
Exploiting the Power of mip Solvers in maxsat

Jessica Davies and Fahiem Bacchus

Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada, M5S 3H5
{jdavies,fbacchus}@cs.toronto.edu

Abstract. maxsat is an optimization version of satisfiability. Since
many practical problems involve optimization, there are a wide range
of potential applications for effective maxsat solvers. In this paper we
present an extensive empirical evaluation of a number of maxsat solvers.
In addition to traditional maxsat solvers, we also evaluate the use of a
state-of-the-art Mixed Integer Program (mip) solver, cplex, for solving
maxsat. mip solvers are the most popular technology for solving opti-
mization problems and are also theoretically more powerful than sat
solvers. In fact, we show that cplex is quite effective on a range of
maxsat instances. Based on these observations we extend a previously
developed hybrid approach for solving maxsat, that utilizes both a sat
solver and a mip solver. Our extensions aim to take better advantage
of the power of the mip solver. The resulting improved hybrid solver is
shown to be quite effective.

1 Introduction

maxsat is an optimization version of satisfiability (sat). Both problems deal
with propositional formulas expressed in CNF. The goal of sat is to find a
setting of the propositional variables that satisfies all clauses. maxsat, on the
other hand, tries to find a setting of the variables that maximizes the number of
satisfied clauses.

maxsat is complete for the class FPNP (the set of function problems com-
putable in polynomial time using an NP oracle). FPNP includes many practical
optimization problems, and by completeness all of them can be compactly en-
coded into maxsat. Hence, maxsat solvers that are effective on a wide range
of inputs would be able to solve a variety of practical problems through the
simple device of encoding into maxsat. This is already the case with sat, where
many real-world problems in NP can be effectively solved by encoding into sat
and applying current sat solvers. Work on developing widely applicable maxsat
solvers is still ongoing, and this paper aims to make a contribution to this effort.

Many important industrial applications involve solving optimization prob-
lems, and many powerful solution techniques for such problems have been devel-
oped. Problems with Boolean or integer variables (like maxsat) are most often
solved using sophisticated Mixed Integer Program (mip) solvers. mip solvers solve
problems expressed as a set of linear inequalities and a linear objective function,

2 J. Davies and F. Bacchus

a representation that is more expressive than CNF. One common technique they
employ is to utilize linear programming algorithms to solve the linear relaxation
derived by allowing the integer variables to take on non-integral values. Cutting
plane computations are then used to drive the linear relaxation towards integral
solutions. The technique of cutting planes is theoretically more powerful than
resolution [5], and thus these solvers potentially have access to more powerful in-
ference methods than standard sat solvers. In contrast, current maxsat solvers
have almost exclusively used resolution-based sat technology.

In this paper we perform an extensive empirical evaluation of a number of
previous solvers. Our evaluation uses many more problem instances than any
previously reported study, in part because we are interested in widely appli-
cable maxsat solvers. We also evaluate the performance of a state-of-the-art
mip solver, IBM’s cplex system, on these instances. Our evaluation, reported
on in Sec. 3, provides a number of interesting insights. For example, we show
that cplex is a very effective solver for maxsat. We also show that in the cur-
rent state-of-the-art, the notion of a single best algorithmic approach for solving
maxsat is suspect, as is the notion of a single best solver. Our experiments do
however indicate that the solvers tested can be divided into two subsets with one
subset arguably dominating the other in terms of performance. However, within
the high performance subset no single solver dominates.

This variance in performance among the different solvers across the problem
instances indicates that each of these solvers embeds ideas that are effective on
some problems. Hence, one possible direction for future research is to investigate
ways of combining these ideas to uncover new algorithmic insights.1 In previous
work we had developed such a hybrid approach, maxhs [7], that utilized a mip
solver, cplex, along with a sat solver, minisat [8]. Each solver was given a
subset of the maxsat problem, and information was communicated between the
solvers so as to solve the combined problem. The strong performance of cplex
in our experiments lead us to investigate ways of taking better advantage of the
mip solver. In particular, in the second part of the paper, reported on in Sec. 4,
we develop a number of techniques for increasing the amount and effectiveness
of information supplied to cplex, thus allowing it to make stronger inferences.
Our new techniques yield a considerable performance improvement to the maxhs
solver (Sec. 6), and as shown in Sec. 3 the resulting improved maxhs+ solver
is clearly placed in the set of top performing maxsat solvers. We conclude the
paper with some ideas for further work.

2 Background

In this paper we address weighted partial maxsat problems (WPMS). This
is the most general type of maxsat problem and it includes as special cases
all of the other types of maxsat problems studied in the literature. (All of the
1 Our empirical evaluation shows that many instances remain unsolvable by any solver.
Hence, although portfolio approaches could yield useful performance improvements,
significant advances will also require new algorithmic ideas.

Exploiting the Power of mip Solvers in maxsat 3

solvers we experiment with can solve all of these special cases as well as general
WPMS problems). WPMS problems are CNF formulas in which some clauses
are classified as being hard while others are classified as being soft. Any solution
must satisfy all of the hard clauses, but can falsify the soft clauses. However,
each soft clause has a weight and a truth assignment will incur a penalty or cost
equal to the clause weight if it falsifies that clause.

