
Finding Solutions in Goal Models: An
Interactive Backward Reasoning Approach

Jennifer Horkoff1 and Eric Yu2

1 University of Toronto, Department of Computer Science
2 University of Toronto, Faculty of Information

jenhork@cs.utoronto.ca, yu@ischool.utoronto.ca

Abstract. Modeling in the early stage of system analysis is critical for
understanding stakeholders, their needs, problems, and different view-
points. We advocate methods for early domain exploration which pro-
voke iteration over captured knowledge, helping to guide elicitation, and
facilitating early scoping and decision making. Specifically, we provide a
framework to support interactive, iterative analysis over goal- and agent-
oriented (agent-goal) models. Previous work has introduced an interac-
tive evaluation procedure propagating forward from alternatives allowing
users to ask “What if?” questions. In this work we introduce a back-
wards, iterative, interactive evaluation procedure propagating backward
from high-level target goals, allowing users to ask “Is this possible?”
questions. The approach is novel in that it axiomatizes propagation in
the i* framework, including the role of human intervention to potentially
resolve conflicting contributions or promote multiple sources of weak ev-
idence.

Keywords: Goal- and Agent-Oriented Modeling, Early System Anal-
ysis, Model Analysis, Interactive Analysis, Iterative Analysis.

1 Introduction

Understanding gained during early stages of system analysis, including knowl-
edge of stakeholders, their needs, and inherent domain problems, can be critical
for the success of a socio-technical system. Early stages of analysis are charac-
terized by incomplete and imprecise information. It is often hard to quantify or
formalize critical success criteria such as privacy, security, employee happiness,
or customer satisfaction in early stages. Ideally, early analysis should involve
a high-degree of stakeholder participation, not only gathering information, but
presenting information gathered thus far, allowing validation and improved un-
derstanding in an iterative process. Goal- and agent-oriented models (agent-goal
models) have been widely advocated for early system analysis [1] [2], as such
models allow even imprecise concepts to be reasoned about in terms of soft-
goals and contribution links, and have a relatively simple syntax, making them
amenable to stakeholder participation.

We advocate methods for early domain exploration which provoke and sup-
port iterative inquiry over captured knowledge, prompting analysts and stake-
holders to review what is known, helping to guide elicitation, and facilitating
early scoping and decision making. To this end we have created a framework for
iterative, interactive analysis of agent-goal models in early system analysis. Pre-
vious work has introduced an interactive procedure which propagates evidence
from means to ends, allowing users to ask “what if?” questions [3]. In this work
we introduce an interactive “backward” procedure, propagating target values
from ends to means, helping users to ask “Is this possible?”, “If so how?” and
“If not, why not?” questions.

The procedure introduced in this paper encodes forward and backward prop-
agation rules in conjunctive normal form (CNF), iteratively applying a SAT
solver and human intervention to search for an acceptable solution. In formulat-
ing such an interactive backward procedure we face some interesting questions
and technical challenges. What types of questions could and should be posed to
the user, and at what point in the procedure? How can the encoding be modified
to reflect human judgment, what is added, what is removed? When a choice does
not lead to an acceptable solution, to what state does the procedure backtrack?
As information is lost in forward propagation when evidence is manually com-
bined, what assumptions about this evidence can be made when propagating
backward? How can the axiomization allow for explicit values of conflict and
unknown, compared to approaches that only allow for positive and negative val-
ues [4]? How can we find a balance between constraining the problem sufficiently
to avoid nonsensical values and allowing enough freedom to detect the need for
human judgment? How can we use information about SAT failures to inform the
user? Is there a computationally realistic approach? The procedure in this work
represents one approach to answering these questions.

The paper is organized as follows: an overview of the framework for iterative,
interactive analysis for agent-goal models is provided (Section 2), including a
summary of the forward propagation procedure (2.1). We motivate the need
for backward analysis (2.2), and provide an overview of the proposed backward
analysis procedure (3). Background on SAT solvers are provided (3.1) along
with a formalization of the i* Framework as an example agent-goal syntax (3.2),
including axioms for forward and backward propagation. The iterative, backward
algorithm is described in (3.5), including an example and a consideration of
termination, run time, soundness, and completeness. Related work is described
in Section 4, with discussion, conclusions, and future work in Section 5.

2 A Framework for Iterative, Interactive Analysis of
Agent-Goal Models in Early System Analysis

We introduce a framework for iterative, interactive analysis of agent-goal models
consisting of the following components [5]:

– An interactive, qualitative forward analysis procedure, facilitating “What
if?” analysis.

– Management of results for each analyzed alternatives.
– An interactive, qualitative backward analysis procedure, facilitating “Is this

possible?”, “If so, how?”, and “If not, why?” analysis.
– Management of human judgments provided by users.
– Integration with textual justifications for modeling and evaluation decisions.
– Reflecting model and judgment changes in alternative evaluation results.

Currently, the first component has been implemented, applied, and described
in detail [6] [3] [7], with the first and second component implemented in the
OpenOME tool [8]. In this work, we focus on the third component: interactive,
qualitative backward analysis. Our analysis framework uses the i* notation as
an example goal modeling framework [2], but could be applicable to any goal
models using softgoals and/or contribution links.

