
Artificial Intelligence 212 (2014) 59–79
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Computational protein design as an optimization problem ✩

David Allouche a, Isabelle André b,c,d, Sophie Barbe b,c,d, Jessica Davies a,
Simon de Givry a, George Katsirelos a, Barry O’Sullivan e, Steve Prestwich e,
Thomas Schiex a,∗, Seydou Traoré b,c,d

a MIAT, UR-875, INRA, F-31320 Castanet Tolosan, France
b Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
c CNRS, UMR5504, F-31400 Toulouse, France
d INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
e Insight Centre for Data Analytics, University College Cork, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 September 2013
Received in revised form 22 February 2014
Accepted 10 March 2014
Available online 26 March 2014

Keywords:
Weighted constraint satisfaction problem
Soft constraints
Neighborhood substitutability
Constraint optimization
Graphical model
Cost function networks
Integer linear programming
Quadratic programming
Computational protein design
Bioinformatics
Maximum a posteriori inference
Maximum satisfiability

Proteins are chains of simple molecules called amino acids. The three-dimensional shape
of a protein and its amino acid composition define its biological function. Over millions of
years, living organisms have evolved a large catalog of proteins. By exploring the space of
possible amino acid sequences, protein engineering aims at similarly designing tailored
proteins with specific desirable properties. In Computational Protein Design (CPD), the
challenge of identifying a protein that performs a given task is defined as the combinatorial
optimization of a complex energy function over amino acid sequences.
In this paper, we introduce the CPD problem and some of the main approaches that have
been used by structural biologists to solve it, with an emphasis on the exact method
embodied in the dead-end elimination/A∗ algorithm (DEE/A∗). The CPD problem is a
specific form of binary Cost Function Network (CFN, aka Weighted CSP). We show how
DEE algorithms can be incorporated and suitably modified to be maintained during search,
at reasonable computational cost.
We then evaluate the efficiency of CFN algorithms as implemented in our solver
toulbar2, on a set of real CPD instances built in collaboration with structural biologists.
The CPD problem can be easily reduced to 0/1 Linear Programming, 0/1 Quadratic
Programming, 0/1 Quadratic Optimization, Weighted Partial MaxSAT and Graphical Model
optimization problems. We compare toulbar2 with these different approaches using a
variety of solvers. We observe tremendous differences in the difficulty that each approach
has on these instances.
Overall, the CFN approach shows the best efficiency on these problems, improving by
several orders of magnitude against the exact DEE/A∗ approach. The introduction of dead-
end elimination before or during search allows to further improve these results.

© 2014 Elsevier B.V. All rights reserved.

✩ This paper is an invited revision of a paper which first appeared at the CP-2012 conference.

* Corresponding author.
E-mail address: Thomas.Schiex@toulouse.inra.fr (T. Schiex).
http://dx.doi.org/10.1016/j.artint.2014.03.005
0004-3702/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2014.03.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:Thomas.Schiex@toulouse.inra.fr
http://dx.doi.org/10.1016/j.artint.2014.03.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2014.03.005&domain=pdf

60 D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79
1. Introduction

A protein is a sequence of basic building blocks called amino acids. Proteins are involved in nearly all structural, cat-
alytic, sensory, and regulatory functions of living systems [26]. Performing these functions generally requires that proteins
are assembled into well-defined three-dimensional structures specified by their amino acid sequence. Over millions of
years, natural evolutionary processes have shaped and created proteins with novel structures and functions by means of
sequence variations, including mutations, recombinations and duplications. Protein engineering techniques coupled with
high-throughput automated procedures make it possible to mimic the evolutionary process on a greatly accelerated time-
scale, and thus increase the odds to identify the proteins of interest for technological uses [71]. This holds great interest for
medicine, synthetic biology, nanotechnologies and biotechnologies [67,75,39]. In particular, protein engineering has become
a key technology to generate tailored enzymes able to perform novel specific transformations under specific conditions. Such
biochemical transformations enable to access a large repertoire of small molecules for various applications such as biofuels,
chemical feedstocks and therapeutics [45,11]. The development of enzymes with required substrate selectivity, specificity
and stability can also be profitable to overcome some of the difficulties encountered in synthetic chemistry. In this field, the
in vitro use of artificial enzymes in combination with organic chemistry has led to innovative and efficient routes for the pro-
duction of high value molecules while meeting the increasing demand for ecofriendly processes [61,13]. Nowadays, protein
engineering is also being explored to create non-natural enzymes that can be combined in vivo with existing biosynthetic
pathways, or be used to create entirely new synthetic metabolic pathways not found in nature to access novel biochemical
products [28]. These latest approaches are central to the development of synthetic biology. One significant example in this
field is the full-scale production of the antimalarial drug (artemisinin) from the engineered bacteria Escherichia coli [66].