More formally, a maxsat problem F is specified by a CNF formula in which
each clause has an associated weight.2 Let wt(c) denote the weight of clause c.
We require that wt(c) > 0 for every clause.3 If wt(c) = ∞ we say that c is a
hard clause, otherwise wt(c) < ∞ and c is a soft clause. We use hard(F) to
indicate the hard clauses of F and soft(F) to denote the soft clauses. Note that
F = hard(F) ∪ soft(F).

We define the function cost as follows: (a) if H is a set of clauses then cost(H)
is the sum of the weights of the clauses in H (cost(H) =

∑
c∈H wt(c)); and (b)

if π is a truth assignment to the variables of F then cost(π) is the sum of the
weights of the clauses falsified by π (

∑
{c | π 6|=c} wt(c)).

A solution to the maxsat problem F is a truth assignment π to the variables
of F with minimum cost that satisfies all of the clauses in hard(F). We let
mincost(F) denote the cost of a solution to F . If hard(F) is unsat then F has
no solution. Testing for this case is simply a sat problem, hence from here on
we will assume that hard(F) is satisfiable.

A core κ for a maxsat formula F is a subset of soft(F) such that κ∪hard(F)
is unsatisfiable. That is, all truth assignments falsify at least one clause of κ ∪
hard(F). Since every solution satisfies hard(F), every solution must falsify at
least one clause in κ.

A common technique in maxsat solving is to add a unique blocking vari-
able to each soft clause. Assigning true to a clause’s blocking variable (b-
variable) immediately satisfies the clause. This allows the solver to “turn off”
or relax various soft clauses as it tries to solve the maxsat problem.

Definition 1. If F is a maxsat problem, then its b-variable relaxation is a
sat problem Fb = {(ci ∨ bi) : ci ∈ soft(F)} ∪ hard(F) where all clause weights
are removed. The b-variable bi appears in the relaxed clause (ci ∨ bi) and no
where else in Fb.

Each truth assignment π to the variables of Fb has a cost bcost(π): if π 6|= Fb
then bcost(π) = ∞, otherwise bcost(π) =

∑
bi:π|=bi wt(ci). The minimum bcost

satisfying assignments for Fb correspond to solutions of F .

Proposition 1. mincost(F) = minπ bcost(π), where the minimum is taken over
all truth assignments π to the variables of Fb. Furthermore, if π achieves a
minimum value of bcost(π), then π restricted to the variables of F is a solution
for F .
2 Only integer clause weights are used in our experiments since most maxsat solvers
require this restriction.

3 Clauses with weight zero can be removed from F without impacting the solution.
Clauses with negative weight yield a different problem from maxsat.

4 J. Davies and F. Bacchus

The observation behind the proposition is that for π to achieve a minimum
value of bcost(π) it must set bi to false whenever it satisfies the soft clause ci.

MIP Encoding: It is simple to encode a maxsat instance F as a mip4. First,
the clauses of the relaxed formula Fb are encoded as linear inequalities, us-
ing the standard method where a clause c is converted to the linear inequality∑
j:pj∈c pj +

∑
i:¬pi∈c(1 − pi) ≥ 1. For example, the clause (x ∨ y ∨ ¬z ∨ b1)

becomes the linear inequality x + y + (1 − z) + b1 ≥ 1. Second, the objective
function is to minimize

∑
i wt(ci)×bi. The mip thus tries to set the propositional

variables so as to satisfy all clauses of Fb with minimum bcost .

Assumption Reasoning: The sat solver minisat provides an assumption
interface to test whether a given set of literals can be extended to a satisfying
assignment. minisat can take as input a set of assumptions A, specified as a set
of literals, along with a CNF formula F and then determine if F∧A is satisfiable.
It will return a satisfying truth assignment for F ∧ A if one exists (this truth
assignment necessarily extends A). Otherwise it will report unsat and return a
learnt clause c which is a disjunction of negated literals of A. This clause has
the property that ¬c specifies a subset of A such that F ∧ ¬c is unsatisfiable.
This means F |= c.

2.1 Existing maxsat Solvers

There have been two main approaches to building maxsat solvers. The first
approach is to perform Branch and Bound search where a lower bound is com-
puted by exploiting the logical structure of the CNF input, e.g., [9, 14]. The
second approach is to solve the maxsat problem as a sequence of sat problems.

In previous work these sat problems typically encode the decision problem:
“mincost(F) = k?”. This encoding is based on adding blocking variables to the
soft clauses, and then translating linear inequality constraints over the blocking
variables to CNF.5 Starting with k = 0, if the answer from the sat solver is “no”
(i.e., the formula is unsatisfiable), the next lowest possible value for k, k+, is
computed from information extracted from the core returned by the sat solver.
Then the decision problem mincost(F) = k+ is encoded as the next sat problem
to be solved. The previously computed cores are also exploited in this decision
problem by requiring that at least one clause from every previously extracted
core is falsified. Many variations on this concept have been recently proposed [2,
10, 1]. The main disadvantage of these approaches is that as the sat instances
that need to be solved become larger and harder as the k gets larger.
maxhs: The maxhs solver attempts to reduce the burden placed on the sat
solver by also employing a mip solver (cplex) [7]. maxhs’s algorithm also in-
volves solving a sequence of sat problems, however, these sat problems are
always subsets of the original maxsat formula F and are thus usually easy for

4 The origins of this encoding are not clear. However, it is well known.
5 Some solvers, notably wbo [15], reason with these linear constraints directly instead
of converting them to CNF.

