
Eliminating the Weakest Link: Making Manipulation Intractable?

Jessica Davies
University of Toronto

Toronto, Canada
jdavies@cs.toronto.edu

Nina Narodytska
NICTA and UNSW
Sydney, Australia

ninan@cse.unsw.edu.au

Toby Walsh
NICTA and UNSW
Sydney, Australia

toby.walsh@nicta.com.au

Abstract

Successive elimination of candidates is often a route to mak-
ing manipulation intractable to compute. We prove that elim-
inating candidates does not necessarily increase the compu-
tational complexity of manipulation. However, for many vot-
ing rules used in practice, the computational complexity in-
creases. For example, it is already known that it is NP-hard
to compute how a single voter can manipulate the result of
single transferable voting(the elimination version of plurality
voting). We show here that it is NP-hard to compute how a
single voter can manipulate the result of the elimination ver-
sion of veto voting, of the closely related Coombs’ rule, and
of the elimination versions of a general class of scoring rules.

Introduction
Voting is a general mechanism for combining the prefer-
ences together of multiple agents. Voting is, however, not
without its problems. One such problem is that agents may
vote strategically, mis-reporting their true preferences in or-
der to improve the outcome for them. For instance, in each
round of a popular TV game show, players vote on which
other player to eliminate. The host, Anne Robinson then tells
the unlucky player, “You are the weakest link, goodbye!”.
Players have an interesting strategic decision to make. On
the one hand, they should vote to eliminate weak players (as
weak players will tend to reduce the size of the jackpot). On
the other hand, they should vote to eliminate strong players
(as the overall winner takes the final jackpot and everyone
else walks away empty-handed). Similarly, when the Inter-
national Olympic Committee (IOC) meets to select a site for
the next Olympics, there is an election in which the weak-
est city is successively eliminated. Strategic voting often ap-
pears to take place. For example, in the vote for the site of the
2012 Olympics, New York had 19 votes in the first round but
only 16 in the second as several IOC members switched alle-
giances. In this paper, we study the computational resistance
of elimination style voting rules to such strategic voting.

Results like those of Gibbard-Satterthwaite prove that
most voting rules are manipulable. That is, it may pay for
agents to mis-report their preferences. One potentially ap-
pealing escape from manipulation is computational com-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plexity (Bartholdi, Tovey, and Trick 1989). Whilst manip-
ulations might exist, what if they are too hard to find?
Unfortunately, only a few voting rules used in practice
are known to be NP-hard to manipulate with unweighted
votes and a single manipulator: single transferable voting
(STV) (Bartholdi and Orlin 1991), a variant of the Copeland
rule (Bartholdi, Tovey, and Trick 1989), ranked pairs (Xia
et al. 2009), and Nanson’s and Baldwin’s rules (Narodyt-
ska, Walsh, and Xia 2011). A feature common to a majority
of these rules is that they successively eliminate candidates.
We therefore explore in more detail whether such elimina-
tion style voting makes manipulation intractable to compute.

Background
We consider a general class of voting rules. A scoring
rule over m candidates is defined by a vector (s1, . . . , sm)
where for each vote ranking a candidate in position i, the
candidate receives a score of si. The candidate with the
highest total score wins. Plurality has the scoring vector
(1, 0, . . . , 0), Borda has (m − 1,m − 2, . . . , 0), whilst veto
has (1, . . . , 1, 0). For a scoring rule X with scoring vector
(s1, . . . , sm), the adjoint of X , written X∗ has the scoring
vector (s1 − sm, . . . , s1 − s2, s1 − s1). For example, the
adjoint of plurality is veto. Note that (X∗)∗ = X .

Elimination versions of scoring rules can vary along a
number of dimensions:

Base rule: STV is an elimination version of plurality vot-
ing, whilst Nanson’s and Baldwin’s rules are elimination
versions of Borda voting. We consider here elimination
versions of other scoring rules like veto voting.

Elimination criteria: Different criteria can be used to
eliminate candidates. For instance, in STV and Baldwin’s
rule, we succcessively eliminate the last placed candidate.
On the other hand, in Nanson’s rule, we eliminate all can-
didates with less than the average Borda score.

Stopping criteria: Do we stop when all but one candidate
has been eliminated, or as soon as one candidate has a
majority of first placed votes? For example, Coombs’ rule
is an elimination version of veto voting which stops when
one candidates has a majority.

Voting: Do agents vote just once, or in each round? For ex-
ample, in STV voting, agents vote only once. On the other

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1333

hand, when selecting Olympic venues, IOC members can
cast a new vote in each round. We shall show that this
increases the opportunity for manipulation.
Given a voting ruleX , eliminate(X) is the rule that suc-

cessively eliminates the candidate placed in last place by X .
For a scoring ruleX , divide(X) is the rule that successively
eliminates those candidates with the mean or smaller score.
For non-scoring rules X , divide(X) is the rule that succes-
sively eliminates candidates ranked byX in the bottom half.
Finally, sequential(X) is the voting rule which runs a se-
quence of elections usingX to eliminate the last placed can-
didate from each successive election. In each round, voters
can change their vote according to which candidates remain.
Example 1 STV is eliminate(plurality). Note that
eliminate(STV) is STV itself. Baldwin’s rule is
eliminate(Borda). Nanson’s rule is divide(Borda).
Exhaustive ballot is sequential(plurality). The IOC uses
sequential(plurality) to select Olympic sites. The FIFA
executive committee uses the same rule to select the location
of the World Cup. The TV game shows, “Survivor” and
“The Weakest Link” both use sequential(veto) to elimi-
nate players up to the final round. Finally, Coombs’ rule
is related to eliminate(veto). Coombs’ rule successively
eliminates the candidate in last place in the most votes until
there is a candidate with a majority of first place votes.

