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Abstract

A number of problems involve managing a set of optional
clauses. For example, the soft clauses in a MAXSAT formula
are optional—they can be falsified for a cost. Similarly, when
computing a Minimum Correction Set for an unsatisfiable
formula, all clauses are optional—some can be falsified in
order to satisfy the remaining. In both of these cases the task
is to find a subset of the optional clauses that achieves some
criteria, and whose removal leaves a satisfiable formula. Re-
laxation search is a simple method of using a standard SAT
solver to solve this task. Relaxation search is easy to imple-
ment, sometimes requiring only a simple modification of the
variable selection heuristic in the SAT solver; it offers con-
siderable flexibility and control over the order in which sub-
sets of optional clauses are examined; and it automatically
exploits clause learning to exchange information between the
two phases of finding a suitable subset of optional clauses
and checking if their removal yields satisfiability. We demon-
strate how relaxation search can be used to solve MAXSAT
and to compute Minimum Correction Sets. In both cases re-
laxation search is able to achieve state-of-the-art performance
and solve some instances other solvers are not able to solve.

Introduction
Over-constrained (unsatisfiable) CNF formulas are often
dealt with by regarding some of the clauses as optional.
When faced with such formulas we are often interested
in finding a subset of the optional clauses whose removal
makes the formula satisfiable. MAXSAT and computing Min-
imal Correction Sets (MCS) are two problems that can be
cast this way. In general, relaxation search can potentially
be applied to any problem involving optional clauses.

Both MAXSAT and MCS are important problems with a
range of practical applications. MAXSAT is the optimiza-
tion version of satisfiability and many industrial applications
can be naturally encoded in MAXSAT. As a result, MAXSAT
solvers have been successfully applied in various areas in-
cluding bioinformatics (Strickland, Barnes, and Sokol 2005;
Graça et al. 2012), planning (Cooper et al. 2006; Zhang and
Bacchus 2012), and scheduling (Vasquez and Hao 2001).
Computing MCSes finds application in areas like diagnosis
(Reiter 1987), computing minimal models (Ben-Eliyahu and
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Dechter 1996; Soh and Inoue 2010), and other general areas
of formal verification.

In MAXSAT we are looking for a minimum cost set of
optional clauses to remove, whereas in MCS we are look-
ing for a minimal set of optional clauses to remove. Some
of the techniques that have been proposed in the literature
for solving these problems, e.g., (Davies and Bacchus 2011;
Marques-Silva et al. 2013), involve a two phase search: first
we search for an appropriate subset of optional clauses to
remove, and then we search for a satisfying assignment of
the remaining formula. The search for a satisfying assign-
ment is normally done with a standard CDCL SAT solver
(Marques-Silva, Lynce, and Malik 2009), while the search
for a subset of optional clauses to remove may use a range
of techniques. A key, however, to making this sort of two
phase search work is to find mechanisms for using informa-
tion gathered in each phase to guide the search in the other
phase. For example, in (Davies and Bacchus 2011) the SAT
solver returns unsatisfiable cores to guide the search for a
subset of optional clauses to remove.

In this paper we propose a very simple approach for uni-
fying these two search problems so that they can solved in
a more tightly integrated manner. In particular, relaxation
search is a simple way of using a SAT solver so that it can
search for the right set of optional clauses to remove, and
in the same search tree, also test the satisfiability of the
remaining clauses. Relaxation search naturally achieves a
tight integration between these two phases of search and is
able to automatically exploit clause learning to transfer in-
formation between the two phases. Furthermore, it is easy
to implement, in some cases requiring only a change to the
SAT solver’s variable selection heuristic. Our empirical re-
sults show that the paradigm of relaxation search can achieve
state-of-the-art performance, both for solving MAXSAT and
for computing MCSes.