Exploiting the Power of mip Solvers in maxsat 5

the sat solver to refute. maxhs uses the assumptions mechanism of minisat to
test subsets of F and derive cores. minisat is given the formula Fb and some
setting of the b-variables as the assumptions. If minisat returns unsat, a clause
c = (bi1 ∨ · · · ∨ bik) such that Fb |= c will also be returned. Note that c will
only contain positive b-variables since the b-variables only appear positively in
Fb and thus no clause involving negative b-variables is entailed by Fb. It is easy
to see that the clause c corresponds to a core of F .

Proposition 2. If Fb |= (bi1 ∨ · · · ∨ bik) for some set of b-variables {bij}|kj=1,
then κ = {ci1 , ..., cik} is a core of F . We call (bi1 ∨ · · · ∨ bik) a core constraint.

Starting with an initial set of core constraints in the mip model (Sec. 5.2),
cplex is used to find a solution to them that minimizes the cost of the true
b-variables. The cplex solution (a setting of the b-variables) is then given to
minisat as the next set of assumptions. If minisat finds a satisfying solution
πb then π (its restriction to the variables of F) is an optimal solution for F .
Otherwise minisat will return another core constraint that is added to the cplex
model and the cycle is repeated.

The problem that cplex solves at each iteration can be interpreted as a
hitting set problem: find a minimum cost collection of soft clauses sufficient to
block all of the refutations (cores) that have been derived from F so far. In fact,
the maxhs approach is closely related to the implicit hitting set (IHS) problem
as described in [12, 6]. In IHS problems one is trying to compute a minimum
cost hitting set without knowing ahead of time the collection of sets that need
to be hit. Instead, one is provided with an oracle that when given the current
candidate hitting set, either declares the candidate to be a correct hitting set or
returns a new un-hit set from the implicit collection. In the maxhs algorithm,
the cores of F form the collection of sets to be hit, cplex computes candidate
hitting sets, and the sat assumption test acts as the oracle deciding if the current
candidate hitting set is correct, returning a new un-hit core if it is not. However,
the sat assumption test may take exponential time, while the oracle in IHS is
assumed to run in polynomial time.

The disadvantage of the maxhs approach is that sometimes a large number
of iterations have to be performed during which cplex returns different hitting
sets. Each of these hitting sets must be ruled out by another core, which increases
the size of the mip model.

3 Empirical Evaluation of Current maxsat Solvers

We performed an empirical study of nine existing maxsat solvers: cplex (ver-
sion 12.2), wpm1 (with the latest 2012 improvements [1]), wpm2 (version 2 [2]),
bincd [10], wbo [15], minimaxsat [9], sat4j [4], akmaxsat [13], and maxhs-
Orig [7]. All of these solvers are able to solve maxsat in its most general form,
i.e., weighted partial maxsat, and thus have the widest range of applicability.
Our study included recently developed solvers utilizing a sequence of sat ap-
proach (bincd, wpm1, wpm2 and maxhs-Orig), some older solvers (sat4j and

6 J. Davies and F. Bacchus

MaxHS+
wpm1
cplex
bincd
minimaxsat
MaxHS-Orig
wpm2
wbo
sat4j
akmaxsat

C
PU

 S
ec

.

0

250

500

750

1000

1250

Number of non-random problems solved
1750 2000 2250 2500 2750 3000

Fig. 1. Performance of solvers on all non-random problems

wbo), and two prominent Branch and Bound based solvers (akmaxsat and
minimaxsat). Also included was the mip solver cplex using the encoding of
maxsat specified in Sec. 2, and our original hybrid solver, maxhs-Orig. We also
compared against our newly developed solver maxhs+. maxhs+ extends the
original maxhs-Orig using the best overall combination of our newly developed
techniques described in Sec. 4.

We obtained all problems from the previous seven maxsat evaluations [3].
We first discarded all instances in the Random category. After removing du-
plicate problems (as many as we could find) we ended up with 4502 problems
divided up into 58 families. We then removed 17 of these families that in our
judgement had little practical application. These included random problems,
graph problems on random graphs, e.g., the maxcut, maxclique, “frb” and “kb-
tree” families, and pure math problems, e.g., the Ramsey and spin glass problems.

The remaining 3826 problems either fell into the “industrial” category or were
problems that we felt had application to real problems. For example, maxsat
has applications in automated planning [17], so we kept the crafted planning
problems. Similarly, the “KnotPipatsrisawat” problems involve computing MPE
(most probable explanation) which is heavily used in areas like computer vision.
When in doubt we erred on the side of keeping the problems, as we are in general
interested in applying maxsat solvers as widely as possible. It should be noted
that our evaluation used many more non-random problems than any previously
reported evaluation (including the prior maxsat evaluations).

