics to express her uncertainty

within the model. The language-independence means that

we can use it to express uncertainty within models in a

uniform way at every phase of the development process.

The formal nature of our approach allows the precise

expression of uncertainty and provides the basis for auto-

mated tool support for activities such as reasoning with

models containing uncertainty [6] and verifying that model

changes reduce uncertainty [40]. While our approach is

formally grounded, the formal details are hidden from the

user.
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1.1 Contributions

Our goal is to enable expressing model uncertainties and

uncertainty resolution for and across existing RE models, in a

systematic, language-independent, formal way. The benefit is

that this allows requirements-related uncertainties to be made

explicit, facilitating early resolution, and allowing any

remaining uncertainty to be managed as part of later require-

ments and design. Specifically, in this paper, we describe

support for constructing and manipulating RE models with

uncertainty, as per the methodology outlined in Fig. 1.

Model capture A requirements process may make use of

multiple types of models, for example, to separate ‘‘early,’’

high-level, modeling from ‘‘later,’’ more detailed-oriented, RE

stages [51], as a form of expressive redundancy, to ensure

important aspects of the domain are captured (e.g., [11, 26]), or

to move toward system design (e.g., [19, 20]). While individual

modeling languages may provide ways to capture uncertainty

(e.g., in i*, some types of uncertainty can be captured with an

‘‘unknown’’ link), providing uncertainty annotations specific to

each possible RE modeling notation would be cumbersome,

prone to misinterpretation, and would create a cognitive barrier

to learning and applying such a notation in each language. Thus,

we ask: Q1: How to express uncertainty over the content and

structure of RE models in a language-independent way? By

answering Q1, we can express uncertainty over multiple types

of models used in the RE process.

Model elaboration As modeling continues, model uncer-

tainty can either increase or reduce. In this paper, we focus on

the uncertainty-reducing case. Further rounds of elicitation and

discussion can help resolve uncertainties leading to corre-

sponding model refinements. Thus, we ask: Q2: How to record

uncertainty-reducing model refinements in RE models?

Refinements are often caused by the availability of new

information. Thus, it would be useful to optionally annotate

such decisions with textual rationale. Although methods to

capture rationale for RE models have been introduced (e.g.,

[17, 27]), they are not directly linked to the process of

resolving model uncertainty. Thus, we ask: Q3: How to

capture rationale specific to uncertainty reduction?

Requirements traceability is a central concern for

requirements engineering and has been well studied (e.g.,

see [45] for an overview). Traceability relations are used to

link the elements of different artifacts (including models)

in a development process and can be used to express dif-

ferent relationships such as overlap, dependency, satisfac-

tion, and refinement. Various approaches to RE modeling

introduce traceability relations between multiple types of

models used in RE (e.g., [3, 26]). Thus, we ask: Q4: What

is the meaning of a traceability relation between models

containing uncertainty?

Model change When modifying a model, we may wish

to know whether our changes actually make the model less

uncertain. Thus, we ask: Q5: How to check whether model

changes reduce model uncertainty?

As models are developed, we make decisions which

reduce the uncertainty in one model, and which may have

effects on uncertainty in related models. Thus, we ask: Q6:

How can we propagate uncertainty-reducing changes to

related models in a language-independent way? Answering

this question requires capturing traceability between rela-

ted models, established using Q4.

The machinery for answering Q1 and Q2 is taken

directly from our earlier work [40]. A conference version

of this article [42] introduced the application of partial

models to RE models, addressing questions Q1–Q5 in an

RE context [42]. This paper offers a definitive version of

the previous results and expands them by developing lan-

guage-independent methods for uncertainty-reducing

change propagation (Q6), describing the implementation of

uncertainty management in the Model Management Tool

Framework (MMTF) [39], and reporting on the experience

of applying our methodology to another example.

1.2 Organization

The rest of this paper is organized as follows: We begin in

Sect. 2 by giving a motivating example. In Sect. 3, we intro-

duce partial models and show how to use them to express

uncertainty in RE models, illustrating them on i* models and

class diagrams (Q1). We then give background on the for-

malization of partial models in Sect. 4. In Sect. 5, we look at

applying partial model refinement to RE models, by showing

how to construct the refinement mapping (Q2) and capture

refinement rationale (Q3). In Sect. 6, we show how to lift a

traceability relation to the uncertain case (Q4). In Sect. 7, we

discuss how to check whether a change made to a model

constitutes a refinement (Q5). Section 8 provides methods for

propagating uncertainty-reducing refinements (Q6). Section 9

describes tool support, whereas Sect. 10 describes ourFig. 1 Methodology for managing models containing uncertainty
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experience with an extended example. We conclude the paper

with a comparison between our approach and related work in

Sect. 11 and a summary and discussion in Sect. 12.

2 Motivating scenario

Consider the scenario, summarized in Fig. 2, showing the

movement from early to late RE models for an automated

meeting scheduler.1

Figure 3 shows the detail of an i* model acting as the early

RE model P1. The model elaborates the actors, goals, and

tasks relating to different approaches to scheduling a meet-

ing. During the construction of this model, the following

uncertainties could arise: (a) gaps in the domain knowledge

of the modelers (‘‘Are there more alternative ways to orga-

nize meetings; are they quick?’’); (b) disagreements between

stakeholders (‘‘Jack thinks the Meeting Initiator should pick

a date, but Anne thinks it should be up to the participants’’);

(c) modelers wishing to indicate that they are still in the

process of adding model detail (‘‘We know the Meeting

Participant needs to provide details to the scheduler, but will

list these details later’’). In Fig. 3, we capture uncertainties

using informal text annotations.

After gaining an understanding of the domain and high-

level requirements through early RE modeling, a model

such as the class diagram in Fig. 4 may be developed, in

order to represent relevant details of domain entities. In

Fig. 2, this model is denoted by P2 and is connected to P1

via a traceability relation. Since P2 also contains uncer-

tainty (from similar sources as described for P1), the

traceability relation is defined in the context of uncertainty.

Elicitation and discussion can help resolve uncertainties

leading to corresponding model refinements. Model refine-

ment2 is captured in the left side of Fig. 2, where, after the

resolution of some uncertainty, the model P1 is refined into

P10 via a mapping R1. The refinement of P2, represented by

P20 via a mapping R2, can also occur, either due to uncer-

tainty resolutions in P2 or as a result of propagating the

refinement of P1 over the traceability relation.

We use this scenario throughout the paper to illustrate

our solutions to questions Q1–Q6.

3 Expressing uncertainty in RE models

In Figs. 3 and 4, we captured uncertainties using text

annotations, an approach which is neither formal nor

systematic. We address question Q1 by presenting a for-

mal, language-independent method called MAVO for cap-

turing such uncertainties. In this section, we describe the

usage of MAVO, and in Sect. 4, we give its formalization.

We begin by introducing the concepts of partial modeling.

3.1 Background: partial models

To be able to add uncertainty information to existing

modeling languages in a language-independent way, our

approach takes as input arbitrary metamodels, referring to

them as model types. For example, the upper part of Fig. 5

shows a (simplified) metamodel for i* models, and the

lower part gives one for class diagrams. Models consist of a

finite set of atoms, that is, the elements and relation

instances of the types defined in its metamodel.

Given a model type, a partial model of that type rep-

resents the set of different possible concrete (i.e., non-

partial) models of that type that would resolve the uncer-

tainty represented by the partiality. More formally:

Definition 1 (Partial model) A partial model P consists

of a base model, denoted bs(P), and a set of annotations.

Let T be the metamodel of bs(P). Then, [P] denotes the

(possibly infinite) set of models of type T called the con-

cretizations of P. P is called consistent iff it allows at least

one concretization, that is, ½P� 6¼ ;.

Partiality is used to express uncertainty about the model until

it can be resolved using uncertainty-reducing refinement.