2.1 Background: Forward Interactive Analysis

The forward analysis procedure starts with an analysis question of the form
“How effective is an alternative with respect to goals in the model?” The pro-
cedure makes use of a set of qualitative evaluation labels assigned to intentions
to express their degree of satisfaction or denial, shown in the left column of
Table 2. Following [1], the (Partially) Satisfied label represents the presence of
evidence which is (insufficient) sufficient to satisfy an intention. Partially De-
nied and Denied have the same definition with respect to negative evidence.
Conflict indicates the presence of positive and negative evidence of roughly the
same strength. Unknown represents the presence of evidence with an unknown
effect. Although tasks, resources, and goals typically have a binary nature (true
or false), the use of softgoal decompositions or dependencies on softgoals means
that they often encompass quality attributes. We allow partial labels for tasks,
resources, and goals for greater expressiveness.

The analysis starts by assigning labels to intentions related to the analysis
question. These values are propagated through links using defined rules. See [2]
or [9] for a review of i* syntax (legend in Fig. 1). The nature of a Dependency
indicates that if the element depended upon (dependee) is satisfied then the
element depended for (dependum) and element depending on (depender) will
be satisfied. Decomposition links depict the elements necessary to accomplish a
task, indicating the use of an AND relationship, selecting the “minimum” value
amongst all of the values, using the ordering in (1). Similarly, Means-Ends links
depicts the alternative tasks which are able to satisfy a goal, indicating an OR
relationship, taking the maximum values of intentions in the relation. To increase
flexibility, the OR is interpreted to be inclusive.

< < < < < . (1)

We adopt the Contribution link propagation rules from [1], shown in Table
1. These rules reflect the intuitive semantics of contribution links.

The interactive nature of the procedure begins when human judgment is
used to combine multiple incoming conflicting or partial values to determine the

Source Label Contribution Link Type

Name Make Help Some+ Break Hurt Some- Unkn.

Satisfied

Partially Satisfied

Unknown

Conflict

Partially Denied

Denied
Table 1. Propagation Rules Showing Resulting Labels for Contribution Links

Application Attract

Users

Implement

Password

System

Restrict

Structure of

Password

Ask for

Secret

Question

Security Usability

H
el

p

H
ur

t

M
a
k
e

H
el

p

H
el

pActor Actor

Boundary

Goal

Softgoal

Task

Resource

D

Help

Means-Ends

Decomposition

Contribution

Dependency

Legend

Fig. 1. Example i* model with Forward Analysis Results for an Alternative

satisfaction or denial of a softgoal. In some cases, the labels can be automati-
cally determined. For example, if all labels are positive and a satisfied label is
present, the result is satisfied. In other cases the labels are determined by human
judgment, prompting the evaluators for a resolution. Human judgment may be
as simple as promoting partial values to a full value, or may involve combining
many sources of conflicting evidence. When making judgments, domain knowl-
edge related to the destination and source intentions should be used. Human
judgment situations are areas where stakeholders involved in the modeling pro-
cess can have discussions over the contents of the model and the related concepts
in the underlying domain.

Once the procedure has finished interactive propagation, the final satisfaction
and denial values for the intentions of each actor are analyzed in light of the
original question. An assessment is made as to whether the design choice is
satisficed (“good enough”), stimulating further analysis and potential model
refinement.

Example: To illustrate forward and backward analysis we use a simple model
of a generic application shown in Fig. 1. The application needs to Implement
Password System with two options identified: Restrict Structure of Password, for

example, must have a numeral and be more than five characters, and Ask for
Secret Question, in case of password loss. These options are not mutually exclu-
sive. The overall goal is to Attract Users, which is helped by both Security and
Usability. Restrict Structure of Password makes Security (according to this model),
but hurts Usability, while Ask for Secret Question helps Usability. In applying for-
ward evaluation to this example, users would evaluate each feasible alternative.
In this case there are three feasible evaluations, with one or the other alternative
selected, or both. For example, in Fig. 1 we evaluate the alternative where Ask
for Secret Question is satisfied but Restrict Structure of Password is denied. The
first pass of the procedure propagates values to Implement Password Systemand
Security automatically, but prompts the user for human judgment on Usability,
with incoming values of partially satisfied from Ask for Secret Question and par-
tially satisfied from Restrict Structure of Password. In this case the user decides
Usability is partially satisfied. Next they are asked about Attract Users, receiving
values of partially denied and partially satisfied. The user decides that with only
partial usability and no security, Attract Users is partially denied.

2.2 The Need for Backward Interactive Analysis

In addition to “What if?”’ questions, users also want to be able to answer ques-
tions such as “Is this goal achievable?”, “If so, how?”, and “If not, why?” For
example, is it possible for Attract Users to be at least partially satisfied, and if so,
how? To answer this type of question, we need a “backward” procedure which
starts at the intention(s) of interest and, using the same propagation rules as the
forward procedure when possible, works down the links in the model, looking
for potential solutions. To be consistent with the results of the forwards proce-
dure, this procedure must prompt for human judgment in situations where labels
cannot be determined without human input.

One way to find answers for these questions would be to apply the forwards
procedure repeatedly and exhaustively for all reasonable alternatives until either
the desired values are produced, or not. However, this approach could be tedious
and laborious, especially for larger models with many alternatives. In addition,
if it is not possible to obtain a target value, it would be useful to know “why?”,
identifying the areas of the graph involved in the conflict. In the next section we
describe a procedure aiming to answer these questions for agent-goal models.