Relaxation Search
Let F be a formula expressed in CNF that is partitioned
into a set O of optional clauses and a setM of mandatory
clauses: F = O ∪M.
Definition 1 (Relaxation Search Problem) Let R be a re-
lation between a set of clauses and a CNF formula F . The
relaxation search problem is to find a subset S of optional
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clauses, S ⊆ O, such that F − S is satisfiable and R(S,F )
is true.

For computing MCSes, R expresses a condition of mini-
mality: R(S,F) if and only if for any set S′ ⊆ F we have
that S′ ⊂ S implies that F − S′ is unsatisfiable. That is, S
is a minimal set of clauses whose removal makes F satis-
fiable. For solving MAXSAT, we associate a weight wt(c)
with every clause c in O, and take the weight of any set of
clauses S, wt(S), to be the sum of the weights of its clauses:
wt(S) = ∑c∈S wt(c). The conditionR(S,F) then becomes
a condition of minimum weight required to achieve satisfi-
ability: R(S,F) if and only if for any set S′ ⊆ O we have
that wt(S′) < wt(S) implies that F − S′ is unsatisfiable.

Relaxation Search can be used to solve Relaxation Search
Problems. It employs the standard technique of adding se-
lector (or blocking) variables to the optional clauses. We
define two different ways of using selector variables with
optional clauses.

Let Ob be a new set of clauses formed by adding a new
and different positive literal bi to every clause ci ∈ O: Ob =
{(ci ∨ bi)∣ci ∈ O}. For (ci ∨ bi) ∈ Ob let eq((ci ∨ bi)) be
the set of binary clauses {(¬`j ,¬bi)∣`j ∈ ci}. The clause
(ci ∨ bi) enforces the condition ¬ci → bi, while the addition
of eq enforces the condition ¬ci ↔ bi. We define

Fb = M ∪Ob

Fbeq = M ∪Ob ∪ ⋃(ci∨bi)∈Ob eq((ci ∨ bi))

Both Fb and Fbeq are relaxed versions of F . If the manda-
tory clauses of F are satisfiable, then both Fb and Fbeq are
satisfiable even if F is not. Fb allows arbitrary subsets ofO
to be “removed” from the formula: if bi is set to true then
optional clause ci is satisfied and no longer constrains the
formula. Fbeq encodes a tighter link between the optional
clauses and the blocking variables. In particular, for any
model π ofM there is a unique model of Fbeq obtained by
setting each bi to the truth value of ¬ci under π.

In Fb or Fbeq any setting of the b variables removes or
sets the truth value of the optional clauses. Let E ∣ρ be the
reduction of a CNF formula E by a set of literals ρ. E ∣ρ is
standardly defined to be the removal from E of all clauses
that contain some literal of ρ and the removal from the re-
maining clauses of all literals ` such that ¬` ∈ ρ.

If ρ includes either b or ¬b for every b variable and no
other literals, then Fb∣ρ ⊆ F . All mandatory clauses are
preserved, and for all bi ∈ ρ the clause (ci ∨ bi) is removed
while for ¬bi ∈ ρ the clause (ci ∨ bi) is reduced back to
ci (ci ∈ F). Hence, Fb∣ρ is a relaxation of F , i.e., it is a
simpler less constrained formula. We also say that Fbeq ∣ρ is
a relaxation, although in this case it is not necessarily a less
constrained formula as bi ∈ ρ requires that all of the literals
in ci be falsified. Nevertheless, in both cases, by reducing
Fb or Fbeq via some setting of the b variables we generate
a new formula that is satisfiable if and only if a particular
subset of the soft clauses can be satisfied (and for Fbeq , while
the remaining are falsified).
Definition 2 (Relaxation Search) Given an over–
constrained problem F containing optional clauses,

relaxation search is the simple idea of solving Fb or Fbeq
with a standard CDCL SAT solver using the additional
restriction that the solver always chooses to branch on a b
variable if one remains unassigned.