With a choice among 20 naturally occurring amino acids at every position, the size of the combinatorial sequence space
is out of reach for current experimental methods, even for short sequences. Computational protein design (CPD) methods
therefore try to intelligently guide the protein design process by producing a collection of proteins, that is rich in functional
proteins, but small enough to be experimentally evaluated. The challenge of choosing a sequence of amino acids to perform
a given task is formulated as an optimization problem, solvable computationally. It is often described as the inverse problem
of protein folding [70]: the three-dimensional structure is known and we have to find amino acid sequences that fold into
it. It can also be considered as a highly combinatorial variant of side-chain positioning [82] because of possible amino acid
mutations.

Various computational methods have been proposed over the years to solve this problem and several success stories
have demonstrated the outstanding potential of CPD methods to engineer proteins with improved or novel properties. CPD
has been successfully applied to increase protein thermostability and solubility; to alter specificity towards some other
molecules; and to design various binding sites and construct de novo enzymes (see for example [46]).

Despite these significant advances, CPD methods must still mature in order to better guide and accelerate the construc-
tion of tailored proteins. In particular, more efficient computational optimization techniques are needed to explore the vast
combinatorial space, and to facilitate the incorporation of more realistic, flexible protein models. These methods need to be
capable of not only identifying the optimal model, but also of enumerating solutions close to the optimum.

We begin by defining the CPD problem with rigid backbone, and then introduce the approach commonly used in struc-
tural biology to exactly solve CPD. This approach relies on dead-end elimination (DEE), a specific form of dominance analysis
that was introduced in [24], and later strengthened in [37]. If this polynomial-time analysis does not solve the problem, an
A∗ algorithm is used to identify an optimal protein design.

We observe that the rigid backbone CPD problem can be naturally expressed as a Cost Function Network (aka Weighted
Constraint Satisfaction Problem). In this context, DEE is similar to neighborhood substitutability [27]. We show how DEE can
be suitably modified so as to be maintained during search at reasonable computational cost, in collaboration with the usual
soft local consistencies.

To evaluate the efficiency of the CFN approach, we model the CPD problem using several combinatorial optimization
formalisms. We compare the performance of the 0/1 linear programming and 0/1 quadratic programming solver cplex,
the semidefinite programming based Boolean quadratic optimization tool biqmac, several weighted partial MaxSAT solvers,
the Markov random field optimization solvers daoopt and mplp [80], and the CFN solver toulbar2, against that of
a well-established CPD approach implementing DEE/A∗ , on various realistic protein design problems. We observe drastic
differences in the difficulty that these instances represent for different solvers, despite often closely related models and
solving techniques.

2. The computational protein design approach

A protein is a sequence of organic compounds called amino acids. All amino acids consist of a common peptidic core and
a side chain with varying chemical properties (see Fig. 1). In a protein, amino acid cores are linked together in sequence
to form the backbone of the protein. A given protein folds into a 3D shape that is determined from the sequence of amino
acids. Depending upon the amino acid considered, the side chain of each individual amino acid can be rotated along up to
4 dihedral angles relative to the backbone. After Anfinsen’s work [3], the 3D structure of a protein can be considered to be
defined by the backbone and the set of side-chain rotations. This is called the conformation of the protein and it determines
its chemical reactivity and biological function.

D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79 61
Fig. 1. A representation of how amino acids, carrying specific side chains R and R ′ , can link together through their core to form a chain (modified from
Wikipedia). One molecule of water is also generated in the process.