3 Qualitative, Interactive, Iterative, Backward Analysis
for Agent-Goal Models

The approach encodes the model in a SAT formula, then iteratively runs the
SAT solver, prompting the user for input regarding intentions which required
human judgment after each run. When human judgment is no longer needed
and a satisfying assignment is found, the procedure ends, providing an answer.
If a satisfying assignment is not found the procedure tries to backtrack over
human judgments. If a satisfying assignment is not found and no further human

input can be given, the procedure ends, informing the user that the target is not
possible. The choice of SAT as an implementation tool is discussed in Section 5.
The procedure has been implemented in the OpenOME Tool [8].

Characterizing agent-goal model propagation in CNF requires a more formal
definition for agent-goal model (in our case, i*) concepts, including evaluation
values (intention labels). We develop axioms expressing i* propagation in both
directions, including necessary constraints over evaluation values, and the en-
coding of human judgment. We describe the use of a SAT solver in an iterative
procedure in more detail, using our simple example to illustrate. Finally, we
consider run time, termination, soundness, and completeness for the procedure.

3.1 Background: SAT and Unsatisfiable Core

SAT solvers are algorithms which accept a Boolean formula in conjunctive nor-
mal form (CNF), composed of a conjunction of clauses. The algorithm searches
for a truth assignment of the formula’s clauses to make the formula true. It does
so by making a series of decisions concerning the values of variables, backtracking
if a decision proves to be not viable. Although the SAT problem is NP-Complete,
algorithms and tools that can solve many SAT problems in a reasonable amount
of time have been developed, for example, the zChaff tool [10], used in this work.

When a SAT solver fails to find a satisfying assignment, it is useful to know
about the underlying conflict(s). Further improvements on SAT algorithms have
resulted in the ability to find an unsatisfiable core, a list of clauses in the CNF
which result in a conflict. These clauses can be used to form a resolution proof,
showing how the clauses work together to produce a conflict (a ∧ ¬a). Find-
ing a minimal unsat core is a computationally difficult problem [11], but many
approaches exist for finding a small but not minimum core (for example [12]).
We use the zMinimal application provided with zChaff to find a small but not
minimal unsat core, showing the user a list of intentions included in the set of
conflicting clauses when the SAT solver fails to find a solution.

3.2 Formally Expressing the i* Framework

We use the following notation:

– 7→ is used as a mapping from an intention or relation to a member of a set,
so i 7→ {a, b} means that i maps to either a or b.

– → is used to represent relationships between elements, so if (i1, i2) ∈ R we
write this as R : i1 → i2.

An Agent-Goal (i*) Model. In order to encode agent-goal propagation into a
SAT formula, we express agent-goal model concepts such as actors and softgoals
formally as follows.

Definition: agent-goal model. An i* model is a tuple M =< I,R,A >, where
I is a set of intentions, R is a set of relations between intentions, and A is set of actors.

Definition: element type. Each intention maps to one type in the IntentionType
set, I 7→ IntentionType, where IntentionType = {Softgoal,Goal, Task,Resource}.

Definition: relation type. Each relations maps to one type in the RelationType
set, R 7→ RelationType, where RelationType =

{
Rme, Rdec, Rdep, Rc

}
. These re-

lationships correspond to means-ends, decomposition, dependency, and contribution
links, respectively. Rc can be broken down into a further set ContributionType ={
Rm, Rhlp, Ru, Rhrt, Rb

}
where if r ∈ R 7→ Rc then r 7→ ContributionType. The

contribution link types correspond to make, help, unknown, hurt, and break, respectively.

Definition: relation behavior. The following relationships are binary (one inten-
tion relates to one intention, R : I → I): Rdep, Rc. The remaining relationships, Rme,
Rdec, are (n+1)-ary (one to many intentions relate to one intention), R : I×. . .×I → I.
When describing relations, the intentions on the left hand side of a relation are referred
to as sources, while the intention on the right hand side is referred to as a destination.

The formalism could be supplemented with actor types and association links, but
as these types currently do not play a role in the automated portion of the evaluation
framework, we leave them out of our formalism. Some+ and Some- links are included
in the tool implementation, treated conservatively as help or hurt, respectively. We
exclude these links from ContributionType in the formalism for simplicity.

We define other useful concepts such as leaf, root, positive and negative links.

Definition: leaf or root intention. An intention i ∈ I is a leaf if there does not
exist any relation, r ∈ R such that r : I → i or r : I × . . .× I → I, it is a root if there
does not exist any relation, r ∈ R such that r : i→ I or r : i× . . .× I → I.

Definition: positive or negative link. A relation r ∈ R is positive if r 7→ Pos ={
Rm, Rhlp

}
, it is negative if r 7→ Neg =

{
Rb, Rhrt

}
.

Restrictions on an agent-goal model. In order to produce an agent-goal model
which can be more easily translated into CNF form and to ensure the convergence and
termination of the algorithm, we place the following restrictions on the model:

– Each element has at most one Decomposition, Dependency or Means-Ends relation
which determines its level of satisfaction or denial, i.e., ∀i ∈ I, only one of Rdep :
I → i, Rdec : I × . . .× I → i, or Rme : I × . . .× I → i holds for i.

– The model must have no cycles, i.e., for every path in the model, r1, . . . , rn ∈ R,
r1 : i1(× . . . × I) → i2, r2 : i2(× . . . × I) → i3,. . . , rn−1 : in−1(× . . . × I) → in, ik
must not equal ij, for 1 < i, j < n.

Analysis Predicates. In order to express evaluation labels, as in the forward pro-
cedure, we introduce analysis predicates, similar to those used in [4].