Figure 1 shows a cactus plot of the solvers running on the 3826 non-random
problem we kept. Our experiments were performed on 2.1 GHz AMD Opteron
machines with 98GB RAM shared between 24 cores (about 4GB RAM per core).

Exploiting the Power of mip Solvers in maxsat 7

cplex
minimaxsat
akmaxsat
MaxHS+
wpm1
MaxHS-Orig
wpm2
bincd
wbo
sat4j

C
PU

 S
ec

.

0

250

500

750

1000

1250

Number of non-Random Crafted problems solved
0 200 400 600 800 1000

bincd
MaxHS+
wpm1
wpm2
MaxHS-Orig
wbo
cplex
sat4j
minimaxsat
akmaxsat

C
PU

 S
ec

.

0

250

500

750

1000

1250

Number of industrial problems solved
1000 1250 1500 1750 2000 2250

Fig. 2. Performance of solvers on Crafted and Industrial problems

Each problem was run under a 1200 sec. timeout and with a memory limit of
2.5GB. The data shows that our new solver maxhs+ solved the most problems
and that it significantly outperforms our previous solver maxhs-Orig. The data
also shows that bincd, wpm1, and cplex have good performance in terms of
the number of problems solved. The performance of cplex is particularly note-
worthy. Although mip solvers have been widely available for some time (before
most maxsat solvers) very little has previously been reported about their per-
formance on maxsat. Our data shows that cplex is a surprisingly good maxsat
solver.

Figure 2 shows a break down between industrial and non-random crafted
problems. It should be noted, however, that despite the labeling the non-random
crafted problems also contain problems of practical (industrial) interest. The
data shows that bincd solves the most problems from the industrial class, with
our new solver maxhs+ and wpm1 having similar but not as good performance
on these problems. On these problems, which tend to involve large CNF formulas,
cplex does not perform as well. On the crafted problems the Branch and Bound
solver minimaxsat performed well, but interestingly cplex was best overall.

From this data we select maxhs+, cplex, minimaxsat, bincd, and wpm1
as being in our class of top performers. These solvers dominate the others either
on all problems, or on the industrial problems, or on the non-random crafted
problems. Hence, we restrict our further attention to these solvers.

One bias in counting the number of problems solved is that the problem
families are not equally sized. Hence, this metric will be skewed if a solver is
good at solving a particular family and that family contains many problems.
Table 1 shows for each of the top solvers and problem categories, the number
of problems solved (from the cactus plots), the family score, and the number of
families the solver was the best on. The family score for solver s is the sum over
all families f of the percentage of problems in f that s solves (this attempts to
normalize for the size of the family). There are 41 families in the category All,
22 in Industrial, and 19 in Crafted, so these are the maximum possible family
scores. A solver s is best on a family f if it solves as many problems in f as any
of the other top solvers. (There can be more than one solver best on a family.)
Table 1 shows, e.g., that although bincd solves more problems in the industrial

8 J. Davies and F. Bacchus

All Industrial Crafted
Solver Solved F-Score F-Best Solved F-Score F-Best Solved F-Score F-Best
maxhs+ 2956 26.75 20 2165 13.98 9 791 12.77 11
wpm1 2863 25.92 13 2152 14.68 9 711 11.24 4
cplex 2798 25.69 17 1779 11.70 7 1019 13.98 10
bincd 2785 25.38 12 2251 14.97 7 534 10.41 5
minimaxsat 2570 22.80 13 1637 9.45 2 933 13.35 11

Table 1. The number of instances solved, Family Scores, and number of Families where
each solver is best categorized by all, industrial, and crafted (non-random) problems.

category and has the highest family score, it is best on fewer families than wpm1
and maxhs+. It also shows that although wpm1 solves almost as many crafted
problems as maxhs+ it is best on fewer families.

Finally, Table 2 shows that each of these top solvers has quite a diverse
coverage. The table shows for each pair of top solvers s and s′ how many problems
s solves that s′ fails to solve. This number is shown in the cell at row s and column
s′. In fact the table contains two number in each cell. The first is the number
of industrial problems s solves but s′ doesn’t while the second number is the
number of crafted problems s solves but s′ doesn’t. This metric is influenced by
the timeout, as s might have solved a problem in 1200 seconds that s′ would
have solved in 1210 seconds if it hadn’t timed out. To avoid this issue, to count
a problem p as solved by s and not solved by s′ we require that s solves p in less
than 600 seconds while s′ fails to solve p.

The data shows, e.g., that on this metric cplex dominates minimaxsat,
solving more problems that minimaxsat fails to solve in both the industrial
and crafted categories. Similarly maxhs+ dominates wpm1 on this metric, and
bincd dominates all other solvers on this metric for industrial problems. The
main message from this data, however, is that all of these solvers dominates each
other solver on some problems (typically a non-trivial number of problems).

maxhs+ wpm1 cplex bincd minimaxsat
maxhs+ 191/208 420/19 61/264 547/37
wpm1 171/121 481/27 89/235 636/120
cplex 69/234 128/321 52/494 351/178
bincd 124/19 169/63 483/19 544/22
minimaxsat 18/169 115/342 192/97 11/410

Table 2. The entry (nI,nC) located at row i and column j shows the number of
industrial problems nI (crafted problems nC) solved by solver i within 600 sec. that j
fails to solve.