With relaxation search the SAT solver explores a search
tree in which at the top of the search tree all decisions will
be b variables, and every path in the top of the search tree
selects a particular subset of O to relax, while the subtree
below tests if that relaxation rendered F satisfiable. Let π
be a satisfying assignment of Fb or Fbeq , and let relax(π) be
the set of optional clauses that have been relaxed by π, i.e.,
relax(π) = {ci∣(ci ∨ bi) ∈ O

b and π ⊧ bi}.
Then π will be a solution to the relaxation search problem

if R(relax(π),F) holds, i.e., if the relation we are inter-
ested in satisfying, R, holds for the subset of O relaxed by
π and F . In particular, in addition to R(relax(π),F), π
also demonstrates that F − relax(π) is satisfiable, (π satis-
fiesM and every clause ci ∈ O that it doesn’t relax).

The decision to use Fb or Fbeq depends on the relation
R. With Fbeq we have that every satisfying assignment π
falsifies every clause in relax(π). Relaxation search can
only find sets relax(π) for satisfying assignments π. So Fbeq
might restrict our search for a solution or even make it im-
possible to find one if, e.g.,R(S,F) implies that the clauses
in S cannot be simultaneously falsified. However, in many
cases, including MAXSAT and MCS, R(S,F) embodies a
minimality condition, i.e., R(S,F) and F − S satisfiable
implies that S cannot be made any smaller and still render
F satisfiable. In these cases Fbeq can be used and its extra
constraints can make the search more efficient. In particu-
lar, in these cases if π satisfies Fb andR(relax(π),F) then
π must falsify all clauses in relax(π) (otherwise relax(π)
could be made smaller and still render F satisfiable) and so
π must also satisfy Fbeq .

Minimal Correction Sets
Now we show how appropriate control over the b-variable
decisions allows relaxation search to compute MCSes.

Definition 3 Given an unsatisfiable formula F expressed in
CNF, a correction subset is a set of clauses C ⊆ F such
that F − C is satisfiable. A correction subset C is minimal
(a MCS) if for any proper subset C ′ of C, F − C ′ remains
unsatisfiable.

In other words an MCS “corrects” F making it satisfiable,
and it is a minimal correction in that removing anything less
than the full MCS fails to make F satisfiable.

A useful fact about MCSes is the following.

Proposition 1 If C is an MCS of F and π is a truth assign-
ment satisfying the clauses F −C (π ⊧ (F −C)) then π must
falsify all clauses in C: ∀c ∈ C.π /⊧ c.

Proof: By contradiction, suppose that π satisfies some
clause in C: ∃c ∈ C.π ⊧ c then π ⊧ (F − C) ∪ {c} and
thus C is not an MCS. ◀

As discussed above this shows that for computing MCSes
we can use Fbeq .
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Relaxation Search for MCS

Relaxation search is very easily controlled so that it can find
an MCS. All that is needed is the additional condition that
all b-variable decisions must be set to false.
Proposition 2 Let π be a satisfying assignment forFbeq gen-
erated by a CDCL SAT solver (Marques-Silva, Lynce, and
Malik 2009) under the restriction that during its operation
each search decision sets some b-variable to false until no
unassigned b-variables remain (no restriction is placed on
the remaining ordinary variable decisions or on the order-
ing among the b-variables). Then relax(π) is an MCS of F .
Furthermore, if U is an MCS of F then there exists a satis-
fying assignment π that can be generated by a CDCL solver
under the above restriction such that relax(π) = U .
Proof: First we show that relax(π) is an MCS. F−relax(π)
is satisfiable: π must satisfy all mandatory clauses and,
since π falsifies the b-variable of every optional clause not
in relax(π), π must make some other literal in each of these
clauses true, i.e., π must satisfy all optional clauses not in
relax(π). Further, consider any clause ci ∈ relax(π). Since
decided b-variables are always false, bi must be forced by
unit propagation at some decision level k and thus has a
clausal reason r. All decisions at level k or higher are false
b-variables (no decision can be an ordinary variable while
there is an unset b-variable). Therefore all literals in r that
are not positive b-variables can be resolved away as the nega-
tion of these literals must have been forced. By a sequence
of resolution steps we can convert r to r′ = (bi,∨B) where
B is a set of positive b-variables. This clause proves that the
set of optional clauses corresponding to the b-variables in it
(along with the mandatory clauses) is unsatisfiable (i.e., at
least one of these optional clauses must be relaxed). Since
the clauses corresponding to B are already in F − relax(π),
we have that (F − relax(π)) ∪ {ci} is unsatisfiable.