Elimination style voting rules satisfy several desirable ax-
iomatic properties. For example, consider Condorcet consis-
tency, the property that a voting rule elects the candidate that
beats all others in pairwise comparisons when such a candi-
date exists. Whilst the Borda rule is not Condorcet consis-
tent, elimination versions of Borda voting like Nanson’s and
Baldwin’s rule are Condorcet consistent. On the other hand,
elimination rounds can also destroy a deriable axiomatic
property. In particular, consider monotonicity, the property
that raising the position of the winner in some ballots does
not change the winner. Whilst Borda voting is monotonic,
elimination style voting rules like STV, Nanson’s and Bald-
win’s are not monotonic. The loss of monotonicity is one of
the significant trade-offs involved in obtaining a voting rule
that is, as we shall see, somewhat more resistant to manipu-
lation.

Manipulation
Successively eliminating candidates can increase the com-
plexity of computing a manipulation. For example, com-
puting a manipulation of plurality is polynomial, but of
eliminate(plurality) is NP-hard (Bartholdi and Orlin
1991). Similarly, computing a manipulation of Borda by
one manipulator is polynomial, but of eliminate(Borda)
and divide(Borda) is NP-hard (Narodytska, Walsh, and
Xia 2011). Elkind and Lipmaa (2005) conjectured that many
elimination style voting rules will be intractable to manipu-
late. They argue that “[such elimination style] protocols pro-
vide the most faithful manipulation-resistant approximation
to the underlying protocols, which makes them compelling
alternatives to the original protocols”.

We might wonder if elimination always increases tie com-
putational complexity. The following result demonstrates

that it does not always make computing a manipulation in-
tractable.

Theorem 1 There exists a non-dictatorial voting ruleX for
which computing a manipulation of X , eliminate(X) and
divide(X) are polynomial.

Proof: Consider the rule which orders candidates alphabet-
ically unless there is unanimity when it returns the unani-
mous order. �

Indeed there are even (admittedly artificial) voting rules
where successively eliminating candidates reduces the com-
putational complexity of computing a manipulation.

Theorem 2 There exists a voting rule X for which comput-
ing a manipulation of X is NP-hard but of eliminate(X)
and of divide(X) are polynomial.

Proof: Let candidates be integers in [0,m]. X is a rule
whose result decides a 1-in-3-SAT problem on positive
clauses over m variables. A vote which starts with 0 is in-
terpreted as a positive clause by taking the candidates in 2nd
to 4th place as its literals. Any other vote is interpreted as
a truth assignment: those candidates appearing before 0 are
interpreted as true literals, and those after as false. With 2
candidates, X returns the majority winner. With 3 or more
candidates, X returns 0 as winner if one of the votes repre-
sents a truth assignment which satisfies exactly 1 in 3 literals
in each clause represented by a vote, otherwise 1 is winner.
Other candidates are returned in numerical order. Comput-
ing a manipulation of X is NP-hard. However, computing
a manipulation of eliminate(X) or divide(X) is polyno-
mial. 0 and 1 always enter the final round, and the overall
winner is simply the majority winner between 0 and 1. �

Eliminate(veto)
Adding elimination rounds to plurality makes finding a ma-
nipulation intractable. Veto is essentially the opposite rule
to plurality. This is reflected in the alternate name for veto
of “anti-plurality”. Computing a manipulation of veto is
polynomial. We just veto the current winner until our cho-
sen candidate wins. An interesting case to consider then
is eliminate(veto). With weighted votes, Coleman and
Teague (2007) have proved that computing a manipulation
of eliminate(veto) is polynomial when the number of can-
didates is bounded1. They left “the difficult[y] of WCM
[weighted coalition manipulation] on Coombs for unlimited
candidates as an open question”. We resolve this open ques-
tion. Computing a manipulation of eliminate(veto) and of
the closely related Coombs’ rule is NP-hard even with un-
weighted votes and an unbounded number of candidates.

Theorem 3 Deciding if a single manipulator can make a
candidate win for eliminate(veto) is NP-complete.

Proof: (Sketch, the full proof can be found online in a tech-
nical report). The proof is inspired by ideas from (Bartholdi
and Orlin 1991). We reduce from the 3-COVER problem.
We are given a set S = {d1, . . . , dn} with |S| = n and

1Note that Coleman and Teague call the voting rule studied in
their paper Coombs’ rule but it is, in fact, eliminate(veto).