Exploiting the Power of mip Solvers in maxsat 9

4 Exploiting CPLEX More Effectively

The maxhs algorithm decomposes the maxsat problem into a series of sat
problems and hitting set problems. Neither the sat solver nor cplex alone has
enough information to solve the entire maxsat problem, since the sat solver
does not have any information about the clause weights, and the cplex model,
which is only over b-variables, knows nothing about the original variables and
clauses. The cplex model is also restricted to constraints of a specific form, i.e.
core constraints which are clauses over positive b-variables. In the remainder of
the paper we propose several techniques to overcome these limitations, in order
to take better advantage of the mip solver.

Many sound constraints exist over the soft clauses that do not take the form
of core constraints, as illustrated by the following example.

Example 1. Let F = {(x), (¬x), (x ∨ y), (¬y), (¬x ∨ z), (¬z ∨ y)} where each
clause has weight 1. Fb is therefore the set of clauses {(b1∨x), (b2∨¬x), (b3∨x∨y),
(b4 ∨ ¬y), (b5 ∨ ¬x ∨ z), (b6 ∨ ¬z ∨ y)}. Suppose that the three cores κ1 = {(x),
(¬x)}, κ2 = {(¬x), (x ∨ y), (¬y)}, and κ3 = {(x ∨ y), (¬y), (¬x ∨ z), (¬z ∨ y)}
have been found. These cores correspond to the core constraints K = {(b1 ∨ b2),
(b2 ∨ b3 ∨ b4), (b3 ∨ b4 ∨ b5 ∨ b6)}. We see that to satisfy these core constraints at
least two b-variables in Fb must be set to true, and at least two soft clauses will
be falsified by the maxsat solution. Given this lower bound, we can use a sat
solver to search over truth assignments that assign at most two b-variables true,
looking for a cost-2 relaxation that satisfies Fb. The search will benefit from the
three core constraints, since they help to prune the search space. However, not
all cost-2 relaxations that satisfy the core constraints need to be considered. For
example, as soon as b1 is assigned on any branch, ¬b2 could be inferred because
it is impossible to falsify both (x) and (¬x) at the same time. Therefore, b1
and b2 can not both belong to a minimum cost relaxation. Unfortunately, unit
propagation in Fb ∪ K can not make this inference. Similarly, whenever ¬b2 is
assigned we obtain ¬x and b1 by unit propagation in Fb ∪ K. However, we do
not detect that ¬b5 must hold as well since its soft clause is now satisfied. These
two examples demonstrate that in addition to the core constraints K, F also
implies the constraints (¬b1 ∨ ¬b2) and (b2 ∨ ¬b5). If these constraints could
be discovered automatically, then the search over relaxations could be further
constrained and potentially made more efficient.

In [7] a realizability condition was introduced. Realizability requires that
there exists a truth assignment that falsifies all of the clauses in the hitting
set and satisfies the hard clauses. This condition can be used to enforce some
non-core constraints over the b-variables. However, it is insufficient to capture all
constraints over the b-variables. For example, although the realizability condition
would enforce the first non-core constraint in Example 1, (¬b1∨¬b2), it would not
capture the second, (b2 ∨¬b5). Therefore, we must look beyond the realizability
condition for techniques to discover non-core constraints that the b-variables
must satisfy.

10 J. Davies and F. Bacchus

4.1 b-variable Equivalences

Relaxing a soft clause in Fb is not equivalent to falsifying it in F . Example 1
indicates that although the b-variables of Fb are intended to represent the soft
clauses of F this correspondence is not strictly enforced by Fb. That is, Fb admits
models that unnecessarily set b-variables to true even when the corresponding
soft clause is satisfied. This is the reason that the inference ¬b2 → ¬b5 was
missed in Example 1.

Proposition 1 shows, however, that minimum cost models of Fb do obey a
stricter correspondence of equivalence between the b-variable settings and the
soft clauses satisfied. Since maxsat solving involves searching for minimum cost
models, a natural and simple modification to Fb is to force the b-variables to be
equivalent to the negation of their corresponding soft clauses.

Definition 2. Let F be a maxsat formula. Then

Fbeq = Fb ∪
⋃

ci∈soft(F)

{(¬bi ∨ ¬`) : ` ∈ ci}

is the relaxation of F with b-variable equivalences.

We define a correspondence between the truth assignments for F and the
truth assignments for Fbeq.

Definition 3. If π is a truth assignment to the variables of F we let πb denote
its corresponding truth assignment to the variables of Fbeq, where

πb = π ∪ {¬bi : π |= ci, ci ∈ soft(F)} ∪ {bi : π 6|= ci, ci ∈ soft(F)}.