Second, if U is an MCS then we can run the CDCL solver
selecting the b-variables associated with the optional clauses
inF−U as decision variables and setting them to false (skip-
ping to the next unassigned b-variable in F − U if some
are forced by previous decisions). Since F − U is satisfi-
able, Fbeq must be satisfiable under these decisions. Let π
be the satisfying assignment found. By Prop. 1 π must fal-
sify all clauses in U , hence relax(π) ⊇ U . Furthermore,
F − U is satisfiable, thus π cannot assign any b-variable
from the clauses of F − U to true. Hence U ⊇ relax(π),
and relax(π) = U . ◀

The proposition shows that relaxation search can com-
pute MCSes by the simple technique of (a) generating Fbeq ,
(b) making a simple modification to the variable selection
heuristic of an ordinary CDCL SAT solver, and (c) running
the solver to find a satisfying solution from which an MCS
can be extracted.

Finding All MCSes
In some applications it is useful to find all MCSes, e.g., this
allows all minimal unsatisfiable subsets (MUSes) to be com-
puted via hitting set duality (Liffiton and Sakallah 2008).
Relaxation search is easily extended to compute all MCSes
by adding blocking clauses.

Let π be a satisfying assignment found by the SAT solver
as described in Proposition 2. We then add to the solver the
blocking clause π̄ = ⋁bi∣π⊧bi ¬bi. This clause states that we
are not allowed to relax all of the clauses in relax(π) (the
just discovered MCS) again.

At the current leaf node of the search tree (where π has
been found), π̄ is a conflict clause that we can use to back-
track the search. Note that this will cause the solver to go
back to some decision level where a b variable was set, thus
the solver will only find one satisfying assignment under the
current setting of the b variables.
Proposition 3 If for every satisfying assignment π found by
the SAT solver (operating under the restriction of Prop. 2)
we output relax(π), add the blocking clause π̄, and then
continue the search,1 the solver will output all and only
MCSes of F without repetition, stopping when it learns an
empty clause.
Proof: First, by Prop. 2 for every unenumerated MCS U
there exists a satisfying assignment π of Fbeq such that
relax(π) = U . Since U relaxes a different set of optional
clauses from every previously enumerated MCS, π must sat-
isfy all previously added blocking clauses D. Thus, the
proof of Prop. 2 continues to hold and π can still be gener-
ated by the solver even though its current formula isFbeq∪D.

Second, if π is a satisfying assignment found by the solver
operating on the augmented formula Fbeq ∪D, then the proof
in Prop. 2 that relax(π) is an MCS continues to hold. This
shows that only MCSes will be outputted. In particular, π
continues to satisfy F − relax(π) by the same argument.
Furthermore, the clause r′ used to show that no other clause
ci can be removed from relax(π) is generated by resolution
steps that do not involve the clauses of D—the clauses of D
only resolve against positive b-variables and r′ is generated
without any such resolution steps.