Fig. 2. A local view of combinatorial sequence exploration considering a common backbone. Changes can be caused by amino acid identity substitutions
(for example D/L or R/Q) or by amino acid side-chain reorientations (rotamers) for a given amino acid. A typical rotamer library for one amino acid is
shown on the right (ARG = Arginine).

Computational Protein Design is faced with several challenges. The first lies in the exponential size of the conformational
and protein sequence space that has to be explored, which rapidly grows out of reach of computational approaches. Another
obstacle to overcome is the accurate structure prediction for a given sequence [47,38]. Therefore, the design problem is
usually approached as an inverse folding problem [70], in order to reduce the problem to the identification of an amino acid
sequence that can fold into a target 3D-scaffold that matches the design objective [9]. In structural biology, the stability of a
conformation can be directly evaluated through the energy of the conformation, a stable fold being of minimum energy [3].

In CPD, two approximations are common. First, it is assumed that the resulting designed protein retains the overall
folding of the chosen scaffold: the protein backbone is considered fixed. At specific positions chosen by the computational
biologist (or automatic selection), the amino acid can be modified by changing the side chain as shown in Fig. 2. Second,
the domain of conformations available to each amino acid side chain is actually continuous. This continuous domain is ap-
proximated using a set of discrete conformations defined by the value of their inner dihedral angles. These conformations,
or rotamers [44], are derived from the most frequent conformations in the experimental repository of known protein struc-
tures, PDB (Protein Data Bank, www.wwpdb.org). Different discretizations have been used in constraint-based approaches
to protein structure prediction [10].

The CPD is then formulated as the problem of identifying a conformation of minimum energy via the mutation of a
specific subset of amino acid residues, i.e. by affecting their identity and their 3D orientations (rotamers). The conformation
that minimizes the energy is called the GMEC (Global Minimum Energy Conformation).

In order to solve this problem, we need a computationally tractable energetic model to evaluate the energy of any
combination of rotamers. We also require computational optimization techniques that can efficiently explore the sequence-
conformation space to find the sequence-conformation model of global minimum energy.

Energy functions Various energy functions have been defined to make the energy computation manageable [7]. These energy
functions include non-bonded terms such as van der Waals and electrostatics terms, often in conjunction with empirical
contributions describing hydrogen bonds. The surrounding solvent effect is generally treated implicitly as a continuum.
Statistical terms may be added in order to approximate the effect of mutations on the unfolded state or the contribution of

http://www.wwpdb.org

62 D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79
conformational entropy. Finally, collisions between atoms (steric clashes) are also taken into account. In this work, we used
the state-of-the-art energy functions implemented in the CPD dedicated tool osprey 2.0 [30].

These energy functions can be reformulated in such a way that the terms are locally decomposable. Then, the energy of
a given protein conformation, defined by a choice of one specific amino acid with an associated conformation (rotamer) for
each residue, can be written as:

E = E∅ +
∑

i

E(ir) +
∑

i

∑
j>i

E(ir, js) (1)

where E is the potential energy of the protein, E∅ is a constant energy contribution capturing interactions between fixed
parts of the model, E(ir) is the energy contribution of rotamer r at position i capturing internal interactions (and a reference
energy for the associated amino acid) or interactions with fixed regions, and E(ir, js) is the pairwise interaction energy
between rotamer r at position i and rotamer s at position j [24]. This decomposition brings two properties:

• Each term in the energy can be computed for each amino acid/rotamer (or pair for E(ir, js)) independently.
• These energy terms, in kcal/mol, can be precomputed and cached, allowing to quickly compute the energy of a design

once a specific rotamer (an amino acid-conformation pairing) has been chosen at each non-rigid position.

The rigid backbone discrete rotamer Computational Protein Design problem is therefore defined by a fixed backbone with
a corresponding set of positions (residues), a rotamer library and a set of energy functions. Each position i of the backbone
is associated with a subset Di of all (amino-acid, rotamer) pairs in the library. The problem is to identify at each position i
a pair from Di such that the overall energy E is minimized. In practice, based on expert knowledge or on specific design
protocols, each position can be fixed (Di is a singleton), flexible (all pairs in Di have the same amino-acid) or mutable (the
general situation).