Refining a partial model means removing partiality as uncer-

tainty is resolved so that the set of concretizations shrinks until,

ultimately, it represents a single concrete model. In general,

when a partial model P0 refines another one, P, there is a

mapping from bs(P0) to bs(P) that expresses the relationship

between them and thus between their concretizations.

3.2 MAVO annotations

We achieve language-independence by adding partiality

information as annotations of a base model. For example,

Fig. 2 Overview of a sample RE modeling process considering

uncertainty

1 Parts of this scenario are adapted from [51] and have appeared in

[23, 30, 42].
2 In this paper, when we say ‘‘refinement,’’ we always mean

‘‘uncertainty-reducing refinement.’’
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models P1 and P2 in Fig. 6 show annotations on an i* base

model and class diagram base model, respectively. We use

four types of partiality annotations, each adding support for

a different type of uncertainty in a model, as described

below.

Each of the four types of annotations allows refinement

as uncertainty is resolved. May partiality allows us to

express the level of certainty we have about the presence of

a particular atom in a model by annotating it with either M ,

to indicate that it ‘‘may exist,’’ or E , to indicate that it

‘‘must exist.’’ A May annotation is refined by changing an

M to E or eliminating the atom altogether. The ground

annotation E is the default if an annotation is omitted.

The Abs partiality allows a modeler to express uncer-

tainty about the number of atoms in the model by letting

her annotate atoms as P , representing a ‘‘particular,’’ or S ,

representing a ‘‘set.’’ A refinement of an Abs annotation

elaborates the content of S atoms by replacing them with a

set of S and P atoms. The ground annotation P is the default

if an annotation is omitted.

The Var partiality allows a modeler to express uncer-

tainty about distinctness of individual atoms in the model

by annotating an atom to indicate whether it is a ‘‘constant’’

(C) or a ‘‘variable’’ (V). A refinement of a Var annotation

involves reducing the set of variables by merging them

with constants or other variables. The ground annotation

C is the default if an annotation is omitted.

The OW partiality allows a modeler to explicitly state

whether her model is incomplete (i.e., can be extended)

(INC) or complete (COMP). In contrast to the other types of

partiality discussed in this paper, here, the annotation is at

the level of the entire model rather than at the level of

individual atoms. The ground annotation COMP is the

default if an annotation is omitted.

When these four types of partiality annotations are used

together, we refer to them as MAVO partiality.

3.3 Using MAVO for expressing uncertainty

In this section, we illustrate how to use MAVO for encoding

models with uncertainty, thereby answering Q1. We do this

by applying it to the i* model P1 in Fig. 3 and class dia-

gram P2 in Fig. 4 to express the same points of uncertainty

as are given in an informal way using notes. Models P1

and P2 in Fig. 6 show the application of MAVO partiality

to these models, respectively. The fact that MAVO anno-

tations are used both in an i* model and in a class diagram

demonstrates the language-independence of MAVO par-

tiality and its applicability to a variety of models. We use

these examples to discuss and illustrate the different situ-

ations in which to use MAVO annotations.

May partiality is used in P1 for the M-annotated task

Decide Convenient Dates in Meeting Partic-

ipant to express the fact that it is unknown whether the

Fig. 3 An early RE diagram

with annotated uncertainty for

the meeting scheduler example

Fig. 4 A late RE diagram with

uncertainty for the meeting

scheduler example
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task will be needed. In general, the M annotation should be

used for any piece of information that we are not sure

should be in the model. It can also be used when there is a

known small set of alternatives for some fragment of the

model, but we are not sure which is the correct one. This

situation arises, for example, when multiple stakeholders

provide conflicting information. Thus, the M annotation can

be used as a language-independent way to tolerate conflicts

until they are resolved.

Early in the development of a model, we may expect to

have collections of atoms representing certain kinds of

information but not yet know exactly what those atoms are.

For example, in P2, the S-annotated operation Ways to

organize meeting in class MeetingInitiator is

used to indicate that there are some such ways but they are

as yet unknown. Later, when we know more about these

ways, we can refine this operation to particular tasks.

May and Abs are used together in model P1 with MS-

annotated task Provide details and resource

Details to indicate that there may be no details at all, or

there may be several. In general, one of the purposes of Abs

partiality is to provide a way to create placeholders in the

model to indicate that ‘‘further elaboration is yet to come.’’

Var partiality is useful when it is known that a particular

fragment should be in the model but it is not yet known

where it should go. For example, in Fig. 3, it is known that

the task Determine meeting date should be in the

model but not yet clear which actor should perform it. Yet,

in order to achieve i* well formedness, it must be assigned

to some actor. Without the means to express this type of

uncertainty, the modeler would be forced to assign it pre-

maturely (and perhaps, incorrectly) to one of the actors. To

solve this problem, in P1, we put the task in the V-anno-

tated actor Date Determiner, that is, something treated

like a ‘‘variable’’ actor that, in a refinement, can potentially

be equated (merged) with other variable actors and even-

tually be assigned to a constant actor.

Finally, it is common, during model development, to

make the assumption that the model is still incomplete, that

is, that other elements are yet to be added to it. This status

typically changes to ‘‘complete’’ (if only temporarily) once

some milestone, such as the release of software based on

the model, is reached. OW partiality is used in P1 and P2

with the INC annotation to indicate that the models are still

incomplete and can be extended. OW partiality defines

model completeness in a very specific way: a model is

complete iff it should not be extended. However, a com-

plete model can still be changed if it has annotations rep-

resenting other types of uncertainty. For example, even if

P1 was not marked with INC, it would still be allowable to

replace the resource Details with more specific sets of

detail resources since this is an Abs refinement. Yet, it

would not be allowable to add a new goal to Meeting

Participant because this would be a model extension.

Having described the usage of MAVO annotations, we

next give their formal semantics.

4 Background: formalizing MAVO

In this section, we review the formalization of MAVO par-

tiality introduced in [43] and reproduced here to help the

reader understand the intuition behind the annotations as

well as the computational issues of encoding and reasoning

with partial models. Readers interested only in the method-

ological aspects of applying MAVO can skip this section.

To formalize MAVO partiality, we begin by noting that a

metamodel represents a set of models and can be expressed

as a first-order logic (FOL) theory.

Definition 2 (Metamodel) A metamodel is an FOL theory

T ¼ hR;Ui; where R is the signature with sorts and pred-

icates representing the atom types, and U is a set of

Fig. 5 The traceability relation iStarCD between an i* model and

class diagram defined over fragments of the metamodels
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sentences representing the well-formedness constraints.

The models that conform to T are the finite FO R-structures

that satisfy U according to the usual FO satisfaction rela-

tion. We denote the set of models with metamodel T by

Mod(T).

For example, for the fragment of the i* metamodel in

Fig. 5, RiStar; consists of boxes, interpreted as sorts, and

associations, interpreted as predicates. UiStar consists of

the i* multiplicity constraints, translated to FOL, as well as

additional textual well-formedness constraints (e.g., the

‘‘wffs’’ in Fig. 5).

Comparing Definition 2 to a metamodeling language

like MOF [34], the sorts, predicates, and sentences corre-

spond to the element classes, associations, and OCL con-

straints, respectively. We use FOL for representing a

metamodel rather than a language like MOF since our aim

here is to define a formalization rather than implementa-

tion. We discuss implementation issues in Sect. 9.

Like a metamodel, a partial model also represents a set

of models and thus can also be expressed as an FOL theory.

Specifically, for a partial model P, we construct a theory

FO(P) s.t. Mod(FO(P)) = [P]. To construct FO(P), we

first extend the theory of the metamodel with additional

constraints so that it has exactly one satisfying structure—

the base model of P. Then, we relax these constraints

according to the annotations in P to admit more structures

according to the uncertainty the annotations represent.

Thus, the satisfying structures of the resulting theory are

exactly the set of concretizations of P. More formally, we

proceed as follows:

1. Let M = bs(P) be the base model of a partial model P

and define a new partial model PM which has M as its

base model and its sole concretization, that is,

bs(PM) = M and [PM] = {M}. We call PM the ground

model of P.