If πb is a truth assignment to the variables of Fbeq we let π denote its correspond-
ing truth assignment to the variables of F where π is simply πb restricted to the
variables of F .

In this definition πb is constructed so that it assigns each b-variable a truth
value equivalent to the negation of the truth value π assigns to the corresponding
soft clause. Thus πb models the b-variable equivalences. Under this correspon-
dence we obtain a 1-1 correspondence between the models of Fbeq and the models
of hard(F).

Proposition 3. π |= hard(F) if and only if πb |= Fbeq. Furthermore, if πb |= Fbeq
then cost(π) = bcost(πb), and therefore π is a solution for the maxsat formula
F if and only if πb achieves minimum bcost over all satisfying truth assignments
for Fbeq.

This proposition shows that we can solve the maxsat problem F by searching
for a bcost minimal satisfying assignment to Fbeq.

Exploiting the Power of mip Solvers in maxsat 11

Algorithm 1: A maxsat algorithm that exploits non-core constraints
1 maxsat-solver

(
F
)

2 K = ∅
3 obj = wt(ci) ∗ bi + . . .+ wt(ck) ∗ bk
4 while true do
5 A = Optimize(K,obj)
6 (sat?,κ) = AssumptionSatSolver(Fb

eq,A)
// If sat, κ contains the satisfying truth assignment.
// If unsat, κ contains a clause over b-variables.

7 if sat? then
8 break // Exit While Loop, κ is a maxsat solution.

// Add new constraint to the optimization problem,
9 K = K ∪ {κ}

// and to the sat formula for better performance
10 Fb

eq = Fb
eq ∪ {κ}

11 return
(
κ, cost(κ)

)

4.2 Non-Core Constraints in maxhs

The extension to utilize non-core constraints in maxhs is conceptually simple.
We simply substitute the encoding Fbeq for the weaker encoding Fb. Now since
in Fbeq the b-variables are no longer pure, the sat solver can return both core
and non-core constraints. Each constraint is passed to cplex which operates
as before. (A copy of the learnt constraint is also kept by the sat solver). The
resulting modified version of maxhs is shown in Algorithm 1.

Initially, the set of b-variable constraints (clauses), K, is empty (line 2). The
objective function is defined on line 3 as the sum of the clause weights for b-
variables that are assigned true. On line 5, an assignment to the b-variables, A,
is calculated that satisfies the current constraints K and minimizes the value of
the objective function obj . This setting of the b-variables is passed as the set of
assumptions to the sat solver on line 6, along with the sat instance Fbeq. If the
sat solver returns unsat, κ will be a clause over negated literals from A. This
constraint is added to K on line 9 and the process iterates until the sat solver
reports a solution.

Theorem 1. Algorithm 1 returns a solution to the maxsat problem F .

Proof. First we observe if the κ returned by the sat solver at line 6 is a clause
then Fbeq |= κ (as explained in Section 2). On the other hand, if κ is a satisfying
assignment then bcost(κ) is equal to the sum of the costs of the true b-variables
in A, the solution returned by the optimizer at line 5. This follows from the
fact that κ extends A which has already set all of the b-variables. Let κ be the
satisfying truth assignment causing the algorithm to terminate. All satisfying
assignments of Fbeq satisfy the constraints in K as each of these is entailed by
Fbeq. Furthermore, bcost(κ) is equal to the cost of an optimal solution to these

12 J. Davies and F. Bacchus

constraints, thus κ achieves minimal bcost over all satisfying truth assignments
for Fbeq, and by Proposition 3 κ restricted to the variables of F is a maxsat
solution for F .

Second, we observe that each iteration except the final one adds a constraint
to K that eliminates at least one more setting of the b-variables. Since there
are only a finite number of different settings, the algorithm must eventually
terminate.

The key difference with the original maxhs algorithm is that the optimizer
no longer deals with a pure hitting set problems as the constraints can now con-
tain negative b-variables. This means that the paradigm of maxhs changes from
an implicit hitting set problem to something like a logic based Benders decom-
position approach [11]. In particular, the optimization problem is being solved
only over the b-variables while the sat solver is being used to add additional
constraints to the optimization model until its solution also satisfies the feasi-
bility conditions. Although cplex is no longer solving a hitting set problem, we
have found that it remains very effective in the presence of non-core constraints.

5 Other Improvements

In addition to the ability to learn non-core constraints, we propose two additional
techniques that help to refine the constraints and exploit the strength of cplex.

5.1 Constraint Minimization

The first improvement is to more aggressively minimize the constraints before
adding them to the cplex model. In general, shorter clausal constraints are
stronger, so the quality of the constraints can be improved by using techniques
to minimize their length. Therefore, we ensure that the constraints we add to
cplex are minimal, in the sense that removing any literal from the clausal
constraint leaves a clause that is no longer entailed by Fbeq. We use a simple
destructive MUS algorithm, as described in [16], to achieve this. Empirically, we
found that the minimization computation typically takes only a small percentage
of the solver’s runtime, so more sophisticated MUS algorithms are unlikely to
yield a significant benefit in the current solver.