Definition: analysis predicates. We express agent-goal model analysis labels
using the following set of predicates, V, over i ∈ I: v(i) ∈ V 7→ AnalysisPredicates =
{S(i), PS(i), C(i), U(i), PD(i), D(i)} where S(i)/PS(i) represents full/partial satisfac-
tion, C(i) represents conflict, U(i) represents unknown, and D(i)/PD(i) represents
full/partial denial.

For example, we express our target for Fig. 1, the partial satisfaction of Attract
Users, as PS(Attract Users). If this predicate is true, Attract Users is partially satis-
fied, if it is false, Attract Users is not partially satisfied, (telling us nothing about the
application of the other evaluation labels to this intention).

Like the forward procedure, we choose to treat conflicts as a value to propagate,
as opposed to something derived from other values. However, we still use the term
“conflict” to indicate a situation where more than one analysis predicates hold for an
intention, and those predicates are conflicting.

Definition (conflict label vs. conflict). A conflict label is the label originat-
ing when a user has selected conflict in human judgment. A conflict between labels for
an intention i ∈ I is when a predicate from more than one of the following four sets is
true: {S(i), PS(i)}, {U(i)}, {C(i)}, {PD(i), D(i)}.

3.3 Expressing Qualitative, Interactive Propagation in CNF

To express the problem of assigning evaluation labels to an agent-goal model in terms
of a CNF SAT formula, we follow the formalization in [4], adopting their classification
of the components of the formula as follows:

– The target values for the procedure, φTarget
– Axioms describing forward propagation, φForward
– Axioms describing backward propagation, φBackward
– Axioms describing invariant properties of evaluation labels, φInvariant
– Any additional constraints on propagation, φConstraints

The SAT formula is constructed as follows:

φ = φTarget ∧ φForward ∧ φBackward ∧ φInvariant ∧ φConstraints . (2)

Target. The target for an evaluation is simply a conjunction of the desired values for
each target intention. We could constrain the target further by saying that the target
should only have that value, for example if our target is PS(i), we add ¬C(i) and
¬U(i) and ¬PD(i), but we want to allow for targets to have conflicting values, making
them candidates for human intervention.

Invariant Axioms. Unlike the approach of [4], we are not able to define a total
order over analysis predicates, such that for v(i) ∈ AnalysisPredicates, v1 ≥ v2 ⇔
v1 → v2, as there are no implication relationships between satisfaction/denial values
and unknown values. We chose not to add implication values from {S, PS, PD,D}
to Conflict labels (e.g., PD(i) ∧ PS(i) → C(i)), due to our treatment of such labels
as described in Section 3.2. We are, however, able to define and utilize the following
partial orders.

∀i ∈ I : S(i) ≥ PS(i) ⇔ S(i)→ PS(i)

D(i) ≥ PD(i) ⇔ D(i)→ PD(i) . (3)

In addition, we can define a conceptually useful total order where v1 ≥ v2 implies
that v1 is more desirable (or “higher”) than v2, similar to the order used in (1). This
order is as follows:

S(i) ≥ PS(i) ≥ U(i) ≥ C(i) ≥ PD(i) ≥ D(i) . (4)

Here we chose an optimistic ordering between U(i) and C(i), with the idea that no
information (unknown) is better than conflicting information.

Constraints. When using the analysis procedure, the user could add any additional
constraints into the SAT formula, following the approach of [4]. In our example, we
constrain leaf intentions such that these intentions must be assigned one of the six
evaluation labels (5).

∀i ∈ I , s.t. i is a leaf: PS(i) ∨ C(i) ∨ U(i) ∨ PD(i) (5)

In our example, we would add these constraints for our two leaf intentions, Restrict
Structure of Password and Ask for Secret Question.

3.4 Forward and Backward Propagation Axioms

In order to express the forward and backward propagation rules we develop axioms
which express the results of each possible evaluation label when propagated through
each type of relation in each direction. Generally, for an intention i ∈ I, R : i1 × . . .×
in → i these predicates take on the form:

Forward Propagation:
(Some combination of v(i1) . . . v(in), v ∈ V)→ v(i)
Backward Propagation:
v(i)→ (Some combination of v(i1) . . . v(in), v ∈ V)

The forward propagation axioms can be derived from the propagation rules de-
scribed in Section 2.1. For Dependency, Decomposition, and Means-Ends links, the
backward propagation rules are identical to the forward, but in the opposite direc-
tion. For example, in a Means-Ends relationships with two sources b and c to desti-
nation a, either b or c must be satisfied for a to be satisfied in the forward direction,
(S(b) ∨ S(c)) → S(a). In the backward direction, if a is satisfied, then either b or c
must be satisfied, S(a) → (S(b) ∨ S(c)). The SAT solver will try to find a satisfying
assignment where either S(b) or S(c) or both are true. The general form for forward
and backward propagation of full satisfaction for Means-Ends links with n sources and
destination iJ is (

∨n

j=1
S(ij)) → S(id) and S(id) → (

∨n

j=1
S(ij)), respectively. The

other axioms for Means-Ends or Decomposition use similar reasoning. We list only the
forward axioms for these links in Table 2. Axioms in the table have been simplified
when possible using the invariant clauses in Equation (3).