2. To construct the FOL encoding of PM, FO(PM), we

extend T to include a unary predicate for each element

in M and a binary predicate for each relation instance

between elements in M. Then, we add constraints to

ensure that the only first-order structure that satisfies

the resulting theory is M itself.

3. We construct FO(P) from FO(PM) by removing

constraints corresponding to the annotations in P. This

constraint relaxation allows more concretizations and

so represents increasing uncertainty. For example, if an

atom a in P is annotated with M, then the constraint

that enforces that fact that a must occur in every

concretization is removed.

Illustration We illustrate the above three-step con-

struction using the partial i* model P1 in Fig. 6.

1. Let M1 ¼ bsðP1Þ be its base model and PM1 be the

corresponding ground partial model.

2. We have FOðPM1Þ ¼ hRiStar [ RM1;UiStar [ UM1i (see

Definition 2), where RM1 and UM1 are model M1-

specific predicates and constraints, defined in Fig. 7.

They extend the signature and constraints for i*

models described in Fig. 5. We refer to RM1 and UM1

as the MAVO predicates and constraints, respectively.

The FO structures that satisfy FOðPM1Þ are the i*

Fig. 6 The use of MAVO
partiality annotations to express

the uncertainty of models in

Figs. 3 and 4 as well as the

traceability relation

iStarCD(P1,P2) between

them
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models that satisfy the constraint set UM1 in Fig. 7. For

conciseness, we abbreviate element names in Fig. 7,

for example, MeetingParticipant becomes MP,

etc. Assume N is such an i* model. The MAVO

constraint Complete ensures that N contains no more

elements or relation instances than M1. Now consider

the actor MP in M1. ExistsMP says that N contains at

least one actor called MP, UniqueMP—that it contains

no more than one actor called MP, and the clauses

DistinctMP��—that the actor called MP is different from

all the other actors. Similar MAVO constraints are

given for all other elements and relation instances in

M1. These constraints ensure that FOðPM1Þ has exactly

one concretization and thus N ¼ M1:

3. Relaxing the MAVO constraints UM1 allows additional

concretizations and represents a type of uncertainty

indicated by a partiality annotation. For example, if we

use the INC annotation to indicate that M1 is incomplete,

we can express this by removing the Complete clause

from UM1 and thereby allow concretizations to be i*

models that extend M1. Similarly, expressing the effect

of the M, S, and V annotations for an element E

corresponds to relaxing UM1 by removing ExistsE, Uni-

queE, and DistinctE-* clauses, respectively. For example,

removing the DistinctDD�� clauses is equivalent to

marking the actor DD with V (i.e., DateDeterminer

may or may not be distinct from another actor).

In addition to precisely defining the semantics of a partial

model, the FOL encoding provides several capabilities:

1. It allows us to do property checking, that is, answer

questions such as ‘‘does any concretization of P have

the property Q?’’ and ‘‘do all concretizations of P have

the property Q?,’’ where Q is expressed in FOL. The

answer to the former is affirmative iff FO(P) ^ Q is

satisfiable, and to the latter iff FOðPÞ ^ :Q is not

satisfiable.

2. It allows us to check the consistency (i.e., whether it

has any concretizations) of a partial model as a special

case of property checking. P is consistent iff FO(P) is

satisfiable.

3. We can verify a refinement mapping between a pair of

MAVO models (see Sect. 7)

4. Finally, the FO encoding allows us to extend the

expressiveness of MAVO by augmenting the annota-

tions using FOL to express more complex textual

constraints.

5 Capturing uncertainty-reducing refinement

In this section, we address the questions Q2 and Q3 from

Sect. 1 Specifically, we show how uncertainty reduction in

an RE model is done by constructing a refinement (see Sect.

3.1) of the model including optional refinement rationale.

5.1 Constructing the refinement mapping (Q2)

As discussed in Sect. 3.1, an uncertainty-reducing refine-

ment is given by a mapping between the atoms (elements

or relationships) of two partial models. Here, we discuss

the construction of such a mapping and in Sect. 7—its

validation.

Given a model with uncertainty and another model

which removes some of it, the refinement mapping is an

artifact that expresses the way in which the elements in the

two models are mapped to each other and captures the

uncertainty resolution decisions made. Figure 8 gives an

example of a partial i* model P10 refining model P1. As

Fig. 7 The FO encoding of PM1
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the decisions about reduction in uncertainty are made, they

are captured in the refinement mapping R1. To avoid visual

clutter, the figure shows only those parts of R1 where the

refinement results in changes in the model.

For example, our analyst may decide which of detailed

resources should exist and thus the S-annotated resource

Details in P1 gets mapped to the two resources, Dates

and Location, in P10. In turn, this means that the S-anno-

tated task Provide details in P1 is mapped to tasks

Provide dates and Provide location. The analyst

can also decide that the task Determine Meeting Date

should be performed by actorMeetingScheduler, which

is reflected by merging the V-annotated actor Date

DeterminerwithMeetingScheduler so that both are

mapped to the actorMeetingScheduler inP10. SinceP1

is marked INC, more information can be added to the model so

Determine Meeting Date can become a subtask of

Schedule meeting and the sibling task Book meeting

can be added as well. After further discussions with stake-

holders, the analyst also determined that the V-annotated goals

Agreeable Meeting Date and Convenient Meet-

ing Date are not sufficiently different to keep them distinct,

so they are merged and mapped to the goal Agreeable

Meeting Date inP2. While doing so, she also realized that

the M-annotated task Decide Convenient Dates is not

needed after all, and removed it in P2.

5.2 Capturing refinement rationale (Q3)

Each of the decisions that contributed to the refinement

mapping R1 constructed above could have a motivating

rationale. For example, the analyst may decide that task

Determine meeting date should be performed by

actor Meeting scheduler because this will reduce the

burden on the meeting initiator and participants. The

refinement mapping artifact provides a convenient place to

document such statements of rationale as part of the

development process. For example, the above rationale for

task Determine meeting date would be attached to

the corresponding part of the mapping as a textual

annotation.

This information can be used in various ways: (1) it can

help recall the provenance of refinement decisions, for

example, in the case of an audit; (2) it can be combined

with the rationale from subsequent refinement steps to

build an argument that justifies the state of the model at any

point in time in order to support model comprehension; (3)

it can be queried to answer questions such as ‘‘which

decisions involved stakeholder X?’’; (4) it can be used to

‘‘backtrack’’ to earlier points in the development of the

model to undo decisions and explore other alternatives. For

more on using rationale, please see our discussion of future

work in Sect. 12

Fig. 8 An example of a

uncertainty-reducing refinement

of model P1 from Fig. 6
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6 Traceability relations and uncertainty

In this section, we consider the problem of traceability in

the presence of model uncertainty and address question Q4

from Sect. 1 Specifically, we show how to ‘‘lift’’ an

existing traceability relation to a partial traceability relation

by both allowing uncertainty on the traceability links and in

the models that are linked.

To illustrate the approach, we begin with a traceability

relation iStarCD between i* models and class diagrams

adapted from [3]. Figure 5 shows the associations between

elements of the relevant fragments of the i* and the class

diagram metamodels. In this case, iStarCD is used to

show the overlap between the i* model and the class dia-

gram. Specifically, an i* Actor and Resource corre-

spond to a Class, and an i* Task is expressed as an

Operation in the class corresponding to the actor of the

task. These relations are constrained so that every actor,

resource, and task is reflected as a class or an operation, but

the class diagram can have additional classes and opera-

tions not corresponding to anything in the i* model. An i*

Dependency between actors is expressed as a Depen-

dencyAssociation between classes. In this case, if

there are many dependencies in a particular direction

between the same actors, they map to a single dependency

association between the corresponding classes.