5.2 Disjoint Phase

Similar to the original maxhs solver, we also use a disjoint core phase before
Algorithm 1 begins to supply cplex with an initial set of core constraints.
During this phase we run the sat solver on Fb (rather than Fbeq) so that only
core constraints are derived. Initially, the sat solver is run under the assumption
that all b-variables are false. This generates a core constraint (unless the maxsat
problem has a solution of zero cost). After minimizing that constraint we run
the sat solver again under the assumption that all of the b-variables in the core

Exploiting the Power of mip Solvers in maxsat 13

constraints found so far are true and all other b-variables are false. This has the
effect of removing all soft clauses that have participated in cores from the theory.
Hence, the next core must be over a disjoint set of soft clauses. This process is
repeated setting more and more of the b-variables to true, until the sat solver
can no longer find a contradiction. The collection of cores found are all disjoint
and the corresponding linear constraints are initially added to cplex.

5.3 Seeding cplex with Constraints

Each call to cplex’s solve routine incurs some overhead so it is desirable to
reduce the number of calls to cplex. We propose to accomplish this by “seeding”
the cplex model with a number of initially computed b-variable constraints. In
this way each candidate solution (setting of the b-variables) returned by cplex
is more informed about the constraints of the problem and thus more likely to be
a true solution. We perform seeding after the disjoint core phase, but before the
iterations of Algorithm 1 begin. We now describe several techniques to cheaply
identify such additional b-variable constraints.
Eq-Seeding: In Fbeq, literals that appear in soft unit clauses of F are actually
logically equivalent to their b-variables. To see this, recall that if ci = (x) ∈
soft(F) is a soft unit clause, then Fbeq will contain clauses (x∨bi) and (¬bi∨¬x).
These two clauses together imply that bi ≡ ¬x. For a clause c of Fb, if each
variable in c has an equivalent b-variable (or is itself a b-variable), then we
can derive a new constraint from c by replacing every original variable by its
equivalent b-variable. This constraint is a clause over the b-variables that can be
added to cplex.

Example 2. In Example 1, b1 ≡ ¬x due to the soft unit clause (x) and its
relaxation by b1. Similarly, b4 ≡ y. Therefore, from the relaxed clause (b3∨x∨y) ∈
Fb we can obtain the b-variable constraint (b3 ∨¬b1 ∨ b4) by simply substituting
the equivalent b-variable literals for the original literals.

Imp-Seeding: In Fbeq, each of the b-literals may imply other b-literals. We per-
form a trial unit propagation on each b-literal bi in order to collect a set of
implied b-literals imp(bi) = {b1i , ..., bki }. This represents a conjunction of k bi-
nary clauses bi → bji (1 ≤ j ≤ k) over the b-variables. Although these k clauses
could be individually added to cplex we can in fact encode their conjunction
in a single linear constraint that can be given to cplex:

−k × bi + b1i + · · ·+ bki ≥ 0

Note that these are b-literals, so as is standard a negative literal b is encoded as
(1 − var(b)) and a positive literal is encoded as var(b) (Sec. 2). To understand
this constraint note that if bi is true (equal to 1) then all of the bji variables must
be 1 to make the sum non-negative.
Imp+Rev-Seeding: During the trial unit propagation of each b-literal bi, we
can also keep track of every original literal that is found to be implied by bi in

14 J. Davies and F. Bacchus

order to obtain sets of reverse implications: rev(x) ⊆ {bi : Fbeq ∧ bi |= x}. Then,
for each clause ci ∈ Fb, we check if each of its original literals x ∈ ci has a
non-empty rev(¬x). If so, a b-literal b¬x ∈ rev(¬x) is chosen for each x and its
negation ¬b¬x is substituted for x in ci. The result is a new clause containing
only b-variables that can be added to cplex. It is easy to see that this clause is
sound by considering the following example.

Example 3. Suppose that (x ∨ y ∨ b1) ∈ Fb where x, y are original literals and
b1 is a blocking variable. Suppose that b¬x ∈ rev(¬x) and b¬y ∈ rev(¬y). This
means that clauses (¬b¬x ∨ ¬x) and (¬b¬y ∨ ¬y) are implied by Fbeq. Therefore
(¬b¬x∨¬b¬y ∨ b1), which can be obtained in two resolution steps, is also implied
by Fbeq and can be added to cplex.

Since the b-literal implications imp(bi) are also available, we add the Imp-Seeding
constraints as well if we are computing the Rev-Seeding constraints. Note that if
b ≡ x, as in Eq-Seeding, we obtain at least as many seeded constraints as would
be obtained by Eq-Seeding. If rev(¬x) contains more than one b-literal, we could
choose any one of them to form the new clause. We simply use an equivalent
b-literal if one exists, and otherwise we choose the first b-literal that was found
to imply ¬x. In future work we could investigate different ways of choosing the
member of rev(¬x), or methods for using them all.

6 Empirical Evaluation of Proposed maxhs
Improvements

In this section we examine the empirical behaviour of the improvements to the
maxhs algorithm proposed above. Our experiments with the original maxhs
algorithm showed that it spent most of its time in the mip solver and relatively
little in the sat solver. In the improved versions of maxhs, the mip solver still
dominates the CPU time. However, seeding and our other techniques provide
better information to cplex, which means that fewer calls are required to con-
verge on a solution.