1334

votes Type of votes
Block P1

‘preferred candidate’ and ‘items’
1. X − 1 p ≺ gp ≺ .. ≺ g′

p

2. X − f4 d0 ≺ gd0
≺ .. p≺ g′

d0

3. i ∈ [1, n] X − 3 di ≺ gdi
≺ .. p≺ g′

di

‘First losers’ and ‘second line’
4. i ∈ [1,m]

{
X − 6 bi ≺ gbi

≺ .. p≺ g′
bi

5. j ∈ Si 2 bi ≺ dj ≺gbidj
≺ .. p≺ g′

bidj

6.
i ∈ [1,m]

{
X − 2 b̄i ≺ gb̄i

≺ .. p≺ g′
b̄i

7. 2 b̄i ≺ d0 ≺gb̄id0
≺ .. p≺ g′

b̄id0

8.
i ∈ [1,m) X − f123 ai ≺ gai

≺ .. p≺ g′
ai

X − f12 am ≺ gam ≺ .. p≺ g′
am

9.
i ∈ [1,m]

{
f1 ai ≺ bi ≺gaibi

≺ .. p≺ g′
aibi

10. f2 ai ≺ āi ≺ pi ≺ gaiāipi
.. p≺ g′

aiāipi

11. i ∈ [1,m) f3 ai ≺ āi ≺ ai+1 ≺ gaiāiai+1
.. p≺ g′

aiāiai+1

12. f3 a1 ≺ ga1 ≺ .. p≺ g′
a1

13.
i ∈ [1,m) X − f123 āi ≺ gāi

≺ .. p≺ g′
āi

X − f12 ām ≺ gām ≺ .. p≺ g′
ām

14.
i ∈ [1,m]

{
f1 āi ≺ b̄i ≺ gāib̄i

.. p≺ g′
āib̄i

15. f2 āi ≺ ai ≺ pi ≺ gāiaipi
.. p≺ g′

āiaipi

16. i ∈ [1,m) f3 āi ≺ ai ≺ āi+1 ≺ gāiaiāi+1
.. p≺ g′

āiaiāi+1

17. f3 ā1 ≺ gā1 ≺ .. p≺ g′
ā1

‘Pumps’
18.



2f2 pi ≺ aj ≺ gpiaj
.. p≺ g′

piaj

19.
i ∈ [1,m)

2f2 pi ≺ āj ≺ gpiāj
.. p≺ g′

piāj

20.
j ∈ (i,m]

2f2 pi ≺ bj ≺ gpibj
.. p≺ g′

pibj

21. 2f2 pi ≺ b̄j ≺ gpib̄j
.. p≺ g′

pib̄j

22. 2f2 pi ≺ pj ≺ gpipj
.. p≺ g′

pipj

23.


2f2 pi ≺ p ≺ gpip
.. ≺ g′

pip

24. i ∈ [1,m] 2f2 pi ≺ d0 ≺ gpid0
.. p≺ g′

pid0

25. k ∈ [1, n] 2f2 pi ≺ dk ≺ gpidk
.. p≺ g′

pidk

26. 2f2 pi ≺ s1 ≺gpis1
≺ .. p≺ g′

pis1

27. f1 pm ≺ s1 ≺ gpms1 .. p≺ g′
pms1

28. 2f2 pi ≺ s2 ≺ gpis2
.. p≺ g′

pis2

‘Switches’
29. 4f2 + f1 s1 ≺ p ≺ gs1p .. ≺ g′

s1p

30. 4f2 + f1 s1 ≺ d0 ≺ gs1d0
.. p≺ g′

s1d0

31. k ∈ [1, n] 4f2 + f1 s1 ≺ dk ≺ gs1dk
.. p≺ g′

s1dk

32. 4f2 + f1 s1 ≺ s2 ≺ gs1dk
.. p≺ g′

s1dk

33. 1 d0 ≺ s2 ≺ gd0s2
.. p≺ g′

d0s2

34. k ∈ [1, n] 1 dk ≺ s2 ≺ gdks2
.. p≺ g′

dks2

35. X − n− 3 s2 ≺ gd0 ≺ gd1 .. ≺ p
Block P2

36. i ∈ [1,m] X − σ1
P1

(pi) pi ≺ gpi
≺ .. p≺ g′

pi

37. X − σ1
P1

(s1) s1 ≺ gs1 ≺ .. p≺ g′
s1

Table 1: The constructed election.

subsets S1, S2, . . . , Sm ⊂ S with |Si| = 3 for i ∈ [1,m].
We ask if there exists an index set I with |I| = n/3 and⋃
i∈I Si = S. This set of Si is called a cover for S. We cre-

ate an eliminate(veto) election such that a manipulator can
make a given candidate win iff there exists a cover for S.

The set of all candidates is C where |C| = c, and consists
of 7 groups: ‘preferred candidate’ p; ‘items’ {d1, . . . , dn}
and an extra ‘item’ d0; ‘first losers’ {a1, ā1 . . . , am, ām};
‘second line’ {b1, b̄1, . . . , bm, b̄m} ; ‘pumps’ {p1, . . . , pm};
‘switches’ s1 and s2; ‘garbage collectors’ gd0 , . . . , g

′
s1 (see

Table 1 for the complete list of garbage collectors). The
elimination has 4 phases: (1) cover selection, (2),(3) cover
verification (4) garbage collection.

Let σk(c′), c′ ∈ C be the number of last place votes
for candidate c′ at round k. We call this the veto-score of

c′. First, we explain the candidates. The candidates ‘first
losers’, ‘second line’ and ‘pumps’ form a gadget to select a
cover. There are 5m candidates of these types in total, log-
ically partitioned into elimination groups 〈ai, āi, bi, b̄i, pi〉,
i ∈ [1,m]. The construction makes sure that 4 out of 5
elements of ith group are eliminated consecutively during
4 rounds starting at round 4i + 1, i ∈ [0,m). Moreover,
{ai, āi, pi}, i ∈ [1,m] must be eliminated letting one of the
{bi, b̄i} reach round 4m. Eliminated candidates bi determine
selection sets Si. The ‘pump’ pi increases the veto-scores
of all candidates except ‘garbage collectors’ and i running
candidates from groups j, j ≤ i. This allows us to remem-
ber i choices of the manipulator encoded in these i running
candidates from 2i candidates in {bj , b̄j}, j = 1, .., i. The
‘items’ candidates encode the set of items. The‘switches’
check the cover. The first ‘switch’ s1 separates elimination
of p, d0, . . . , dn, s2 from the elimination of other candidates.
The second ‘switch’ s2 is the most dangerous candidate that
can be eliminated iff a valid cover is selected during the
first 4m rounds. ‘Garbage collectors’ gd0 , . . . , gs1 control
the veto-scores of non-garbage candidates. ‘Garbage collec-
tors’ g′d0 , . . . , g

′
s1 prevent p from having a majority (which

is needed later on to prove Theorem 6).