2.1. Exact CPD methods

The protein design problem as defined above, with a rigid backbone, a discrete set of rotamers, and pairwise energy
functions has been proven to be NP-hard [74]. Hence, a variety of meta-heuristics have been applied to it, including Monte
Carlo simulated annealing [53], genetic algorithms [77], and other algorithms [25]. The main weakness of these approaches
is that they may remain stuck in local minima and miss the GMEC without notice.

However, there are several important motivations for solving the CPD problem exactly. First, because they know when
an optimum is reached, exact methods may stop before meta-heuristics. Voigt et al. [84] reported that the accuracy of
meta-heuristics also degrades as problem size increases. More importantly, the use of exact search algorithms becomes
crucial in the usual experimental design cycle, that goes through modeling, solving, protein synthesis and experimental
evaluation: when unexpected experimental results are obtained, the only possible culprit lies in the CPD model and not in
the algorithm.

Current exact methods for CPD mainly rely on the dead-end elimination (DEE) theorem [24,19] and the A∗ algorithm [58,
33]. DEE is used as a pre-processing technique and removes rotamers that are locally dominated by other rotamers, until
a fixpoint is reached. The rotamer r at position i (denoted by ir) is removed if there exists another rotamer u at the same
position such that [24]:

E(ir) +
∑
j �=i

min
s

E(ir, js) � E(iu) +
∑
j �=i

max
s

E(iu, js) (2)

This condition guarantees that for any conformation with this r, we get a conformation with lower energy if we sub-
stitute u for r. Then, r can be removed from the list of possible rotamers at position i. This local dominance criterion was
later improved by Goldstein [37] by directly comparing energies of each rotamer in the same conformation:

E(ir) − E(iu) +
∑
j �=i

min
s

[
E(ir, js) − E(iu, js)

]
� 0 (3)

where the best and worst-cases are replaced by the worst difference in energy. It is easy to see that this condition is
always weaker than the previous one, and therefore applicable to more cases. These two properties define polynomial time
algorithms that prune dominated values.

Since its introduction in 1992 by Desmet, DEE has become the fundamental tool of exact CPD, and various extensions
have been proposed [73,63,32]. All these DEE criteria preserve the optimum but may remove suboptimal solutions. However
CPD is NP-hard, and DEE cannot solve all CPD instances. Therefore, DEE pre-processing is usually followed by an A∗ search.
After DEE pruning, the A∗ algorithm allows to expand a sequence-conformation tree, so that sequence-conformations are
extracted and sorted on the basis of their energy values. The admissible heuristic used by A∗ is described in [33].

When the DEE algorithm does not significantly reduce the search space, the A∗ search tree can be too slow or memory
demanding and the problem cannot be solved. Therefore, to circumvent these limitations and increase the ability of CPD
to tackle problems with larger sequence-conformation spaces, novel alternative methods are needed. We now describe
alternative state-of-the-art methods for solving the GMEC problem that offer attractive alternatives to DEE/A∗ .

D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79 63
3. From CPD to CFN

CPD instances can be directly represented as Cost Function Networks.

Definition 1. A Cost Function Network (CFN) is a pair (X, W) where X = {1, . . . ,n} is a set of n variables and W is a set of
cost functions. Each variable i ∈ X has a finite domain Di of values that can be assigned to it. A value r ∈ Di is denoted ir .
For a set of variables S ⊆ X , D S denotes the Cartesian product of the domains of the variables in S . For a given tuple of
values t , t[S] denotes the projection of t over S . A cost function w S ∈ W , with scope S ⊆ X , is a function w S : D S �→ [0,k]
where k is a maximum integer cost used for forbidden assignments.

We assume, without loss of generality, that every CFN includes at least one unary cost function wi per variable i ∈ X and
a nullary cost function w∅ . All costs being non-negative, the value of this constant function, w∅ , provides a lower bound on
the cost of any assignment.

The Weighted Constraint Satisfaction Problem (WCSP) is to find a complete assignment t minimizing the combined
cost function

⊕
w S ∈W w S (t[S]), where a ⊕ b = min(k,a + b) is the k-bounded addition. This optimization problem has an

associated NP-complete decision problem. Notice that if k = 1, then the WCSP is nothing but the classical CSP (and not the
Max-CSP).