Our goal is now to use traceability relations between

meta-model elements, like iStarCD, to define traceability

between models containing uncertainty. We can apply

MAVO annotations to iStarCD just like we would to

atoms of a model! Fig. 6 shows the partial i* model P1

from Fig. 8 mapped to the partial class diagram P2 using

the resulting partial traceability relation iSt-

arCD(P1,P2). Note that each trace link and each of its

endpoints can be annotated with MAVO annotations. To

reduce visual clutter, Fig. 6 only shows links with anno-

tations. For example, the actor MeetingParticipant

is linked to the class MeetingParticipant and its M-

annotated task Decide Convenient Dates is linked

via an M-annotated link to an operation by the same name.

This says that although the existence of the task in the goal

model is uncertain, its presence as an operation in the late

requirements is certain.

Furthermore, since the existence of the task is uncertain,

the existence of the traceability link should be uncertain as

well. This is because the uncertainty of the task is affected

by the uncertainty of the link. Making the existence of the

link certain, for example, by annotating it with E, means

that it occurs in every concretization. This would force the

task to also be present in every concretization since a link

cannot occur without its endpoints. Thus, if the task is

present in every concretization, its existence is made cer-

tain despite the fact that it is annotated with M.

To address this problem, we state the following well-

formedness rule for traceability relations:

Rule 1 For each traceability link q(a, b), the annotation

of q should not be more refined than the annotations of

a and b.

The traceability relation in Fig. 6 satisfies this rule.

Recall that refinement of individual MAVO annotations

was defined in Sect. 4 and constitutes a constant-time

check for each of a and b, making checking of the rule

efficient.

The partiality annotations on the traceability links occur

not only because of Rule 1 but also to express specific

uncertainties about the traceability relationship itself. For

example, suppose that the analyst is unsure whether to map

the actor Meeting scheduler in the model in Fig. 6 to

the class Meeting scheduler or to the class Cal-

endar (i.e., to integrate the scheduling functionality into

the calendar). This can be expressed by mapping the actor

to both classes and annotating the links with M. Note that

due to the multiplicity constraints on the actor-class links,

it can be mapped only to one class in each concretization.

In summary, MAVO annotations can be used with

traceability relations by annotating the individual trace-

ability links. Furthermore, the annotations on a link can be

both due to the annotations on its endpoint atoms (via Rule

1) or to the intentions of the analyst.

7 Checking uncertainty-reducing refinement

In this section, we address the question Q5 from Sect. 1 by

showing how to verify that a potential refinement mapping,

such as the one in Fig. 8, actually reduces uncertainty.

As discussed in Sect. 3.1, we give semantics of uncer-

tainty-reducing refinement of a model in terms of reducing

the set of concretizations it has while making sure at least

one concretization remains. This is expressed more for-

mally by the following refinement conditions [40]:

Definition 3 (MAVO refinement conditions): Let

MAVO models P and P0 be given. P0 refines P iff there

exists a mapping R s.t. the following conditions hold

(Ref1) P0 must be a consistent partial model.

(Ref2) Every concretization of P0 is also one of P.

Condition Ref1 ensures that P0 has at least one concret-

ization (see Definition 1). R is then called a refinement

mapping.

Verifying a MAVO refinement requires showing that

conditions Ref1 and Ref2 in Definition 3 hold. In general,

this can be done using the FO encoding of the two models,

and we have implemented prototype tool support [40] on
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top of Alloy for performing these checks using SAT

solving. The approach can be applied directly for checking

refinement of RE models. While this approach is powerful

and can be used with general uncertainty-representing

models which may include additional textual constraints

augmenting MAVO annotations, it has computational lim-

itations and typically is not applicable to large (even in the

RE sense!) models. Below we discuss ways to improve

performance in some typical situations.

Checking Ref1 Checking the condition Ref1 requires

showing that P0 has at least one concretization, that is, that

FO(P0) is satisfiable. This can be done using a SAT solver.

However, in some cases, the process can be simplified by

taking advantage of the following property discussed in

[40]: when the base model of P0 (i.e., P0 with all the

annotations removed) is a well-formed model, then it is

also a concretization of P0, and thus the refinement con-

dition Ref1 is satisfied. Of course, it is a sufficient but not

necessary condition: the base model of a MAVO model

may not be well formed but can still have concretizations.

In this case, the FO encoding for checking Ref1 is required.

Checking Ref2 When we limit ourselves to just using

MAVO annotations, we can simplify checking the refine-

ment condition Ref2 by defining syntactic constraints (i.e.,

necessary conditions) on the annotations that follow from

the FO condition.

Figure 9 summarizes these constraints. Each of the four

columns indicates a different case (case number is given at

the top) in the refinement mapping, and the sentences in the

lower part of each case give the constraints on the MAVO

annotations for the atoms of that case. A valid refinement

must satisfy all of these constraints. The sentences refer to

the full set of MAVO annotations described in Sect. 3.2

(M/E; S/P; V/C; INC/COMP), including those assumed by

default when the annotation for a partiality type is omitted.

For example, case (1) occurs when an atom a of model

P is refined to a set of atoms a01,…, a0n of P0. The first

sentence says that if a is annotated with E (i.e., it is not M),

then at least one of the atoms a0i must also be annotated

with E. Thus, if a exists and it is refined to the set of a0is
then at least one of these should exist. The second sentence

says that if a is a particular (i.e., not a set), then there can

only be one a0i and it too must be a particular. The third

sentence says that if a is a constant (and thus cannot merge

with any other atom), then all a0is it refines must also be

constants. Case (2) says that if a is not propagated into the

new model, then it must have been annotated with M. Case

(3) states that if multiple ais in P are mapped into a single

a0 in P0, then if any of the ais had definite information, or

were particular, or were a constant, then a0 must satisfy

these conditions as well. The last sentence in case (3) says

that at most one of the ais could be a constant. Finally, if a

new atom, not mapped to anything in P, appears in P0 (case

(4)), then P could not be complete.

The procedure for applying the constraints in Fig. 9 to

verifying condition Ref2 of a potential refinement involves

first iterating through the atoms of P and checking cases (1)

and (2), and then iterating through the atoms of P0 and

checking cases (3) and (4). This procedure has complexity

O(|P| 9 |P0|), which allows us to conclude that this is a

scalable strategy for checking the condition Ref2. This

contrasts with the SAT-based approach which has expo-

nential complexity.

Illustration We illustrate the above techniques for

checking refinement conditions by applying them to the

models in Fig. 8. The base model of P10 is a well-formed

i* model so we can conclude, according to the above dis-

cussion, that P10 satisfies the refinement condition Ref1.

We can also apply the constraints in Fig. 9 to check

Ref2. The refinements of the resource Details and the

task Provide details are examples of case (1). The

merges of actors Meeting scheduler with Date

Determiner and goals Agreeable Meeting Date

with Convenient Meeting Date are examples of case

(3). The addition of tasks Schedule meeting and

Book meeting is an example of case (4). Finally, the

removal of Decide Convenient Dates is an example

of case (2).

Since both Ref1 and Ref2 have been shown to hold, we

conclude that the mapping in Fig. 8 is a valid MAVO

refinement which reduces uncertainty.

8 Uncertainty-reducing change propagation

Changes to classical models typically affect their content,

and change propagation [28] deals with determining how

this affects related artifacts. In the presence of uncertainty,

changes can also affect the level of uncertainty and can

then be propagated to related models across a traceability

Fig. 9 Summary of the constraints on annotations of model elements

across a MAVO refinement mapping
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relationship. Figure 2 illustrates such a scenario: refining a

model P1 via an uncertainty-reducing refinement R1 pro-

duces a model P10. This change can be propagated across

the traceability relation to force a corresponding refinement

P20 of model P2 via the refinement mapping R2. In this

section, we examine the details of this scenario, answering

the question Q6.