We partition votes into two sets: P1 and P2. Table 1 shows
the votes. in reverse preference order. We refer to sets of
votes in each line of the table by the number in the third col-
umn. For convenience, we introduce a new garbage candi-
date in each set of votes. Unspecified candidates are ordered
in the same arbitrary order, starting with gd0 , . . . , gdn in all
votes. P1 is the main construction. Lines 1–3 set up initial
veto-scores for the preferred candidate and ‘items’. Lines 4–
22 encode the 1st phase. The important point to observe is
how ‘pumps’ work (lines 18–28). The candidate pi is elim-
inated last in its group and increases the veto-score of all
other running candidates by a constant 2f2 except running
candidates in ∪ij=1{bj , b̄j} and ‘garbage’ candidates. This
allows m running candidates selected from ∪mj=1{bj , b̄j} to
reach the 4th phase. Lines 23–28 make sure that veto-score
of ‘items’ and ‘switches’, that are not eliminated during the
1st phase, grow the same way as veto-scores of a’s, b’s and
p’s. Line 27 is used to eliminate s1 at round 4m + 1. Lines
29-34 are used to check a cover. In particular, lines 33–34 are
used to count how many candidates di, i ∈ [0, n] are elimi-
nated by increasing veto-scores of s2. Finally, line 35 is re-
sponsible for triggering the garbage collection procedure. P2

ensures that all ‘pumps’ and the ‘switch’ s1 have initial score
of X , where X is sufficiently large number, e.g. X > 16m5

and σ1
P1

(c′) is the number of last place votes for candidate
c′ in the votes P1 at the first round. The initial veto-score
of a garbage collector equals 0 and stays less than X until
the 4th phase. So we do not have to worry about the garbage
collectors during the first three phases. We also define the
following constants required to control elimination inside
each group 〈ai, āi, bi, b̄i, pi〉, i ∈ [1,m]. The f constants
in Table 1 satisfy the following constraints: f12 = f1 + f2,
f123 = f1 + f2 + f3, f1 ≥ f2 + 2f3 + 2, 2f2 ≥ f1 + 2,
2f2 ≥ f3 + 2, f1 ≥ f3 + 2, fi ≥ 2m + 3 for i ∈ [1, 3],
and f4 = 2m− 2n/3 + 3. For example, f1 = 11(2m+ 3),

1335

f2 = 8(2m + 3) and f3 = 3 + (2m + 3). Overall, the con-
struction ensures that initial veto-scores of all candidates a,
b, p, s1 equals X with an exception of a1 and ā1 that have
X+3 veto-points. All the other candidates have veto-scores
that are less than or equal to X . This forces the manipula-
tor to make a choice between a1 and ā1 in the first round
which triggers a selection of sets in a cover. We assume the
tie-breaking rule: s2 ≺ d0 ≺ p ≺ d1,≺ . . . ≺ dn,

Phase 1. Cover selection. Rounds 1 to 4m. The 1st phase
eliminates m candidates, one from each pair {bi, b̄i}, i ∈
[1,m]. If bi is eliminated then the set Si is selected in the
cover. A manipulator will choose which candidate from each
pair is eliminated. We claim the following holds in the first
4m rounds where i ∈ [0,m− 1]:
. Round 4i+1. The following invariant holds immediately

before the 4i+ 1st candidate is eliminated:

σ4i+1(ai+1) = σ4i+1(āi+1) ≥ σ4i+1(c′) + 3,

where c′ ∈ C \ {a1, ā1, .., ai+1, āi+1, b1, b̄1, .., bi, b̄i}. The
manipulator can select which of ai+1 or āi+1 is eliminated.

The manipulator cannot change the outcome of the fol-
lowing three rounds.
. Round 4i + 2. bi+1 is eliminated at this round iff ai+1

is eliminated at the previous round. Similarly, b̄i+1 is elimi-
nated iff āi+1 is eliminated at the previous round.
. Round 4i+3. ai+1 is eliminated at this round iff āi+1 is

eliminated at the 4i+1st round. Similarly, āi+1 is eliminated
at this round iff ai+1 is eliminated at the 4i+ 1st round.
. Round 4i+ 4. The candidate pi+1 is eliminated.
Hence, the manipulator select m candidates in
∪mi=1{bi, b̄i} to eliminate. The elimination of pm at
round 4m forces an increase of the veto-scores of
p, d0, . . . , dn, s1, s2 by 2f2 (lines 23–26,28) and an addi-
tional increase of f1 in the veto-score of s1 (line 27). This
means s1 is the next candidate to be eliminated.

Phase 2. Pump up of p, s2, d0, . . . , dn. Round 4m +
1. The elimination of s1 increases the veto-scores of
p, s2, d0, . . . , dn by 4f2 + f1.