We ran a number of different versions of maxhs on the problems described
in Sec. 3. Figure 3 shows a cactus plot of their performance running on all
non-random problems. The data shows a number of things. First, adding core
minimization (+min on the plot) yields a significant performance gain compared
to the original maxhs solver. When we add to this version the ability to generate
non-core constraints via the Fbeq relaxation (+noncore), there is another jump
in the number of problems solved.

If we seed cplex with extra constraints (Eq, Imp and Imp+Rev Seeding) in
addition to the previous two techniques, performance improves again. However,
there is relatively little to choose in overall performance between the different
types of cplex seeding we developed. When we looked at the time taken to solve
various problems we did find that on some instances the more extensive seeding
(Imp+Rev) yields a factor of 10 improvement in solving time. However, on some

Exploiting the Power of mip Solvers in maxsat 15

MaxHS-Orig
+min
+noncore
Imp-Seeding
Imp+Rev-Seeding
MaxHS+ (Eq-Seeding)

CP
U

Se
c.

0

250

500

750

1000

1250

All non-random problems solved
2400 2500 2600 2700 2800 2900 3000

Fig. 3. Performance of maxhs variants on all non-random problems

problems such seeding adds a very large number of additional constraints to
cplex, without much improvement in the solution candidates produced. These
extra constraints sometimes produce an increase in cplex’s runtime sufficient
to cause a time-out. Future work will require examining particular families or
problem instances to obtain understanding of the trade-offs involved with our
different levels of seeding.
maxhs+ The seeding method with a slight advantage in terms of overall num-
ber of problems solved is Eq-Seeding. We referred to the configuration that
uses Eq-Seeding (as well as non-core constraints, minimization, etc.) as maxhs+
throughout the paper.

7 Conclusion

We made two main contributions in this paper. First we have reported on the
results of an extensive evaluation of current maxsat solvers. These results pro-
vide a number of insights into current solvers. Second, inspired by one of these
insights, that the mip solver cplex is more effective than expected, we developed
a number of new techniques aimed at enhancing our previously developed hybrid
maxsat solver maxhs. These techniques were mainly aimed at improving the
information given to cplex so as to better exploit it.

In future work we aim to find out if some of the techniques used in other
solvers, e.g., the binary search used in bincd and the weight stratification
method used in wpm1, which help them solve a number of distinct problem
instances, can be exploited in our framework. We also plan to investigate the
trade-offs we observed with the different types of seeding in more detail.

16 J. Davies and F. Bacchus

References

1. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving sat-based weighted
maxsat solvers. In: Principles and Practice of Constraint Programming (CP). pp.
86–101 (2012)

2. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat.
In: Proceedings of the AAAI National Conference (AAAI). pp. 3–8 (2010)

3. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The maxsat evaluations (2007–2011),
http://www.maxsat.udl.cat

4. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3), 59–6 (2010)
5. Buss, S.R.: Lectures on proof theory. Tech. rep., http://www.math.ucsd.edu/

~sbuss/ResearchWeb/Barbados95Notes/reporte.pdf (1996)
6. Chandrasekaran, K., Karp, R., Moreno-Centeno, E., Vempala, S.: Algorithms for

implicit hitting set problems. In: Proceedings of the Symposium on Discrete Algo-
rithms (SODA). pp. 614–629 (2011)

7. Davies, J., Bacchus, F.: Solving maxsat by solving a sequence of simpler sat in-
stances. In: Principles and Practice of Constraint Programming (CP). pp. 225–239
(2011)

8. Eén, N., Sörensson, N.: An extensible sat-solver. In: Proceedings of Theory and
Applications of Satisfiability Testing (SAT). pp. 502–518 (2003)

9. Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: An efficient weighted max-sat
solver. Journal of Artificial Intelligence Research (JAIR) 31, 1–32 (2008)

10. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: Proceedings of the AAAI National Conference
(AAAI). pp. 36–41 (2011)

11. Hooker, J.N.: Planning and scheduling by logic-based benders decomposition. Op-
erations Research 55(3), 588–602 (2007)

12. Karp, R.M.: Implicit hitting set problems and multi-genome alignment. In: Com-
binatorial Pattern Matching. Lecture Notes in Computer Science, vol. 6129, p. 151
(2010)

13. Kügel, A.: Improved exact solver for the weighted Max-SAT problem. In: Workshop
on the Pragmatics of SAT (2010)

14. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds
in maxsat. Constraints 15(4), 456–484 (2010)

15. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Proceedings of Theory and Applications of Satisfiability Testing
(SAT). pp. 495–508 (2009)

16. Silva, J.P.M., Lynce, I.: On improving mus extraction algorithms. In: Proceedings
of Theory and Applications of Satisfiability Testing (SAT). pp. 159–173 (2011)

17. Zhang, L., Bacchus, F.: Maxsat heuristics for cost optimal planning. In: Proceed-
ings of the AAAI National Conference (AAAI) (2012)