Finally, since π ⊧D, relax(π) cannot be the same as any
previously enumerated MCS. ◀

Previous MCS Algorithms
In (Marques-Silva et al. 2013) a number of MCS algorithms
are presented, including new algorithms that advance the
state-of-the-art. The two best performing algorithms are
CLD and ELS. ELS is an enhanced version of basic linear
search, where starting with S being the set of mandatory
clauses, we test each optional clause c to see whether S∪{c}
is satisfiable. If it is, we update S by adding c, and otherwise
we move on to the next optional clause. CLD also works with
a truth assignment π partitioning the formula F into the set
S of clauses that are satisfied by π, andF−S, the clauses fal-
sified by π (S must contain the mandatory clauses of F). It
tests the satisfiability of S ∧∨c∈(F−S)c. Note that ∨c∈(F−S)c
is a large disjunction of the literals appearing in the clauses
falsified by π. If this formula is unsatisfiable then there is no
way to satisfy S and any additional clauses of F − S, thus
F − S is an MCS. Otherwise, if the formula is satisfiable,
then we have found a new π′ which satisfies a superset of S,
and we can continue with the next iteration.

1The blocking clauses cannot be subsequently deleted.
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Marques-Silva et al. (Marques-Silva et al. 2013) suggest
three enhancements to these algorithms. The first enhance-
ment is to first find and exploit disjoint cores, the second
enhancement uses backbone literals, and the third enhance-
ment is to use each satisfying model found to grow the cur-
rently known satisfiable subset S.

While relaxation search does not exploit disjoint cores,
there is some relationship between our relaxation search
method and the second and third enhancements. The tech-
nique of backbone literals (Kilby et al. 2005) involves
adding the negation of the clause c to the formula whenever c
is added to the candidate MCS set. Adding ¬c to the formula
makes future iterations of the algorithms more efficient. In
relaxation search, a clause ci is considered for addition to
the MCS when bi is set to true. This can only happen if bi is
forced to true, and it can only be forced when every literal
of ci has already been forced to false. These forced literals
improve the efficiency of the search to verify that the current
b-variable settings yield an MCS.

Growing S by including all newly satisfied optional
clauses also has some relationship to relaxation search when
Fbeq is used. In particular, whenever propagation satisfies
an optional clause (by forcing one of its literals) the corre-
sponding b-variable is set to false in Fbeq (but not in Fb).
This corresponds to excluding this optional clause from the
candidate MCS.

Relaxation search, however, does not operate in the same
way as the algorithms described in (Marques-Silva et al.
2013). In particular, it can only force inclusion or exclusion
from the MCS (i.e., force the b-variables) via propagation
from the previous set of decisions. The other algorithms ex-
tract this information from complete calls to the SAT solver.

The main advantages of relaxation search over prior meth-
ods are mainly that it is conceptually simple and trivial to
implement. Relaxation search also has the ability to learn
clauses over the b-variables. These clauses impose con-
straints on what can and can’t be included in the MCS and
make searching for an MCS more efficient. It should be
noted, however, that some of the alternate algorithms are
also able to exploit clauses learnt from previous iterations
(both CLD and ELS call the SAT solver on incrementally
stronger formulas).

Empirical Results
We implemented the method for finding MCSes on top of
MINISAT (Eén and Sörensson 2003). The solver can be run
either to produce a single MCS or to enumerate all MCSes.
We compared the performance of our solver on both types
of tasks against all algorithms proposed in (Marques-Silva
et al. 2013). We refer to relaxation search as RS and use
BFD, BLS, CLD, EFD and ELS to refer to the algorithms
from (Marques-Silva et al. 2013). We used the implemen-
tation of these algorithms provided by the authors of that
paper, and invoked them using the recommended parame-
ters. Additionally, we use VBS-1 to refer to the Virtual Best
Solver when the choice is restricted to the algorithms from
(Marques-Silva et al. 2013), and VBS-2 to denote the Virtual
Best Solver that also includes RS.