Phase 3. Cover verification. Rounds 4m+ 2 to 4m+ 2 +
(n+1). This phase ensures that p reaches the next phase iff
the sets Si that correspond to eliminated candidates bi form
a cover of d1, . . . , dn and there are exactly n/3 such candi-
dates. Consider the candidates p, s2, d0, . . . , dn. We observe
that at round 4m+ 2:

σ4m+2(p) = σ4m+2(di)− 1 + 2− y4m+2
i ,

σ4m+2(p) = σ4m+2(d0)− 1 + 2(m− n/3 + 1)− y4m+2
0 ,

σ4m+2(p) = σ4m+2(s2)− 1 + (n+ 1) + 2,

where y4m+2
i , i ∈ [0, n] is the veto-score that candidate

di gets during the first 4m + 1 rounds in addition to its ini-
tial veto-score, y4m+2

i is even. As can be seen from these
equations, s2 can be eliminated before p iff s2 gets n+2 ex-
tra veto-points. This is possible iff d0, . . . , dn are eliminated
before s2 so that s2 gets n+ 1 veto-points from lines 33–34.
Moreover, the manipulator must give an extra veto-point to

s2. Then, by the tie-breaking rule, s2 is eliminated before p.
Consider how to eliminate d0, . . . , dn before s2 and p.
. Candidates di for i = 1, . . . , n: Let dk be the candi-

date with the highest value y4m+2
k . If y4m+2

k ≥ 2 then dk
is eliminated. This only increases the veto-score of s2 by 1
and does not affect the veto-scores of other running candi-
dates. Suppose that there exists k such that y4m+2

k = 0. In
this case p has 1 veto-point extra compared to dk. Moreover,
the manipulator cannot save p from elimination due to the
tie-breaking rule. Hence, y4m+2

i ≥ 2 for i ∈ [1, n]. This
means that sets Sj that correspond to candidates bj that are
eliminated during the first phase cover all values. Next we
show that exactly n/3 of bj’s are eliminated.
. The candidate d0: This candidate has 2(m − n/3) + 1

veto-points less than the veto-score of p. Hence, during the
first phase d0 needs to get at least 2(m − n/3) extra veto-
points. This means thatm−n/3 of the candidates b̄j have to
be eliminated during the first phase. Hence exactly n/3 bj’s
can be eliminated during the first phase. Finally, the manipu-
lator gives one extra veto-point to d0 and, by the tie-breaking
rule, d0 is eliminated. Hence, s2 is eliminated after dis, and
p reaches the next round.

Phase 4. Garbage collection. Rounds 4m + 2 + (n +
1) + 1 to c. This phase ensures that p wins if it is not already
eliminated. p is either the last, first or second candidate in
all remaining votes at this round. Hence, its veto-score does
not change until the penultimate round. The elimination of
d0, and then s2, increases the veto-score of a candidate gd0
by 2X − (n+ 1)− 2(m− n/3)− 5 (lines 2 and 35), which
triggers elimination of other running candidates up to round
c− 2. When only 2 candidates remain, p must win.

The reverse direction is trivial. Given a cover I , we con-
struct the vote of a manipulator in the following way. If i
is in cover, we put ai at position c − 2i and āi at position
c−2i−1. Otherwise, we invert their positions. Then we put
d0, s2. Finally, we make p the most preferred candidate, and
put the remaining candidates in an arbitrary order. �

Coombs’ Rule
Coombs’ rule is a variant of eliminate(veto) with the stop-
ping criteria that a winner is declared when one candidate
has a majority of first placed votes (instead of when one
candidate remains). Although this is a small change, it can
have a large impact on the result and on strategic voting. For
instance, there are a family of elections where the number
of manipulators required to achieve victory for a particular
candidate is unbounded for eliminate(veto) but bounded
for Coombs’, and vice versa.

Theorem 4 There exists an election with n + 3 candi-
dates where a given candidate has already won with
eliminate(veto) but the number of manipulators with
Coombs’ rule is Ω(n).

Proof: We have n votes: (a, d1, .., dn, b, c),
(a, d2, .., dn−1, b, c), .., (a, dn, .., d1, b, c). Note that
positions 2− (n+ 1) in these votes contain a cyclic permu-
tation of candidates d1, . . . , dn. Similarly, for the other two
groups of n votes. We also have n votes: (b, a, d1, .., dn, c),
(b, a, d2, .., dn−1, c), .., (b, a, dn, .., d1, c). Finally we

1336

have n votes: (c, b, a, d1, .., dn), (b, a, d2, .., dn−1), ..,
(c, b, a, dn, .., d1). The preferred candidate is a. As is
common in the literature, ties are broken in favor of ma-
nipulators. For eliminate(veto), c is eliminated in the first
round and b in the second. a is now in first place in all votes
so ultimately wins. For Coombs’, c is eliminated in the first
round. b is then in the first place in 2n votes and wins by the
majority rule. There are two options for the manipulators.
Either they add n votes to the elections to make sure that b
does not have a majority after the first elimination round, or
they prevent the elimination of the candidate c in the first
round. With the exception of c, each candidate has has only
one veto point. Therefore, the manipulators need at least
2n− 1 votes to prevent the elimination of c. �

Theorem 5 There exists an election with n + 2 candidates
which a single manipulator can manipulate with Coombs’
rule but eliminate(veto) requires Ω(n) manipulators.