Modeling the CPD problem as a CFN is straightforward. The set of variables X has one variable i per residue i. The
domain of each variable is the set of (amino acid,conformation) pairs in the rotamer library used. The global energy function
can be represented by 0-ary, unary and binary cost functions, capturing the constant energy term w∅ = E∅ , the unary energy
terms wi(r) = E(ir), and the binary energy terms wij(r, s) = E(ir, js), respectively. In the rest of the paper, for simplicity and
consistency, we use notations E∅ , E(·) and E(·, ·) to denote cost functions and restrict ourselves to binary CFN (extensions
to higher orders are well-known).

Notice that there is one discrepancy between the original formulation and the CFN model: energies are represented as
arbitrary floating point numbers while CFN uses positive costs. This can simply be fixed by first subtracting the minimum
energy from all energies. These positive costs can then be multiplied by a large integer constant M and rounded to the
nearest integer if integer costs are required.

3.1. Local consistency in CFN

The usual exact approach to solve a CFN is to use a depth-first branch-and-bound algorithm (DFBB). A family of efficient
and incrementally computed lower bounds is defined by local consistency properties.

Node consistency [54] (NC) requires that the domain of every variable i contains a value r that has a zero unary cost
(E(ir) = 0). This value is called the unary support for i. Furthermore, in the scope of the variable i, all values should have a
cost below k (∀r ∈ Di, E∅ + E(ir) < k).

Soft arc consistency (AC∗) [79,54] requires NC and also that every value r of every variable i has a support on every cost
function E(ir, js) involving i. A support of ir is a value js ∈ D j such that E(ir, js) = 0.

Stronger local consistencies such as Existential Directional Arc Consistency (EDAC) have also been introduced [55].
See [14] for a review of existing local consistencies.

As in classical CSP, enforcing a local consistency property on a problem P involves transforming P = (X, W) into a
problem P ′ = (X, W ′) that is equivalent to P (all complete assignments keep the same cost) and that satisfies the considered
local consistency property. Enforcing a local consistency may increase E∅ and thus improve the lower bound on the optimal
cost. This bound is used to prune the search tree during DFBB.

Local consistency is enforced using Equivalence Preserving Transformations (EPTs) that move costs between different cost
functions [79,54,57,18,55,15,17,16,14]. For example, a variable i violating the NC property because all its values ir have
a non-zero E(ir) cost, can be made NC by subtracting the minimum cost from all E(ir) and adding this cost to E∅ . The
resulting network is equivalent to the original network, but it has an increased lower bound E∅ .

Interestingly, in CPD, the admissible heuristic used in the DEE/A∗ algorithm at depth d of the search tree is [33]:

d∑
i=1

[
E(ir) +

d∑
j=i+1

E(ir, js)

]
︸ ︷︷ ︸

Assigned

+
n∑

j=d+1

[
min

s

(
E(js) +

d∑
i=1

E(ir, js)

︸ ︷︷ ︸
Forward checking

+
n∑

k= j+1

min
u

E(js,ku)

︸ ︷︷ ︸
DAC counts

)]

From a WCSP perspective, interpreting energies as cost functions, this heuristic is exactly the PFC-DAC lower bound [85,
56] used in WCSP. In WCSP, this lower bound is considered obsolete, and indeed it is proven to be weaker than soft arc
consistency [79].

3.2. Maintaining dead-end elimination

Dead-end elimination is the key algorithmic tool of exact CPD solvers. From an AI perspective, in the context of CSP
(if k = 1), the DEE equation (3) is equivalent to neighborhood substitutability [27]. For MaxSAT, it is equivalent to the

64 D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79
Dominating 1-clause rule [68]. In the context of CFN, the authors of [59] introduced partial soft neighborhood substitutability
with a definition that is equivalent to Eq. (3) for pairwise decomposed energies.