Propagation axioms for Contribution links are treated differently, as in the forward
direction when an intention, i, is the recipient of mulitiple contribution links (there

Forward Contribution V(is) V(is)→ V(id)

S
c = m : S(is)→ S(id) c = b : S(is)→ D(id)
c = hlp : S(is)→ PS(id) c = hrt : S(is)→ PD(id)

PS c = m,hlp : PS(is)→ PS(id) c = b, hrt : PS(is)→ PD(id)

V(is) V(is)→ V(id) PD c = m,hlp : PD(is)→ PD(id) c = b, hrt : PD(is)→ PS(id)

U c = any : U(is)→ U(id)
D

c = m : D(is)→ D(id) c = b, hrt : D(is)→ PS(id)

C c = any : C(is)→ C(id)
c = hlp : D(is)→ PD(id)

v ∈ V c = u : v(is)→ U(id)

Backward Contribution V(id) V(id)→ V(i1) . . .V(in)

S, PS PS(id)→ (for rcj ∈ Pos,
∨n

j=1
PS(ij) ∨ for rcj ∈ Neg,

∨n

j=1
PD(ij))

C C(id) →
(∨n

j=1
C(ij) ∨ (for rcj ∈ Pos,

∨n

j=1
PS(ij) ∧ for rcj ∈ Neg,

∨n

j=1
PS(ij))

∨(for rcj ∈ Pos,
∨n

j=1
PD(ij) ∧ for rcj ∈ Neg,

∨n

j=1
PD(ij))

)
V(id) V(id)→ V(i1) . . .V(in)

D,PD PD(id)→ (for rcj ∈ Pos,
∨n

j=1
PD(ij) ∨ for rcj ∈ Neg,

∨n

j=1
PS(ij))

U U(id)→
∨n

j=1
U(ij)

Forward Dependency V(is) V(is)→ V(id)

v ∈ V v(is)→ v(id)

Forward Decomposition V(id) V(i1) . . .V(in)→ V(id)

S (
∧n

j=1
S(ij))→ S(id)

PS (
∧n

j=1
PS(ij))→ PS(id)

U ((
∨n

j=1
U(ij)) ∧ (

∧j

k=1
PS(ik) ∧

∧n

p=j+1
PS(ip))→ U(id)

C ((
∨n

j=1
C(ij)) ∧ (

∧j

k=1
¬PD(ik) ∧

∧n

p=j+1
¬PD(ip))→ C(id)

PD (
∨n

j=1
PD(ij))→ PD(id)

D (
∨n

j=1
D(ij))→ D(id)

Forward Means-Ends V(id) V(i1) . . .V(in)→ V(id)

S (
∨n

j=1
S(ij))→ S(id)

PS (
∨n

j=1
PS(ij))→ PS(id)

U ((
∨n

j=1
U(ij)) ∧ (

∧j

k=1
¬PS(ik) ∧

∧n

p=j+1
¬PS(ip))→ U(id)

C ((
∨n

j=1
C(ij)) ∧ (

∧j

k=1
PD(ik) ∧

∧n

p=j+1
PD(ip))→ C(id)

PD (
∧n

j=1
PD(ij))→ PD(id)

D (
∧n

j=1
D(ij))→ D(id)

Table 2. Foward and Backward Propagation Axioms.

exists an r1, . . . , rn ∈ R such that rc1 : i1 → i . . . rcn : in → i), each link from source
to destination, rj for j from 1 . . . n, contributes a label. These labels are combined
into a single label using either automatic rules or human judgment. In the backward
direction a single destination label for i, v(id) is used to place constraints on the
values of one or more sources, vj(ij) ∈ V, for j from 1 . . . n. We can only make minimal
reasonable assumptions concerning the labels of the source intentions given the label
of the destination intention. For example, if v(id) 7→ PS, we assume that at least one
of the incoming values is PS, meaning that one of the positive links propagates at least
a PS value (i.e. ∃j, rj ∈ Pos, s.t. vj(ij) 7→ PS) or one of the negative links propagates
at least a PD value (i.e. ∃k, rk ∈ Neg, s.t. vk(ik) 7→ PD). The rest of the backward
assumptions are similar.

3.5 Human Judgment

As the procedure requires input on intentions which require human judgment, we for-
mally define what it means for an intention to require human judgment.

Definition: need for human judgment. An intention, i ∈ I, needs human
judgment if:

– i is the recipient of more than one incoming contribution link, i.e. there exists an
r1 and r2 ∈ R such that rc1 : i1 → i and rc2 : i2 → i, AND:
• There is a conflict, as defined in Section 3.2.
• Or, PS(i) or PD(i) holds and i has not received a human judgment in the

current algorithm iteration

Conflicts can be optionally resolved by the user, and partial values can be optionally
promoted to S or D.

When human judgment is required for an intention, given a target evaluation value
for the recipient intention, target(i), the user is asked the following question:

“Results indicate that i must have a value of target(i).
Enter a combination of evaluation labels for intentions contributing to i which would
result in target(i) for i.
(∀j, j = 1 . . . n, rj : ij → i)
Ij, rcj , (choice of one of S, PS, U, C, PD, D)
. . . ”

When a judgment is provided the SAT formula is adjusted as follows:

– Forward and backward axioms in the SAT formula which propagate to or from i
are removed. These are axioms of the form:

(Any combination of v(i1) . . . v(in), v ∈ V)→ v(i)
v(i)→ (Any combination of v(i1) . . . v(in), v ∈ V)

– New axioms representing the human judgment are added, for each rj , r
c
j : ij → i,

the value provided by the user for ij , vj(ij) ∈ V, is added to a forward and backward
axiom as follows:

Forward: (v1(i1) ∧ . . . ∧ vn(in))→ target(i)
Backward: target(i)→ (v1(i1) ∧ . . . ∧ vn(in))