Consider the example in Fig. 6. The S-annotated

resource Details in P1 is linked to the S-annotated class

Details in P2. Due to the ‘‘0..1–1’’ multiplicity con-

straint on the resource-class link type in Fig. 5, each

‘‘detail’’ resource in a concretization of P1 must map to

one ‘‘detail’’ class in a corresponding concretization of P2.

Refining P2 to allow only a single detail class by removing

the S annotation from class Details causes the multi-

plicity constraint to force every corresponding concretiza-

tion of P1 to have a single ‘‘detail’’ resource. This would

suggest that the Details resource in P1 should also be

refined and lose its S annotation since there is no concret-

ization that can have more than one ‘‘detail’’ resource in it.

Thus, we have propagated an uncertainty-reducing refine-

ment of P2 by applying a forced refinement to P1.

In this example, the refinement of P1 was forced

because removing the S annotation did not reduce its set of

concretizations—it was already constrained to a smaller set

by P2 via the traceability relation. A potential algorithm

for determining such forced refinements would do a

breadth-first search through possible refinements until only

concretization-reducing ones remain. While such an algo-

rithm is general because it can be applied to any model

type regardless of its well-formedness constraints, it is

computationally expensive.

A much more tractable approximation of this algorithm

can be defined if we focus on the traceability relations

and consider the forced refinement rules for particular

well-formedness constraints on such relations. For exam-

ple, Fig. 10 lists rules that apply if we consider only

multiplicity constraints and restrict these to ‘‘0..1,’’

‘‘1..1,’’ ‘‘0..*’’ or ‘‘1..*’’ on either end of the relation. In

this figure, models PA and PB are linked so that an atom a

in PA is connected via links q1; . . .; qn to atoms b1; . . .; bn

in PB. Assume that PA has just been refined. Rules (R1–

R7) on the right-hand side of the figure list some of the

ways this change can affect the traceability links and the

atoms of PB: Each rule consists of a rewrite rule with a

multiplicity constraint (column Multiplicity), where

La, Ua, Lb, and Ub are the lower and upper multiplicity

values on the ‘‘a’’ and ‘‘b’’ ends of the traceability rela-

tion, respectively. A rule means that if the multiplicity

constraint holds and so does the left-hand side of the rule,

then the traceability relation and the atoms of PB should

be changed to satisfy the right-hand side. For example,

rule R1 applies for any of the four multiplicities on either

end of the relation and says that if a link qi is E-annotated,

so must be bi. This rule captures the fact that when the

link exists in all concretizations—and thus its endpoints

must as well since we cannot have a link without its

endpoints. Thus, bi should not be M-annotated.

Rule R4 applies when PB is incomplete, a is not linked

to bi (n = 0) even though it should (since Lb = 1). In this

case, we must create a new V-annotated link and element

of PB: This forces a to be linked to some atom in PB in

every concretization. Rule R7 applies when the multi-

plicity constraint states that a can link to at most one bi

(Ub = 1), but there are at least two links that exist, one of

which is V-annotated. To conform to the multiplicity

constraint, we must merge these links. If there are more

than two of them, this rule can be applied repeatedly until

only one remains.

Termination To compute the propagated change, the

rules are invoked repeatedly until they no longer apply. For

example, rule R1 is applied to each traceability link that

does not have an M annotation by removing any M anno-

tation on its endpoint, etc. To show termination, we

observe that Rule R4 applies exactly once for each atom in

PA that is not linked (i.e., an orphan) to an atom in PB and

links it (so it will no longer be applicable). Furthermore, no

rule creates orphan atoms. Thus, the action of rule R4

terminates after all such orphan atoms of PA are linked. All

other rules strictly reduce the number of annotations in PB
since each rule application removes an annotation. Thus,

since there is only a finite number of annotations in PB; the

application of these rules must terminate.

Fig. 10 The forced refinement

rules for any relation with

multiplicity lower bound L 2
f0; 1g and upper bound U 2
f1; �g on each end of the

relation
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Illustration We illustrate uncertainty change propaga-

tion and the use of rules R1–R7 on the models in Fig. 6.

Assume that P1 is refined to P10 as shown in Fig. 8 and

discussed in Sect. 5. Figure 11 shows the result of propa-

gating this refinement to model P2, producing P20.3 Such

changes are highlighted with a dark black outline.

In P10, the decision to merge the V-annotated actor

DateDeterminer with MeetingScheduler forces a

corresponding merge between classes in P20 (by rule R7).

Adding the task BookMeeting in MeetingSched-

uler forces adding a corresponding V-annotated operation

by rule R4. However, the rules do not specify that the new

operation should be put into the MeetingScheduler

class; instead, a new V-annotated ‘‘dummy’’ class Book

MeetingClass is created for it since every operation

must be in some class. This shows the imprecision of the

propagation rules in Fig. 10 since only multiplicity con-

straints are taken into account.

Some refinements do not propagate at all. For example,

the decision to remove the task Decide Convenient

Dates in MeetingParticipant does not force the

removal of the corresponding operation in P20 because the

multiplicity constraint for the task-operation link type in

Fig. 5 allows the class diagram to have operations that are

not in the i* model. Another refinement that is not propa-

gated is the merge of goals Convenient Meeting

Date and Agreeable Meeting Date since the given

traceability relation does not map goals. Finally, although

the S-annotated Details resource is refined into two—

Dates and Location—this change is not propagated to

split the corresponding class Details.

Figure 12 shows the result of applying the change

propagation rules to a further refinement of the i* model P1

in Fig. 11. For example, it is decided that Meeting

Initiator depends only on MeetingParticipant

for Attends Meeting, refining (MS) Dependencies

in the model in Fig. 6 and providing the rationale ‘‘the

meeting scheduler handles all other dependencies.’’ Simi-

larly, it is determined that the only other way to schedule a

meeting in this context is manually (a further alternative

may have been to delegate the task to an administrator).

This option has negative effects on the soft goals of Low

Effort and Quick. The refinement of the dependency

uses rule R5, removing the M annotation from the corre-

sponding traceability relation, and then rule R1, removing

the M annotation from the dependency association. As with

Fig. 11 The result of

propagating the refinement in

Fig. 8 across the traceability

relation in Fig. 6

3 Note that here we are propagating a refinement of P1 to P2,
whereas earlier we gave an example of propagating a refinement of

P2 to P1. Thus, the propagation rules can be used in either direction.
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the previous refinement, not all changes are propagated. As

i* links are not mapped to class diagram elements, refine-

ments to these elements do not affect the class diagram.

Thus, while the i* model gets refined to a concrete one,

uncertainties in the class diagram remain to be resolved.

9 Tool support

In this section, we describe a prototype tool for supporting

uncertainty management within RE described in this paper.

Our prototype tool for supporting uncertainty management

in RE is built on top of the Model Management Tool

Framework (MMTF) [39]—an Eclipse-based plug-in

infrastructure for creating model management tools. Fig-

ure 13 shows the MMTF architecture. New model types,

model relationship types, editors, and operators can be

added to MMTF as plug-ins. The functionality of MMTF is

built on top of Eclipse modeling services that provide

support for visualizing and storing models. MMTF pro-

vides a runtime environment in which users can create

models, connect them with model relationships, and

manipulate them using model operators within a Model

Interconnection Diagram (MID). A MID is a model with

boxes representing models and thick arrows representing

relationships between them. The left side of the screenshot

in Fig. 15 shows a MID for the meeting scheduler example.

Double-clicking on any of the boxes or arrows brings up

the corresponding editor to allow the user to change the

content of the model or relationship. A MID is also an

interface for invoking an operator on models/relationships.

We describe implementing MAVO support on top of

MMTF below.

Adding annotation support (Q1) MAVO is a modeling

language-independent approach for expressing uncertainty.

While in this paper we exemplify the use of MAVO in RE

Fig. 12 Second set of

refinements for the Meeting

Scheduler example with the

corresponding class diagram

change propagation

Fig. 13 The MMTF Architecture
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models using i* and class diagrams, we automate its

incorporation into arbitrary existing modeling languages.