Proof: We have n votes: (a, b, d1, .., dn), (a, b, d2, .., dn−1),
.., (a, b, dn, .., d1). Note that positions 2 − (n + 1) in these
votes contain a cyclic permutation of candidates d1, . . . , dn.
Similarly, for the other group of n votes. We also have n
votes: (b, d1, .., dn, a), (b, d2, .., dn−1, a), .., (b, dn, .., d1, a).
None of the candidates has a majority. For Coombs’, if
one manipulator puts a in first place then a wins. For
eliminate(veto), the manipulators must prevent the elim-
ination of a in the first round. As candidates d1 to dn have
only 1 veto point we need at least n − 1 manipulators to
prevent the elimination of a. �

Despite these differences between Coombs’ rule and
eliminate(veto), it is intractable to compute a manipula-
tion for Coombs’ as it is with eliminate(veto).

Theorem 6 Deciding if a single manipulator can make a
candidate win for the Coombs’ rule is NP-complete.

Proof: Follows from the proof of Theorem 3 as g′i can be
eliminated after a cover is verified. �

Eliminate(scoring rule)
We next consider scoring rules in general. With weighted
votes, Coleman and Teague (2007) have proved that manip-
ulation by a coalition is NP-hard to compute for the elimi-
nation version of any scoring rule X that is not isomorphic
to veto. With unweighted votes, we prove a general result
that relates the computational complexity of manipulating a
scoring rule and the elimination version of its adjoint.

Theorem 7 Deciding whether k manipulators can make a
candidate win for eliminate(X) is NP-complete if it is NP-
complete also for X∗.

Proof: First, we argue that for votes V , k manipulators can
make a candidate win with X∗ iff for the reversed set of
votes V ∗, k manipulator can make a candidates come last
with X . The proof is similar to Lemma 10 in (Coleman and
Teague 2007). We simply reverse all the manipulating votes.
Suppose V ∗ is an election over m candidates where m ≥
3, and the k manipulators want cm to come last. Let U be
s1(|V |+ k + 1) copies of the following votes:

c1 � c2 � . . . � cm−1 � cm,
c2 � c3 � . . . � cm � c1,

...
cm � c1 � . . . � cm−2 � cm−1

Each candidate receives the same score in U irrespective of
X . We argue that there is a manipulation making c1 win
in V ∗ ∪ U for eliminate(X) if there is a manipulation
making cm last in V ∗ for X . By the same argument as in
the proof of Theorem 13 in (Coleman and Teague 2007),
if ci is the first candidate eliminated in V ∗ ∪ U , then no
matter how the manipulators vote, the elimination order is
ci, ci−1, ci−2, . . . , ci+1 (where cm+1 = c1) and ci+1 wins.
Hence c1 wins iff cm is eliminated first. The manipulators
can force cm to be eliminated first in V ∗∪U if they can force
cm to be last in V ∗ as the relative scores of the candidates are
initially the same in V ∗ and in V ∗ ∪U . Hence manipulation
of X∗ reduces to manipulation of eliminate(X). �

Borda is NP-hard to manipulate with 2 manipulators
(Betzler, Niedermeier, and Woeginger 2011; Davies et al.
2011). Since the adjoint of Borda is Borda itself, it fol-
lows from Theorem 7 that eliminate(Borda), which is
Baldwin’s rule, is NP-hard to manipulate by 2 manipu-
lators. This result is strengthened to NP-hard with just
one manipulator in (Narodytska, Walsh, and Xia 2011).
Note that the reverse of Theorem 7 does not hold. STV,
which is eliminate(plurality), is NP-hard to manipulate
but plurality is only polynomial to manipulate.

We next identify a large class of scoring rules which are
intractable to manipulate. Given a fixed k, a truncated scor-
ing rule (scoret) has a scoring vector (s1, . . . , sm) with
si = 0 for all i > k. For example, plurality and k-
approval voting are both truncated scoring rules. As a sec-
ond example, the Heisman Trophy, which is awarded an-
nually to the best player in collegiate football, uses the
truncated scoring rule (3, 2, 1, 0, . . . , 0). As a third and fi-
nal example, the Eurovision song contest uses the trun-
cated scoring rule (12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0, . . . , 0). We
now prove out next major results: computing a manipulation
of eliminate(scoret) or of divide(scoret) is intractable.
When candidates are eliminated, we suppose that the scor-
ing vector is truncated to the first m positions where m is
the number of candidates left after elimination.

Theorem 8 Deciding if a single manipulator can make a
candidate win for eliminate(scoret) is NP-complete.

Proof: (Sketch, the full proof can again be found on-
line in a technical report). The proof is also inspired by
ideas from (Bartholdi and Orlin 1991) and uses a reduc-
tion from 3-COVER. We block the first k − 1 positions in
each vote with an additional set of q(k − 1) dummy can-
didates, where the value q is computed taking into account
the scoring vector. By this construction, only those scores
at positions k to c, which are (sk, 0, . . . , 0), determine the
elimination order for the first c−q(k−1)−1 rounds, where
c is the total number of candidates. We thereby reduce our
problem to one that resembles a multiple of the reduction
used for STV. Only one non-dummy candidate reaches the
(c − q(k − 1) − 1)th round. If the preferred candidate p

1337

reaches this round then the remaining votes are such that p
wins the election. Similar to the reduction used in the STV
proof, this only happens if there is a 3-COVER. As we have a
large number of additional dummy candidates, we can make
sure that the individual score of each dummy candidate is
greater than the score of any non-dummy candidate until the
(c − q(k − 1) − 1)th round and is smaller than the score of
p at the (c− q(k − 1)− 1)th round. �

Theorem 9 Deciding if a single manipulator can make a
candidate win for divide(scoret) is NP-complete.