In addition, we when encoding human judgment, we add the constraint that i must
not have a conflict, to avoid situations where the SAT solver will assign extra values
to i. For example if target = PS(i), then the following would be added to Φ:
¬U(i) ∧ ¬C(i) ∧ ¬PD(i)

3.6 Backward Analysis Algorithm

Simplified Java code implementing the backward algorithm can be found in Fig. 2.
Generally, the algorithm converts the model to CNF form, using the components of
formula described in Section 3.3 (lines 7 and 8 in Fig. 2). Two versions are converted,
one using both the forward and backward propagation axioms to try to find a solution,
cnf, and one using only the backward axioms in order to find targets for intentions,
cnfBack. In a loop which terminates when no more intentions require human judgment
(lines 9, 14, 15), the algorithm calls zChaff to find a solution for cnf (line 10). If a
solution is found (line 11), the algorithm displays the non-conflicting results (line 13)
and finds the topmost (closest to a root) intentions which need human judgment (line
13, 16). The target for each of these intentions is found by running the solver on cnfBack

(line 17, 18) and taking the maximum label result for each intention, using the ordering
in 4.

For each topmost intention needing human judgment, the user is prompted for
judgment (line 21), and the judgment is added to the forward and backward cnf as
described in Section 3.3 (line 23, 24). If the user provided some judgments, the list of
topmost intentions needing human judgment is added to a stack (line 27). If, in the
main loop, zChaff cannot find a solution (line 28), zMinimal is used to find the minimum
core, which is displayed to the users (line 29-31). In this case, or when the user has no
more judgments to add (line 25, 26), the algorithm backtracks, popping the last set
of intentions needing human judgment from the stack (line 26) and backtracking over
the cnf and cnfBack formula (removing the judgment axioms and adding back in the
default forward and backward propagation axioms) (line 38, 39). Control is returned
to the main loop (line 9) where the process starts again by finding a solution for the
cnf (line 10). Only judgments over intentions in the minimal core are re-asked when
backtracking (not shown Fig. 2). If the procedure backtracks, but there are no more
intentions to backtrack over, the algorithm ends with no result (line 41-43).

0 Dimacs cnf; Dimacs cnfBack;
1 zChaffSolver solver = new zChaffSolver();
2 zMinimalSolver minSolver = new zMinimalSolver();
3 ModeltoAxiomsConverter converter = new ModeltoAxiomsConverter(model);
4 Stack<Vector<Intention>> hjStack = new Stack<Vector<Intention>>();
5
6 void reason() {
7 cnf = converter.convertBothDirections();
8 cnfBack = converter.convertBackward();
9 while(true) {
10 int result = solver.solve(cnf);
11 if (result == 1) {
12 HashMap<Intention, int[]> results = solver.getResults();
13 Vector<Intention> needHJ = findHJAndDisplayResults(results);
14 if (needHJ.size() == 0) { //answer found, no judgments needed
15 showMessage("Success!"); return; }
16 Vector<Intention> topMostHumanJudgment = findTopMost(needHJ);
17 solver.solve(cnfBack); //used for intermediate targets
18 Hashmap<Intention, int[]> backResults = solver.getResults();
19 int hjCount = 0;
20 for (Itention i: topMostHumanJudgment) {
21 if (promptForHumanJudgment(i, backResults.get(i))) {
22 hjCount++; //count number of judgments given
23 cnf = converer.addHumanJudgment(cnf, i);
24 cnfBack = converter.addHumanJudgment(cnfBack, i); } }
25 if (hjCount == 0) { //user has no more hj to add
26 if (backtrack() == -1) { return; } }
27 else { hjStack.push(topMostHumanJudgment); } }
28 else if (result == 0) { //solver found no solution
29 minSolver.solve(cnf); //find unsat core
30 String minResults = minSolver.getResults();
31 showMessage ("Backtracking: " + minResults);
32 if (backtrack() == -1) { return; } } } }
33
34 int backtrack() {
35 if (hjStack.size() > 0) { //there are judgments to backtrack over
36 Vector<Intention> needHJ = hjStack.pop();
37 for (Intention i: needHJ) { //backtrack over of the last judgments
38 cnf = converter.backtrackHumanJudgment(cnf, i);
39 cnfBack = converter.backtrackHumanJudgment(cnfBack, i); }
40 return 1;
41 } else { //there are no judgments to backtrack over
42 showMessage("Target(s) unsatisfiable. Ending.");
43 return -1; } }

Fig. 2. Simplified Java Code for the Backward Analysis Algorithm

3.7 Example

To illustrate the algorithm, we run an example over the model in Fig. 1.

Iteration 1: The SAT solver is run on the cnf SAT formula. A satisfying assignment
is found; however, there are intentions which need human judgment: Attract Users
and Usability, of which Attract Users is the topmost. We prompt for human judgment,
asking the users what combination would produce a partially satisfied value for Attract
Users. The users indicate that Usability and Security must be partially satisfied. cnf and
cnfBack are modified accordingly and the procedure loops.

Iteration 2: The SAT solver is called again on the new cnf. Human judgment is still
needed, and the procedure asks the user for input on the conflicted intention nearest to
the root, Usability. The user indicates that for Usability to be partially satisfied Ask for
Secret Question should be satisfied and Restrict Structure of Password should be denied.
The SAT formulas are modified to reflect this information.