Automation not only reduces effort, it also ensures that

uncertainty is applied consistently across the different

models of the development life cycle.

We begin by describing a transformation of the meta-

model of a modeling language to add MAVO support,

illustrating it using the fragment of the i* metamodel in

Fig. 5. Figure 14 shows the result of the transformation.

The changed elements are darkened. We add three abstract

element classes, MAVOElement, MAVOReference, and

MAVOModel, which contain attributes required to store the

MAVO annotation information. All elements visible in the

concrete syntax inherit from MAVOElement, and hence

all can carry annotation information. Similarly, the element

type representing the model as a whole, in this case,

I_Star, inherits from MAVOModel and hence can carry

the INC annotation. Finally, the metamodel for relations

visible in the concrete syntax (e.g., depender and de-

pendee) is also changed to carry MAVO attributes, by

transforming these into new element types that inherit from

MAVOReference.

This transformation can be applied in a similar fashion

to any metamodel, and future work will address integrating

these changes with existing model editors.

Traceability relation (Q4) An MMTF relationship type

consists of a set of link types and a set of well-formedness

constraints they must satisfy. Such constraints can be

implemented using a variety of languages, for example,

using Java or Object Constraint Language (OCL). Thus,

any traceability relationship metamodel can be imple-

mented within MMTF. The one described in Fig. 5 is

defined as the type IStarCDRel. The content of such

relationships can be modified with a generic mapping

editor provided. The right side of the screenshot in Fig. 15

shows an instance Tr of the relation type IStarCDRel

used in the meeting scheduler MID on the left side of the

figure, opened in the mapping editor. Links Trace3 and

Trace5 show the MAVO annotation support.

Refinement relation (Q2) and checking uncertainty-

reducing refinement (Q5) The MAVO refinement

mapping is a set of links between the atoms of two MAVO

models and thus it is also implemented as an MMTF

relationship type, called MAVORefinementRel. As dis-

cussed in Sect. 7, the well-formedness constraints in Fig. 9

Fig. 14 The MAVO-transformed metamodel fragment of i* from Fig. 5

Fig. 15 MMTF screenshot showing the meeting scheduler MID and a detail of a traceability relation between P1 and P2
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have to hold for an uncertainty-reducing refinement map-

ping to be valid. Therefore, the MAVORefinementRel

relationship type contains an OCL implementation of such

constraints. Figure 16 shows the fragment of the OCL used

to implement case (1) of Fig. 9 (the case where a single

atom is refined to a set of atoms). MMTF provides support

for validation checking, that is, checking that the specific

refinement relationship instance is conformant to such

OCL constraints. Note that this is not a satisfiability

problem; instead, the instance of refinement relation pro-

vides a finite and decidable context of evaluation for the

constraints. The MID on the left side of Fig. 15 shows two

instances of the relationship type MAVORefinementRel,

the refinement R from i* model P1 to P10 and the refine-

ment propR from class diagram P2 to P20.

The change propagation operator (Q6) The change

propagation functionality described in Sect. 8 is implemented

as an MMTF operator that applies the rules in Fig. 10. The

MID in Fig. 17 shows a screenshot of the operator being

applied to the meeting scheduler scenario. In general, the

input to the operator is a pair of models P1 and P2 connected

by a traceability relation TT, a third model P01 representing

the refined version of P1, and a refinement mapping RR as

defined in Sect. 5 The output consists of the propagated model

propP2 as well as the corresponding traceability relationship

propTT and refinement mapping propRR: The MID on the

left side of Figure 15 shows the result of applying the change

propagation operator in Fig. 17.

10 Applying MAVO

In this section, we describe an application of the MAVO

framework and tool support to a larger, more complex

example arising from the requirements analysis of a real

system. We report results and then discuss our experiences

in light of our research questions. This exercise, along with

our experiences in applying MAVO to the Meeting

Scheduler example, increases our confidence in the utility

of MAVO in practice. Practical implications and lessons

learned (discussed in Sect. 10.3) suggest future framework

and implementation improvements.

10.1 Inflo

Inflo is an online modeling application allowing users to

create collaborative graphs, for example, to discuss sources

and calculations for carbon footprints [24]. As envisioned,

Fig. 16 A fragment of the OCL

used to implement the case (1)

constraints in Fig. 9

Fig. 17 MMTF screenshot

showing the application of the

change propagation operator
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users would produce visualizations of calculations, linking

them to available data sources, while other users would

discuss or dispute calculations or sources. A screenshot of

the Inflo application is shown in Fig. 18. An i* model of

the Inflo system has been produced by the third author

together with Inflo creators as part of a case study for

testing interactive i* analysis [13] and consists of 12 actors,

103 elements, and 145 links.

To test the MAVO capabilities described in this paper,

we have purposely selected a subset of the original i*

model which contained some uncertainty, including the

major actors and top-level elements in order to create a

connected and well-formed submodel. The resulting sub-

model contains 5 actors, 24 i* elements, and 22 links and

captures the dependencies between the Inflo system

(expressed as a separate agent), InfloUser, and Inflo-

Managers/Editors (see Fig. 19). For example, Inflo

depends on Managers/Editors to moderate online

discussions about Inflo graphs.

10.2 Experience

We describe our experience with capturing, analyzing, and

refining uncertainty in the Inflo system. The quantitative aspects

of our experience are summarized in Table 1. The table also

shows similar statistics collected for the Meeting Scheduler

example used throughout this paper. Refinement checks and

change propagation were executed using the MMTF imple-

mentation for both the Inflo and Meeting Scheduler examples.

Q1 To express uncertainty over the Inflo i* model, we

needed to add several additional links and elements

capturing model alternatives. For example, the relationship

between the moderation options of InfloManagers/

Editors was not clear: was the task Use Automated

reputation system an alternative to Extensive

moderation in achieving the Moderate inflo goal, or

was Use Automated reputation system part of an

additional option, less extensive moderation? To

express this uncertainty, we added a new M V-annotated task

inInfloManager/Editors (see the top actor in Fig. 19).

Overall, we added 5 elements and 13 links to our subset

model, resulting in 29 element and 35 links, 21 of which are

annotated with 24 MAVO annotations (see Table 1). We then

created a corresponding class diagram, with 10 classes and

12 dependencies, as shown in the lower part of Fig. 19.

Q2 After expressing initial uncertainties, the i* model

went through two rounds of refinement, referred to as P10

and P100. For example, in P10 it was decided that Inflo-

Managers/Editors had the option of extensive or less

extensive moderation, with the automated reputation sys-

tem used as part of the latter. As part of this change, we

split the S-annotated task Moderationtasks in the

Inflo agent into several moderation tasks, such as edit

post, delete post. Table 1 summarizes the number of

MAVO labels refined in each refinement round.

Q3 To document non-obvious reasoning behind model

refinements, we provided refinement rationale. For exam-

ple, when reducing uncertainty concerning moderation, we

recorded the rationale statement ‘‘Can moderate exten-

sively without an automated system or less extensively,

relying on the automated system,’’ explaining the alterna-

tive configurations selected in the model. In this case, we

Fig. 18 Screenshot of the Inflo

application
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found it helpful to apply the rationale to the entire set of

changes related to moderation. Table 1 summarizes the

number of rationale statements in each refinement as well

as the number of changes covered by rationale statements,

for example, in P10, 2 rationale statements covered 13 of 16

refined annotations.

Q4–Q5 We checked the refinements made to the model

against the rules in Fig. 9. In this particular example, only

constraints (1) and (2) were used. We then matched

uncertainty in the class diagram to a subset of uncertainty

of the i* diagram using traceability links.