Proof: (Sketch, the full proof can again be found online in
a technical report). The proof uses a reduction from the 3-
COVER problem where k = n/3, n is the number of items.
The first two rounds encode solving the 3-COVER problem
and the remaining rounds are used to collect garbage. The
main types of candidates are n ‘items’, m ‘sets’ and one
‘preferred’. The rest of the candidates are dummy candidates
that are used to control scores of non-dummy candidates and
the average score. In the first round, we select k sets. Using
a large number of dummy candidates we make sure that the
score of ’sets’ candidates equals the average score at the first
round. Hence, manipulator can select k of them to pass to
the second round. In the second round, we check that this
forms a cover. If this is the case, all ’items’ candidates in
the covered set are eliminated. Otherwise, one of the ‘items’
candidates reaches the third round and wins the election. �

Sequential Rules
When selecting the site of the next Olympics, IOC members
can cast a new vote in each round. This increases the oppor-
tunity for manipulation. In fact, we can exhibit an election
in which a manipulator can only change the result if the ma-
nipulator votes differently in each round.

Example 2 Consider the following 21 votes:
1: (a, h, p, . . .), 1: (c, a, h, p, . . .), 1: (d, a, h, p, . . .)
3: (g, a, h, p, . . .), 2: (b, h, p, . . .), 2: (e, b, h, p, . . .)
2: (f, b, h, p, . . .), 6: (h, p, . . .), 5: (p, h, . . .)

The election uses sequential(plurality), and the ma-
nipulator wants p to win. The tie-breaking rule is
p ≺ g ≺ c ≺ d ≺ a ≺ e ≺ f ≺ b ≺ h.

We first argue that a single manipulator cannot make p
win. Note that p cannot gain any points until h is eliminated.
For p to win, the manipulator needs to give p one point so
that it has 6 points (and beats h by the tie-breaking rule)
and no other candidate receives more than 6 points. In or-
der for h not to receive any more than the initial 6 points,
a and b must not be eliminated. The manipulator must save
a from elimination in the first round by voting for a. The
first two rounds therefore eliminate c and d. Unfortunately,
the manipulator cannot stop b being eliminated next. h now
receives 2 more points and p cannot win the election. There-
fore, a single manipulator cannot make p win.

On the other hand, if a single manipulator votes for a
in the first two rounds, c and d are eliminated and a has 3
points and is safe for now. At this point, b is in danger with
only 2 points. If the manipulator now votes for b, b is saved
and both e and f are eliminated next. At this point, a and

g are tied. If the manipulator now votes for a again, g is
eliminated and the score of a increases to 6. At this point,
all candidates except p have 6 points, and if the manipulator
now votes for p, h is eliminated by tie-breaking and p wins
the election. Hence, if the manipulator can change votes af-
ter each round, p can win.

In general, manipulating a sequential elimination election
requires a strategy, which provides a manipulating response
however the other agents vote. It is not hard to see that de-
ciding if such a strategy exists is PSPACE-complete. In fact,
strategic voting in a sequential elimination election invites a
game theoretic analysis. We can view a sequential elimina-
tion election as a finite repeated sequential game. We could,
for example, use backward induction to find the subgame
perfect Nash equilibrium in which each agent makes the best
strategic move in each round.

Other Related Work
Bag, Sabourian and Winter (2009) proved that many sequen-
tial elimination rules including sequential(plurality) elect
candidates in the top cycle (and are hence Condorcet con-
sistent) supposing strategic voting. Contizer and Sandholm
(2003) studied the impact on the tractability of manipulation
of adding an initial round of the Cup rule to a voting rule.
This initial round eliminates half the candidates and makes
manipulation NP-hard to compute for several voting rule in-
cluding plurality and Borda. Elkind and Lipmaa (2005) ex-
tended this idea to a general technique for combining two
voting rules. The first voting rule is run for some number
of rounds to eliminate some of the candidates, before the
second voting rule is applied to the candidates that remain.
They proved that many such combinations of voting rules
are NP-hard to manipulate. However, they did not consider
the veto or truncated scoring rules at the centre of our study
here. They also considered the closed protocol, where a rule
is combined with itself. In many cases, the closed protocol
of X is eliminate(X). They conjectured that such closed
protocols will often be NP-hard to manipulate.

Conclusions
We have provided more evidence that successively elimi-
nating candidates is often a route to making manipulation
intractable to compute. In general, eliminating candidates
does not necessarily increase the computational complex-
ity of manipulation. Indeed, we exhibited an artificial voting
rule where the computational complexity actually decreases.
However, for many voting rules used in practice, the com-
putational complexity increases. For example, it was known
that it is NP-hard to compute how a single voter can manip-
ulate the result of STV (the elimination verison of plurality
voting), and Nanson’s and Baldwin’s rule (elimination ver-
sions of Borda voting). In this paper, we showed that it is
NP-hard to compute how a single voter can manipulate the
result of the elimination version of veto voting, of the closely
related Coombs’ rule, and of the elimination versions of a
general class of truncated scoring rules. On the other hand,
we showed that permitting voters to re-vote between elimi-
nation rounds can increase the opportunity for manipulation.