For the comparison, we experimented with the set of 1343
instances used in (Marques-Silva et al. 2013), which con-
sists of a mix of (Weighted Partial) MAXSAT and SAT in-
stances. In the SAT instances, all clauses are considered op-
tional, while in MAXSAT instances, only the soft clauses are
optional. We ran all experiments on a cluster with 48-core
AMD Opteron 6176 nodes at 2.3GHz, with 378GB of RAM
under a timeout of 1800 seconds.
Generating one MCS. On the majority of instances we
tested generating the first MCS was very easy for all of the al-
gorithms. However, on 26 instances, none of the algorithms
could compute a single MCS within the timeout. On the rest
of the instances, RS was the most effective algorithm, as it
was able to find an MCS for 20 instances for which none of
the other algorithms could, and there were only 11 instances
for which RS was unable to produce an MCS but at least one
other algorithm could. We summarize these results in Ta-
ble 1. We see that RS outperforms all other solvers, as well
as VBS-1. This is confirmed by the cactus plot, shown in
Figure 1, where we see that RS dominates even VBS-1. Note
that the cactus plot is zoomed in to narrow range, which may
hide the fact that most instances are easy for all algorithms.

RS BFD BLS CLD EFD ELS VBS-1 VBS-2
RS - 37 38 23 34 32 20 0

BFD 9 - 4 1 2 1 0 0
BLS 10 4 - 0 2 0 0 0
CLD 11 17 16 - 15 12 0 0
EFD 9 5 5 2 - 1 0 0
ELS 11 8 7 3 5 - 0 0

VBS-1 11 19 19 3 16 12 - 0
VBS-2 11 39 39 23 36 32 20 -

Table 1: Comparison on computing a single MCS. The cell at row
i and column j indicates the number of instances for which solver
i produced an MCS but solver j was unable to do so.
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Figure 1: Cactus plot for generating one MCS. Note that the plot
is zoomed into the range between 1220 and 1320 instances.

Enumerating all MCSes. For the task of enumerating all
MCSes, we first observe that the situation is reversed from
generating a single MCS with respect to the hardness of the
instances. Here, a relatively small percentage of instances
solvable by any of the algorithms (given the time limit).
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RS BFD BLS CLD EFD ELS VBS-1 VBS-2
RS - 29 26 22 29 21 14 0

BFD 21 - 1 7 3 0 0 0
BLS 23 6 - 9 7 1 0 0
CLD 28 21 18 - 22 15 0 0
EFD 22 4 3 9 - 1 0 0
ELS 24 11 7 12 11 - 0 0

VBS-1 32 26 21 12 25 15 - 0
VBS-2 32 40 35 26 39 29 14 -

Table 2: Comparison on computing all MCSes. The cell at row i
and column j indicates the number of instances in which solver i
produced all MCSes but solver j was unable to do so.
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Figure 2: Cactus plot for generating all MCSes. Note that the plot
is zoomed into the range between 420 and 520 instances.

In this scenario, RS is in the middle individually, but it
is not significantly outperformed by any single other algo-
rithm. Furthermore, RS causes VBS-2 to improve over VBS-
1, as RS manages to generate all MCSes for 14 instances for
which none of the other solvers could.

Relaxation Search for MAXSAT
Relaxation search can also be used to solve MAXSAT, but it
no longer suffices to find a single satisfying assignment as
we did when solving MCS. To determine if the set S ⊆ O is
an MCS we need only check the subsets S′ of S to ensure that
F −S′ remains unsatisfiable. Furthermore, checking just the
linear number of sets S − c for all c ∈ S suffices: if removing
S − c fails to achieve satisfiability then removing any subset
of S−c will also fail to achieve satisfiability. With MAXSAT,
on the other hand, to verify that S is a minimum weight set
of optional clauses whose removal achieves satisfiability, we
must verify that all other subsets S′ of lower weight (includ-
ing S′ unrelated to S) fail to achieve satisfiability. In the
worst case, this requires checking an exponential number of
alternate subsets S′. Hence, for solving MAXSAT, relaxation
search must search through multiple satisfying assignments.

In MAXSAT the optional clauses are usually called soft
clauses while the mandatory clauses are called hard. As-
sociated with each soft clause c is a weight wt(c), and the
weight wt(S) of a set of soft clauses is equal to the sum of
the weights of the clauses in S. MAXSAT is the problem of
finding a correction set of minimum weight.