Q6 Where possible, the changes to the i* model made in

each refinement were propagated to the corresponding

class diagram using the rules in Fig. 10. The propagation

time for each model took under 10 ms on an Intel Core i7-

2600 CPU @ 3.40GHz PC with 8GB ram. Table 1 reports

the total number of MAVO label refinements (column 4),

the number of such changes which should have been

propagated based on all the well-formedness constraints of

iStarCD (column 7) and the number of changes which

were actually propagated using the current rules (column

8). For example, in P10, 16 labels were refined, 5 of which

should have been propagated, while 4 were actually

Fig. 19 Inflo model and

corresponding class diagram

containing MAVO-annotated

uncertainty

Table 1 Statistics for the Meeting Scheduler and Inflo system

Examples Initial MAVO–annotated

i* model size

Initial i*

MAVO labels

Num.

MAVO

labels

refined

Num.

rationale

statements

Num.

changes with

rationale

Num.

changes

should

propagate

Num.

changes

propagated

Actors Elmts. Links M S V P10 P100 P10 P100 P10 P100 P10 P100 P10 P100

Meeting scheduler 4 18 21 8 10 3 11 10 0 2 0 8 4 3 2 1

Inflo 5 29 35 19 6 5 16 14 2 5 13 11 5 4 4 1
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propagated via our rules. We discuss the changes which

were not propagated, as well as our general experiences

applying MAVO to the examples, in the next section.

10.3 Discussion and lessons learned

We have successfully applied all aspects of the MAVO

framework to the Meeting Scheduler and the Inflo system.

Although this process provided evidence to support the

practical applicability of MAVO to an RE context, it has also

revealed some areas in which MAVO could be improved,

allowing us to identify areas of potential future work.

Q1 The MAVO approach was not used in the original

modeling exercise for the Inflo model, so the starting point

of our process reported in Sect. 10 was a model which

allowed just one set of possibilities. To construct the ver-

sion with uncertainty, we ‘‘reverse-engineered’’ uncertainty

into a model, based on the third author’s recollection of the

system and the modeling process, and thus needed to add

several additional elements to express various concrete

options before annotating the model. Had we used MAVO

throughout the modeling process, these alternatives would

have been added as they arose, making the annotation

process more natural.

Although we were able to express all uncertainties

encountered in our examples using MAVO annotations, the

process could be made more intuitive. For example, if there

was an uncertainty about an element type (e.g., is a link a

help or a make, in i* terms?), each possible type had to

be added to the model with an M annotation. Similarly, if

there was an uncertainty involving the source or destination

of a link, multiple M-annotated links had to be added to

each possible source/destination. In such cases, as well as

when adding V-annotated elements, the modeler often had

knowledge that these options were mutually exclusive.

This experience suggests that we can improve MAVO tool

support to include explicit-type uncertainty and enforce-

ment of mutual exclusion of alternatives (see Sect. 12.2).

We also note (see Table 1) that M annotations were used

far more frequently than V or S. Although this may be

inherent in the frequency of certain types of uncertainty, it

may also be due to the utility of the individual types of

labels. For example, we often wanted to restrict the exact

set of atoms with which a V-annotated object can merge.

This experience suggests further development of MAVO

patterns for expressing uncertainty, as well as improve-

ments of concrete syntax for doing so (see Sect. 12.2).

Q3 In capturing refinement rationale, we sometimes did

not feel that it was necessary to attach a rationale statement

to a particular refinement, and often chose to group several

individual refinements (e.g., all related to moderation) to

share a single rationale statement. This experience indi-

cated that our tool support should be extended to allow for

such possibilities.

Q6 As reported in Sect. 10, many of the refinements

made to the i* model of the Inflo system were not propa-

gated to the corresponding class diagram. For example, in

the refinement P10, the rules only propagated four out of the

16 label refinements. Many of these exclusions can be

accounted for by the relationship between i* and class

diagrams—there are many concepts in i* (goals, contribu-

tions, decompositions) which are not mapped to concepts in

class diagrams; therefore, changes to these elements will

not be propagated. Other cases are due to the fact that some

of the well-formedness constraints of the traceability rela-

tion do not force propagation. For example, when a M-

annotated task is deleted in a refinement, the operation that

it maps to need not be correspondingly deleted because, by

the multiplicity constraints (see Fig. 5), it is mapped to

‘‘0..1’’ tasks. These situations account for 11 out of the 16

label refinements. Of the final five refinements, four were

propagated by the rules. The remaining case (that should

have been propagated but was not) is due to the limitation of

our change propagation technique which uses only multi-

plicities rather than all well-formedness constraints.

Scalability While it is useful to express all reasonable

concretizations in one model, the addition of extra ele-

ments and links can increase its complexity. For MAVO

applications, the complexity increase is linear in the

‘‘amount’’ of uncertainty in the model. Moreover, our

approach can directly benefit from all future improvements

supporting model scalability, for example, the use of

modularization for i* models.

11 Related work

In this section, we survey a number of approaches related

to our work on uncertainty.

Uncertainty in RE Several approaches consider uncer-

tainty in requirements, often as part of an overall strategy

for managing uncertainty in software development. For

example, [14] provides a framework for uncertainty in SE,

recognizing requirements uncertainties such as inconsis-

tencies, clarity, and accuracy. While this approach uses

existing techniques to model uncertainty in isolation, our

approach aims to integrate uncertainty modeling with

existing RE modeling approaches. The work in [4] inves-

tigates requirements changes and uncertainty in an exper-

imental field study, using data gathered to provide a useful

list of root causes for uncertainty, including vague product

strategy and missing key stakeholders. Although it is useful

124 Requirements Eng (2013) 18:107–128

123



to consider possible root causes for uncertainties, our

approach takes a more narrow focus, capturing the mani-

festation of uncertainties in the structure of RE models.

The approach in [19] argues that much of the uncer-

tainty in SE comes from our inability to precisely measure

software and its processes, proposing the use of rough sets

to capture software properties and requirements. Although

some of the uncertainties captured by MAVO might be

related to imprecision, our approach aims to support a

wider variety of model uncertainty. Similarly, work in [33]

studies the problem of ‘‘imperfect information’’ in software

development, using fuzzy set theory and probability theory

to model imprecise non-functional requirements in order to

evaluate design decisions. This approach allows modeling

of uncertainty concerned with specific NFRs, while our

approach allows for uncertainty over RE models which

may capture NFRs. Thus, when it comes to the precision of

requirements, our approach inherits the expressiveness of

the modeling language to which it is applied.

In another direction, Herrmann [12] studied the value of

being able to express vagueness within design models. His

modeling language SeeMe has notational mechanisms

similar to OW and May partiality; however, there is no

formal foundation for these mechanisms.

Much of the investigation of uncertainty in RE is con-

cerned with work on adaptive systems. Such systems aim

to respond to uncertainty during run-time by specifying

functional adaptations as part of RE (see [44] for over-

view). Our approach is aimed to represent uncertainty in

the content or structure of requirements models arising as

part of elicitation, ideally resolved as part of the require-

ments process, and do not explicitly to handle run-time

uncertainty.

Uncertainties in software development are often con-

sidered as part of risk management. For example, the

approach in [15] advocates the early and explicit consid-

eration of risks as part of RE goal modeling. Although

certain risk factors (e.g., an unknown budget) may motivate

the presence of model uncertainty, our framework is not

explicitly intended to capture these risks.

Argumentation and rationale in RE Previous work has

focused on the use of rationale as part of design decisions

(e.g., [36]), whereas others added rationale as part of the

development of goal models [17, 27] or other requirements

models [9]. In contrast, our approach focuses on adding

rationale for the reduction in uncertainty, which may or

may not involve a design decision.

RE Model mapping and traceability We consider

mappings between requirements models as part of man-

aging uncertainty across multiple models. Although we use

a particular traceability mapping in our example (adapted

from [3]), our approach is meant to apply to any mapping

between models (other examples can be found in [19, 20,

26]). Traceability among software artifacts has received

much attention (see [45] for an overview of software

traceability, including traceability as part of RE), much of

it geared toward traceability from models to requirements

(e.g., [5, 10]), or from requirements to architecture (e.g., [9,

50]). Some approaches look at traceability between mod-

els. For example, [46] focuses on change management for

goal models, detecting conflicts and analyzing goal

achievement when a goal is added or deleted. Our work is

broader in that it considers any change which reduced

uncertainty, and can be applied to multiple model types.