1338

What general lessons can be learnt from these studies?
First, elimination style voting does indeed appear to provide
some computational resistance to manipulation. Second,
these results have involved worst case complexity notions
like NP-hardness. We need to treat these with care as there is
theoretical evidence (for instance, (Xia and Conitzer 2008a;
Friedgut, Kalai, and Nisan 2008; Xia and Conitzer 2008b)),
as well as practical experience which suggests that elim-
ination style rules like STV (Coleman and Teague 2007;
Walsh 2010), as well as voting rules like veto (Walsh 2009)
can be easy to manipulate on average. Third, if voters can
re-vote between elimination rounds, new opportunities for
manipulation arise. It would be interesting therefore to con-
sider both game-theoretic and computational aspects of such
strategic voting. For example, what are the possible equi-
libria and how difficult are they to compute? Fourth, ma-
nipulation is closely connected to questions about possible
winners given uncertainty about the votes (Pini et al. 2007;
Walsh 2007) and to elicitation (Walsh 2008). It would there-
fore be interesting to consider reasoning about possible win-
ners and preference elicitation for elimination style voting
rules.

Acknowledgments
The authors are supported by the Australian Government’s
Department of Broadband, Communications and the Digital
Economy, the Australian Research Council and the Asian
Office of Aerospace Research and Development through
grants AOARD-104123 and 124056.

References
Bag, P.; Sabourian, H.; and Winter, E. 2009. Multi-stage vot-
ing, sequential elimination and condorcet consistency. Jour-
nal of Economic Theory 144(3):1278 – 1299.
Bartholdi, J., and Orlin, J. 1991. Single transferable vote
resists strategic voting. Social Choice and Welfare 8(4):341–
354.
Bartholdi, J.; Tovey, C.; and Trick, M. 1989. The computa-
tional difficulty of manipulating an election. Social Choice
and Welfare 6(3):227–241.
Betzler, N.; Niedermeier, R.; and Woeginger, G. 2011. Un-
weighted coalitional manipulation under the Borda rule is
NP-hard. In Walsh, T., ed., Proc. of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI 2011).
Coleman, T., and Teague, V. 2007. On the complexity of
manipulating elections. In Gudmundsson, J., and Jay, B.,
eds., Proc. of the 13th Australasian Symposium on Theory
of Computing (CATS ’07), 25–33. Australian Computer So-
ciety, Inc.
Conitzer, V., and Sandholm, T. 2003. Universal voting pro-
tocol tweaks to make manipulation hard. In Proc. of 18th
International Joint Conference on Artificial Intelligence (IJ-
CAI 2003), 781–788.
Davies, J.; Katsirelos, G.; Narodytska, N.; and Walsh, T.
2011. Complexity of and algorithms for Borda manip-
ulation. In Burgard, W., and Roth, D., eds., Proc. of

the Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI 2011). AAAI Press.
Elkind, E., and Lipmaa, H. 2005. Hybrid voting protocols
and hardness of manipulation. In Deng, X., and Du, D.-Z.,
eds., Proc. of 16th International Symposium on Algorithms
and Computation (ISAAC 2005), vol. 3827 of LNCS, 206–
215. Springer.
Friedgut, E.; Kalai, G.; and Nisan, N. 2008. Elections can be
manipulated often. In Proc. of the 49th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2008),
243–249. IEEE Computer Society Press.
Narodytska, N.; Walsh, T.; and Xia, L. 2011. Manipula-
tion of Nanson’s and Baldwin’s rules. In Burgard, W., and
Roth, D., eds., Proc. of the Twenty-Fifth AAAI Conference
on Artificial Intelligence (AAAI 2011). AAAI Press.
Pini, M.; Rossi, F.; Venable, B.; and Walsh, T. 2007. Incom-
pleteness and incomparability in preference aggregation. In
Veloso, M. M., ed., Proc. of the 20th International Joint
Conference on Artificial Intelligence (IJCAI-2007), 1464–
1469.
Walsh, T. 2007. Uncertainty in preference elicitation and ag-
gregation. In Proc. of the 22nd National Conference on AI,
3–8. Association for Advancement of Artificial Intelligence.
Walsh, T. 2008. Complexity of terminating preference elic-
itation. In Padgham, L.; Parkes, D. C.; Müller, J. P.; and
Parsons, S., eds., 7th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008),
967–974. IFAAMAS.
Walsh, T. 2009. Where are the really hard manipulation
problems? The phase transition in manipulating the veto
rule. In Boutilier, C., ed., Proc. of the 21st International
Joint Conference on Artificial Intelligence (IJCAI-2009),
324–329.
Walsh, T. 2010. An empirical study of the manipulability
of single transferable voting. In Coelho, H.; Studer, R.; and
Wooldridge, M., eds., Proc. of the 19th European Confer-
ence on Artificial Intelligence (ECAI-2010), 257–262. IOS
Press.
Xia, L., and Conitzer, V. 2008a. Generalized scoring rules
and the frequency of coalitional manipulability. In Fort-
now, L.; Riedl, J.; and Sandholm, T., eds., Proc. of the 9th
ACM conference on Electronic Commerce (EC’ 08), 109–
118. ACM.
Xia, L., and Conitzer, V. 2008b. A sufficient condition for
voting rules to be frequently manipulable. In Fortnow, L.;
Riedl, J.; and Sandholm, T., eds., Proc. of the 9th ACM con-
ference on Electronic Commerce (EC’ 08), 99–108. ACM.
Xia, L.; Zuckerman, M.; Procaccia, A.; Conitzer, V.; and
Rosenschein, J. 2009. Complexity of unweighted coalitional
manipulation under some common voting rules. In Boutilier,
C., ed., Proc. of the 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), 348–353.

1339