Branch and Bound.
It is natural to extend relaxation search to handle optimiza-
tion conditions R, using Branch and Bound. First we let
wt(bi), for any b-variable bi, to be equal to the weight of its
corresponding soft clause, wt(ci). If ρ is a path in the search
tree then wt(ρ) is simply the sum of the weights of its true
b-variables, as each such variable corresponds to falsifying
(in Fbeq) its corresponding soft clause.

A trivial lower bound on the cost of any correction set
extending a path ρ is wt(ρ). Given an upper bound on the
weight of a minimum weight correction set, we can force a
backtrack whenever the lower bound exceeds or meets the
already known upper bound. Similarly, if we find a sat-
isfying solution ρ we can update the upper bound to the
new lower value wt(ρ). At the completion of the search
the last satisfying assignment found will be a solution to the
MAXSAT problem.

Branch and Bound has been utilized for solving MAXSAT
in a number of prior works (Heras, Larrosa, and Oliveras
2008; Li et al. 2009). The difference here is that relaxation
search makes a commitment to which soft clauses to keep in
the top part of each search path. This means that the bounds
only need to be checked in the top part of the search tree
(where b-variable decisions are made), whereas the bottom
part of the search tree (where ordinary variables are decided
on) can be searched using a standard CDCL search. Re-
laxation search has some potential advantages over previous
Branch and Bound algorithms in that it can learn clauses
over the b-variables which capture conditions on which sets
of soft clauses can be simultaneously satisfied or falsified.
Other branch and bound algorithms must deal with the soft
clauses directly which limits the amount of learning they can
do (Davies and Bacchus 2011).

However, better techniques for computing lower bounds
would need to be developed and experimented with, in order
to obtain an efficient MAXSAT solver based on relaxation
search controlled by Branch and Bound.

Iterative Deepening Search.
Iterative deepening is a standard AI search technique that
could be applied with relaxation search. Iterative deepening
in this context corresponds to starting with a bound M that
is known to be less than or equal to the true minimum cost.
During relaxation search, only paths ρ with weight less than
or equal to M are explored—as soon as the weight of a path
becomes greater than M we backtrack. If a satisfying as-
signment is found it is a MAXSAT solution. Otherwise, we
can increase M to the minimum weight over those paths the
search backtracked from due to their weight exceeding M .
(Note that other paths backtracked from because of a logical
conflict need not be used to update M .)

Iterative deepening works in a manner somewhat similar
to a number of popular MAXSAT algorithms like WPM1 and
WPM2 (Ansótegui, Bonet, and Levy 2013). In these algo-
rithms an upper bound is imposed on the set of b-variables
that can be made true, and if the formula is still unsatisfiable
this bound is increased.

A key to making iterative deepening relaxation search
work efficiently, would be to find techniques to soundly keep
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some of the learnt clauses: only clauses learnt independently
of the bound M would be sound to use in the next iteration
after the bound is increased.

Logic Based Benders Relaxation Search.
One more approach to using relaxation search for MAXSAT
is to use a logic based Benders approach (Hooker and Ot-
tosson 2003). This is very similar to the approach used in
the MAXHS system (Davies and Bacchus 2013), except that
relaxation search is used in place of the SAT solver. We ex-
perimented with this approach and obtained good results.

This scheme utilizes a Mixed Integer Linear Program-
ming Solver (MIP); we used IBM CPLEX. The MIP solver
starts off with no constraints, a 0/1 variable corresponding
to each of the b-variables, and an objective function mini-
mizing the sum of the weights of the true b-variables. Each
stage starts by asking the MIP solver for an optimal solu-
tion. Initially the optimal solution would be to set all b-
variables to false. We then use this solution to guide re-
laxation search by making relaxation search set all of its b-
variable decisions to the value given by the MIP solution. If
this leads to a satisfying assignment then that assignment is
a MAXSAT solution. Otherwise at some stage, perhaps after
some search, relaxation search will force one or more of the
b-variables to a value different from the MIP solution. From
that forced b-variable, a clause over the b-variables can be
learnt. This clause expresses a condition over the b-variables
(a constraint on which soft clauses can and can’t be falsified)
that the MIP solver was not aware of (its returned solution
violated this condition). By continuing the relaxation search
we can collect some set of clauses over the b-variables that
are violated by the MIP solution.