Other work has a more general focus on software models,

often using UML models as examples (e.g., [1, 16, 25]). As

our work manages uncertainty on top of existing trace-

ability mappings, including integrity constraints, the

traceability links and rules proposed in such work could be

integrated with our approach.

Partial modeling May partiality in MAVO is related to

various modal extensions to behavioral modeling formal-

isms. For example, Modal Transition Systems (MTSs) [21]

allow introduction of uncertainty about transitions on a

given event, whereas Disjunctive Modal Transition Sys-

tems (DMTSs) [22] add a constraint that at least one of the

possible transitions must be taken in the refinement. Con-

cretizations of these models are Labeled Transition Sys-

tems (LTSs). MTSs and DMTSs have been used to capture

some forms of uncertainty in early design models [47]. The

MAVO approach allows specification of more uncertainty

types, although it is applicable only to structural models.

Change propagation Our work on uncertainty change

propagation in Sect. 8 is closely related to research on the

propagation of model content changes in order to fix

inconsistencies in model-based software development.

Many approaches focus on attempting to formulate repair

rules representing various change scenarios, where specific

repair actions are performed in response to detected

changes. Such rules are usually expressed in a constraint

language, such as Beanbag [49] or EVL [18]. Several other

approaches use logic, such as in Blanc et. al [2], the xlinkit

framework [32], the triple graph grammars approach [29],

or, more recently, Reder et. al. [37].

Our approach also follows the repair rule strategy;

however, the focus is on the level of uncertainty rather than

model content. That is, the propagation rules in Fig. 10

repair the uncertainty information (e.g., annotations) in one

model in order to be consistent with another model related

via a traceability relation.

In other work [41], we have explored doing MAVO

uncertainty change propagation with the full FO encoding
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of a model using an SMT solver. The change propagation

rule approach in the current paper differs from the one in

[41] because we are considering changes to both annota-

tions (e.g., rule R1) and the model atoms (e.g., rule R4),

while in [41], we considered only changes to annotations.

Furthermore, the propagation rules avoid the potential

exponential complexity of the SMT approach, albeit with

the limitation that they only apply to multiplicity-based

well-formedness constraints.

Representing sets of models Work on representing sets

of models as a model is closely related to ours. For example,

a metamodel is a model that defines the set of models. Such

metamodels are typically expressed using a metameta-

modeling language such as MOF [34] and are intended for

representing model types rather than uncertainty within a

particular model. The element types in a metamodel cor-

respond to the domain concepts that the modeling language

‘‘talks about,’’ whereas in a MAVO model, the elements of

the base model are particular domain elements.

Another relevant area is product line software devel-

opment [35], where the variability of a model must be

made explicit. This can be understood as representing a set

of models (i.e., the set of model variants). Most approaches

keep the expressions of variability in a separate model

(e.g., a feature model), but some incorporate these directly

into the model using notational extensions in the meta-

model [31]. Variability modeling is well suited to

expressing product variants but would be awkward and

limiting if used for expressing uncertainty. The set of

variants represented by a variability model are all

‘‘desired’’ possibilities, whereas all but one concretization

of a partial model is undesirable. This makes the process of

refinement central to partial modeling but not for vari-

ability models. In addition, the set of variants is typically

finite since each variant must correspond to a well-defined

combination of features, while the set of concretizations of

a partial model is often infinite because uncertainty can be

more open-ended than product variation.

12 Conclusion and future work

12.1 Summary

Our overall goal is to produce a comprehensive strategy for

uncertainty management in software engineering. In our

previous work [6, 40, 43], we have developed a formal

approach called MAVO for expressing and reasoning with

model uncertainty. We have explored model transforma-

tions for such models [7] and done a comparative analysis

of tool support for property checking [38].

In this paper, we expanded on previous work by applying

MAVO to the RE modeling context to answer six methodo-

logical and algorithmic questions about uncertainty in RE.

Specifically, we made the following contributions: we

explicated methodological guidelines for using MAVO

annotations (Q1) and illustrated them through an application

to expressing uncertainty in RE models; we applied MAVO

refinement to expressing uncertainty reduction in RE models

(Q2); we proposed a methodological approach to docu-

menting the rationale of these refinements (Q3); we showed

how to apply the MAVO uncertainty to traceability relations

between RE models (Q4); we developed an efficient algo-

rithm for checking the validity of MAVO refinements (Q5);

we developed an approach for using multiplicity constraints

to automatically propagate uncertainty-reducing changes

(Q6); we described an implementation of uncertainty man-

agement in the MMTF tool; and we applied the MAVO

framework to two examples, reporting on experiences and

limitations. Through these contributions, we have made

progress toward the identification and resolution of uncer-

tainty early in the software development process. Also,

although we illustrated our approach in an RE scenario using

i* and UML models, it is general enough to be applied as part

of any RE modeling approach that has a metamodel.

12.2 Future work

We see this paper as a step toward the development of a

comprehensive strategy for uncertainty management across

the development life cycle. We intend to conduct additional

case studies in order to better evaluate the effectiveness of

our approach as well as improve our tool support. We

describe other opportunities for follow-on work below.

Undoing refinements The recording of rationale with a

MAVO refinement provides the opportunity to revisit deci-

sions and explore other alternatives. To do so, we need to be

able to change the model to reflect an alternative earlier

decision without affecting the decisions that came later. At a

high level, this entails increasing uncertainty in the model

just enough to ‘‘remove’’ the original decision and then refine

it to reflect the new decision. While the formalization of

MAVO may help do this in a sound way, dependencies

between refinements and linking multiple refinements to the

same rationale make this problem even more complex.

Trace analysis Having ‘‘lifted’’ traceability relations to

the uncertainty setting, we are interested in the corre-

sponding lifting of the different types of analyses that are

typically done using traceability relations [46]. This

approach has rich potential, for example, in being able to

define change impact analysis across related models con-

taining uncertainty. We are currently exploring approaches
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for doing this lift by encoding existing traceability analysis

techniques into FOL and using these with the MAVO FO

encoding of partial models.

Uncertainty notation In order to provide a modeling

language-independent implementation of MAVO within

MMTF, we proposed a method for augmenting an arbitrary

metamodel to support MAVO annotations. This adequately

addresses the abstract syntax of a modeling language but

does not specify how the annotation support will be inte-

grated with a particular model editor or how this affects the

concrete syntax (i.e., notation). For example, in a class dia-

gram, if we are not sure whether an operation belongs to class

A or classB, we could express this in the abstract syntax using

MAVO by having M-annotated ownedOperation rela-

tions from each class to the operation. However, in the

concrete syntax, the ownedOperation relationship is

only expressed implicitly, by putting the operation inside the

class box. Thus, it is not clear where to put the M annotations.

Furthermore, it is also unclear how to indicate that the

operation may be in class A or in class B—then it would have

two class boxes at the same time. One approach we are

exploring for addressing these kinds of issues is to identify

problematic concrete syntax patterns and study how uncer-

tainty can be expressed when they occur. We are also

investigating extensions to MAVO to more conveniently

express certain commonly occurring kinds of uncertainty,

for example, when a model element type is uncertain or when

two M annotations must be mutually exclusive. Preliminary

work in this context is reported in [8].

Extending change propagation Currently, the rules we

described in Sect. 8 are only used to propagate change

across a traceability relation; however, once such a change

is propagated, it could trigger further propagated changes

entirely within the model. We are investigating ways to

generalize the rules to support such additional propaga-

tions. Finally, as the current rules apply only to traceability

relations with multiplicity constraints, we are also explor-

ing ways to handle richer well-formedness constraints, for

example, by automatically generating the propagation rules

directly from the well-formedness constraints.
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