Iteration 3: The solver is run on the new cnf. In this case, the formula is un-
satisfiable, if Restrict Structure of the Password is denied then Security is denied, when
the rule collected in the first iteration indicates it must be partially satisfied in order
for Attract Users to be partially satified. The procedure backtracks (modifying the cnf
encodings) and the user is then asked for more possible viable combinations for the
last point of judgment, Usability. No more possibilities are given which would make
Usability partially satisfied. The procedure backtracks again and asks the user if there
are more combinations of source intentions that would produce a partially satisfied
value for Attract Users. This time the user indicates that if Security were satisfied and
Usability had a conflict value, Attract Users would be partially satisfied. The axioms to
and from Attract Users are again removed and the human judgment axioms are added.

Iteration 4: The solver is run again on the modified cnf. Usability requires human
judgment. The user indicates that for Usability to have a conflict value, Restrict Structure
of Password and Ask for Secret Question can be satisfied. The encodings are updated.

Iteration 5: The solver is run on the new cnf. This time, not only is satisfying
assignment found, but all intentions in the model do not require human judgment. The
procedure finishes, informing the user that in order for Attract Users to be partially
satisfied, Restrict Structure of Password and Ask for Secret Question must be satisfied.

3.8 Run Time, Termination, Soundness, and Completeness

Run Time: In analyzing the runtime we exclude an exploration of the runtime com-
plexity of zChaff or zMinimal, marking these values as rt(zChaff) and rt(zMinimal).
The main loop reason() in Fig. 2 will loop until hjCount == 0. In the worst case each
iteration involves a single new judgment for every intention. If a model has n intentions
and each intention has a maximum of q sources, there is a maximum of 6q ×n possible
judgments, where q < n. The run time of the initial axiom conversion is 6l, where l is
number of links in the model. The cost of adding or backtracking human judgment on
the converter is also l (finding the right axiom by links). In addition, the worst case
runtime of findHJAndDisplayResults and is n, findTopMost is 2n, and backtrack is 2nl.
If zChaff returns a result, the worst case runtime is either 2ln + 3n + rt(zChaff) or
2nl, else it is 2nl+ rt(zMinimal). Assuming rt(zMiminal) ≈ rt(zChaff), the worse case
runtime for reason is then 6q×n(2ln+3n+rt(zChaff))+6l, or O(6q(ln2+nrt(zChaff))).
Although this is an exponential value, q is usually a small number, less than 5 or 6.
Also, although there is a worst case of 6q possible combinations of human judgment

for each intention, only a small subset of these judgments will be acceptable for the
user, who will try to maximize positive contributions.

We have applied our implementation of the procedure to several medium sized ex-
ample models, with the automated portion of the procedure completing within seconds.
Future work should test the runtime on larger models, although, as the procedure is
meant to be used over models created by hand, the maximum size of such models is rea-
sonably constrained by human cognition. Potential procedure efficiency improvements
are discussed in Section 5.

Termination: If the user continues to make the same judgments, the procedure
will not terminate. However, the current implementation provides a list of previous
judgments attempted which did not produce a solution. As there are a finite number
of intentions each with a finite number of sources, there is a finite number of human
judgments which can be provided (6q). If the user does not continually reuse judgments,
the procedure terminates.

Soundness: An examination of Table 2 will show that we have considered propaga-
tion rules for every combination of evaluation label and link type, given the restrictions
on our model in Section 3.2.

Completeness: Our axiomatization would be complete if the propagation through
backward axioms were shown to be equivalent to propagation through forward axioms
given the same input and human judgment decisions. Currently the forward procedure
takes into account additional agent-goal model structures such as mixes of link types
and cycles, as a result, the results would only be equivalent if the models avoided these
structures. We leave a formal completeness proof for future work.

4 Related Work

An early version of this procedure was briefly described in [13], without providing a
detailed encoding or algorithm. In [4], the authors present a formal framework allowing
for backward reasoning with goal models. The results for each goal are presented using
two values, one for satisfaction and one for denial. Often results contain many goals
which are both partially satisfied and denied, making it challenging to derive an overall
analysis conclusion. The backwards procedure described in this work could be seen as
an expansion or modification of this procedure, as we have borrowed our general CNF
formulation (2) and part of our analysis predicates from this work. However, we make
several expansions and modifications to [4], as follows:

– Incorporating user interaction through human judgment, allowing users to resolve
conflicts and make tradeoffs.

– Accounting for additional agent-goal syntax (dependency, unknown, and some+/-
links).

– Accounting for additional analysis values (conflict, unknown).
– Producing results which have only one value per intention.
– Providing information on model conflicts when a solution cannot be found.

Several other analysis procedures have been introduced for agent-goal models, em-
ploying methods such as automated quantitative propagation of the probability of goal
satisfaction ([14], [15]). However, these procedures often require precise or specific do-
main information such as probabilities, costs, or quantitative estimates from “experts”,
difficult to acquire in early analysis stages. It may be difficult for stakeholders to trust
results produced automatically over incomplete and imprecise information. We argue
these approaches are less appropriate for early system analysis.

5 Discussion, Conclusions and Future Work

We have introduced an interactive, iterative procedure for backward analysis of agent-
goal models in early system exploration. This procedure complements the existing
forward procedure [3], thus greatly expanding the interactive analytical power of agent-
goal models, encouraging stakeholder involvement in the early modeling and analysis
process and increasing the likelihood of system success.