After a sufficient number of such clauses have been col-
lected we can terminate relaxation search, give the learnt
clauses as new constraints to the MIP solver, and ask it again
to find an optimal solution. This new optimal solution is then
used to initiate another stage of guided relaxation search,
which once again tries to extend the provided setting of the
b-variables to a satisfying solution.

Empirical Results
We implemented the above logic based Benders relaxation
search approach for MAXSAT and tested it on all indus-
trial and crafted instances from the 2013 MAXSAT Evalua-
tion. We compared its performance against some success-
ful sequence-of-SAT solvers from that evaluation: MAXHS
(Davies and Bacchus 2013), WPM1, WPM2 (Ansótegui,
Bonet, and Levy 2013) and BINCD (Heras, Morgado, and
Marques-Silva 2011). We use VBS-1 to denote the virtual
best solver of all previous algorithms and VBS-2 to denote
the virtual best solver that also includes RS. We used the
same hardware and resources limits as in our experiments
computing MCSes.

The results show that RS is competitive with the state-
of-the-art. As Table 3 shows, it is not dominated by any
solver, nor does it dominate any other solver. In fact, for any
pair of solvers, there is a relatively large number of instances
which exactly one of the pair can solve within the timeout.
That notwithstanding, the addition of RS causes VBS-2 to

RS MAXHS BINCD WPM1 WPM2 VBS-1 VBS-2
RS - 96 472 272 267 7 0

MAXHS 116 - 443 344 264 0 0
BINCD 164 115 - 192 49 0 0
WPM1 142 194 370 - 148 0 0
WPM2 236 213 326 247 - 0 0
VBS-1 270 243 571 393 294 - 0
VBS-2 270 250 578 400 301 7 -

Table 3: Comparison on MAXSAT. The cell at row i and column
j indicates the number of instances solved by solver i but not by
solver j.

Category RS MAXHS BINCD WPM1 WPM2 VBS-1 VBS-2
MS crafted (167) 5 6 8 9 12 12 12

MS industrial (55) 14 5 22 21 17 23 25
PMS crafted (377) 298 300 238 178 248 306 308

PMS industrial (627) 384 446 445 377 473 550 552
WMS crafted (116) 28 33 16 10 18 35 35

WPMS crafted (340) 331 331 132 290 232 333 333
WPMS industrial (397) 295 254 186 340 324 359 360

total (2079) 1355 1375 1047 1225 1324 1618 1625

Table 4: Comparison on MAXSAT, showing the number of prob-
lems solved by different solvers by category (number of instances
in category in brackets).

improve over VBS-1 by 7 instances. Moreover, as we can see
in Table 4, it places near the top in total number of instances
solved, a fact which is also reflected in the cactus plot in
Figure 3.

Conclusion
In this paper we have presented the very simple yet flexi-
ble idea of relaxation search. Relaxation search uses two
simple techniques–blocking variables and controlling a SAT
solver’s decisions–to combine what is usually two separate
searches into one CDCL search tree. A trivial modification
of the SAT solver’s decisions yields an improvement in the
state-of-the-art for computing minimal correction sets. We
suggested a range of new approaches to solving MAXSAT,
all based on utilizing relaxation search. We implemented
one of these approaches, and obtained a near state-of-the-
art MAXSAT solver. Our conclusion is that relaxation search
offers a very flexible and easy to implement way of develop-
ing new algorithms for solving problems involving optional
clauses.
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