The procedure has addressed several of the questions and challenges listed in Section
1. It poses a specific type of question to the user (“What source values could produce
a target value?”) during iterations where conflicts or unaddressed partial values are
detected, modifying the encoding by adding and removing axioms. We have defined
assumptions concerning backward propagation over human judgment situations which
include explicit conflict and unknown values and which avoid over constraining the
model. The run time of the procedure has been analyzed, and although the worst case
is exponential over the maximum number of children in the model, in practice this
number is small. Limitations include not taking into account some i* constructs such
as actor types or associations and restrictions to the structure of the model. We expect
to remove these restrictions in future work.

Use of SAT: In the early stages of this work we considered encoding agent-goal
model propagation as a Constraint Satisfaction Problem (CSP) or Satisfiability Modulo
Theories (SMT) Problem. However, in order to capture the presence of conflicts and the
need for human judgment, each intention would have to be assigned multiple variables,
making the encoding roughly as complex as our SAT encoding. Consideration was also
given to the use of an incremental SAT solver, reusing the state-space when clauses
are added to the encoding. However, as our algorithm not only adds, but removes and
re-adds clauses, these types of algorithms could not be applied.

Future Procedure Optimizations: We plan to optimize the backward algorithm
in several ways. The algorithm in Fig. 2 backtracks by removing and adding clauses
from the CNF encoding and recalling the SAT solver. Instead, it could store the zChaff
solver results in another stack, popping those results when backtracking, reducing the
number of times zChaff is called on average. The number of human judgment situations
could be reduced in practice by optionally reusing judgments within a single evaluation,
across both forward and backward evaluation, and by deriving judgments from existing
judgments.

Use in Practice: We have applied backward analysis to ten individual case studies
using graduate and undergraduate students evaluating models created by themselves
and others. We have also conducted an action research case study applying agent-goal
modeling with forward and backward evaluation to analyze the requirements for the
Inflo “back of the envelope” calculation modeling tool. Results revealed that both the
individual participants and the Inflo group were able to understand and apply backward
analysis. In some cases participants could interpret the results of backward analysis in
term of the domain, making interesting discoveries about the cause and effect captured
in the model. More i* and evaluation training, or the participation of a facilitator, is
needed to increase utility from model analysis. In the Inflo study, backward evaluation
provoked interesting discussion concerning constructs in the model, such as Flexibility.

However, application of the procedure revealed several usability issues, some of
which have led to improvements in the procedure. Results have shown that the com-
pleteness of the model affects the utility of backward analysis - analysis may be less
useful on smaller models, or those without negative links. However, application of judg-
ment helped to reveal model incompleteness in some cases. One of the primary usability

issues was understanding the reasons behind conflicts in the model, especially for large
models. Future versions of the procedure will present the unsatisfiable core in a more
user-friendly way, potentially highlighting the conflicting intentions in the model.

References

1. Chung, L., Nixon, B.A.: Dealing with non-functional requirements: three exper-
imental studies of a process-oriented approach. In: ICSE ’95: Proceedings of the
17th international conference on Software engineering, New York, NY, USA, ACM
(1995) 25–37

2. Yu, E.S.K.: Towards Modeling and Reasoning Support for Early-Phase Require-
ments Engineering. In: RE ’97: Proceedings of the 3rd IEEE International Sym-
posium on Requirements Engineering, Washington, DC, USA, IEEE Computer
Society (1997) 226

3. Horkoff, J., Yu, E.: Evaluating Goal Achievement in Enterprise Modeling An
Interactive Procedure and Experiences. In: The Practice of Enterprise Modeling,
Springer (2009) 145–160

4. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Simple and Minimum-Cost Satisfia-
bility for Goal Models. In: 16th Conference On Advanced Information Systems
Engineering (CAiSE*04). (2004)

5. Horkoff, J., Yu, E.: A Framework for Iterative, Interactive Analysis of Agent-Goal
Models in Early Requirements Engineering. In: 4th International i* Workshop,
submitted (2010)

6. Horkoff, J., Yu, E.: A Qualitative, Interactive Evaluation Procedure for Goal-
and Agent-Oriented Models. In: CAiSE’09 Forum, Vol-453, CEUR-WS.org (2009)
19–24

7. Horkoff, J., Yu, E.: Interactive Analysis of Agent-Goal Models in Enterprise
Modeling. In: International Journal of Information System Modeling and Design
(IJISMD), IGI Global (in press)

8. OpenOME: (2010) https://se.cs.toronto.edu/trac/ome/wiki.
9. i* Wiki: (2010) http://istar.rwth-aachen.de/.

10. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An Efficient SAT solver. In: Proc.
Seventh International Conf. on Theory and Applications of Satisfiability Testing
(SAT04). (2004) 360–375

11. Zhang, J., Li, S., Shen, S.: Extracting Minimum Unsatisfiable Cores with a Greedy
Genetic Algorithm. In: Australian Conference on Artificial Intelligence. (2006)
847–856

12. Bruni, R., Sassano, A.: Restoring Satisfiability or Maintaining Unsatisfiability by
finding small Unsatisfiable Subformulae. Electronic Notes in Discrete Mathematics
9 (2001) 162 – 173

13. Horkoff, J., Yu, E.: Qualitative, Interactive, Backward Analysis of i* Models. In:
3rd International i* Workshop, CEUR-WS.org (2008) 4–46

14. Giorgini, Paolo and Mylopoulos, John and Nicchiarelli, Eleonora and Sebastiani,
Roberto: Reasoning with goal models. In: ER ’02: Proceedings of the 21st Interna-
tional Conference on Conceptual Modeling, London, UK, Springer-Verlag (2002)
167–181

15. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for
requirements and design engineering. SIGSOFT Softw. Eng. Notes 29(6) (2004)
53–62