The DEE equation (3) (cf. Section 2.1) can be strengthened and adapted to the CFN context as follows:

E(ir) − E(iu) +
∑
j �=i

min
s

E∅+E(ir)+E(js)+E(ir , js)<k

[
E(ir, js) − E(iu, js)

]
� 0 (4)

This new condition differs from Eq. (3) by the fact that some values have been discarded from the min operation. These
values correspond to forbidden assignments because the sum of the corresponding binary term plus the two unary costs
plus the current lower bound E∅ (produced by soft arc consistency) is greater than or equal to the current upper bound k.
Such values s do not need to be considered by the min operation because {ir, js} does not belong to any optimal solution,
whereas {iu, js} may.1

Example 1. Let X = {1,2,3} be a set of three variables with domains D1 = {a,b, c}, D2 = {e, f }, and D3 = {g,h}. Suppose
there are three cost functions, where E(1b) = 2, E(1a,2e) = 2, E(1b,2e) = E(1c,2 f) = 1, E(1a,3g) = E(1c,3h) = 2, and all
other costs are null. Let k = 3. The problem is EDAC. Then, 1a dominates 1b as shown by the new rule of Eq. (4) that
is satisfied: E(1b) − E(1a) + E(1b,2 f) − E(1a,2 f) + min(E(1b,3g) − E(1a,3g), E(1b,3h) − E(1a,3h)) = 2 − 0 + 0 − 2 � 0,
discarding tuple {2e} because E(1b,2e)+ E(1b)+ E(2e)+ E∅ = 1+2+0+0 � k, whereas the old rule of Eq. (3) is unsatisfied:
E(1b) − E(1a)+ min(E(1b,2e)− E(1a,2e), E(1b,2 f)− E(1a,2 f)) + min(E(1b,3g) − E(1a,3g), E(1b,3h)− E(1a,3h)) = 2 − 0 −
1 − 2 < 0.

In the following, we recall how to enforce Eq. (4) by an immediate adaptation of the original algorithm in [59]. Then,
we present a modified version to partially enforce a novel combination of Eq. (4) and Eq. (2) with a much lower time
complexity.

3.2.1. Enforcing DEE
Assuming a soft arc consistent WCSP (see e.g., W-AC∗2001 algorithm in [57]), enforcing DEE is described by Algorithm 1.

For each variable i, all the pairs of values (u, r) ∈ Di × Di with u < r are checked by the function DominanceCheck to see
if r is dominated by u or, if not, vice versa (line 3). At most one dominated value is added to the value removal queue �

at each inner loop iteration (line 2). Removing dominated values (line 4) can make the problem arc inconsistent, requiring
us to enforce soft arc consistency again. Procedure AC∗-DEE successively enforces AC∗ and DEE until no value removal is
made by the enforcing algorithms.

Function DominanceCheck(i, u, r) computes the sum of worst-cost differences as defined by Eq. (4) and returns a non-
empty set containing value r if Eq. (4) is true, meaning that r is dominated by value u. It exploits early breaks as soon as
Eq. (4) can be falsified (lines 5 and 6). Worst-cost differences are computed by the function getDifference(j, i, u, r) applied
to every binary cost function related to i, discarding forbidden assignments with {ir, js} (line 8), as suggested by Eq. (4).
Worst-cost differences are always negative or zero (line 7) due to AC∗ .

The worst-case time complexity of getDifference is O (d) for binary WCSPs. DominanceCheck is O (nd) assuming a com-
plete graph. Thus, the time complexity of one iteration of Algorithm 1 (DEE) is O (nd2nd + nd) = O (n2d3). Interleaving DEE
and AC∗ until a fixed point is reached is done at most nd times, resulting in a worst-case time complexity in O (n3d4). Its
space complexity is O (nd2) when using the residues structure [59].

Note that using the new Eq. (4) (line 8) or Eq. (3) (without line 8) does not change the complexities.

3.2.2. Enforcing DEE1

In order to reduce the time (and space) complexity of pruning by dominance, we test only one pair of values per variable.
Hence the name, DEE1, for the new algorithm described in Algorithm 2. We select the pair (u, r) ∈ Di × Di in an optimistic
way such that u is associated with the minimum unary cost and r to the maximum unary cost (lines 9 and 10). Because
arc consistency also implies node consistency, we always have E(iu) = 0.2 If all the unary costs (including the maximum)
are equal to zero (line 11), we select as r the maximum domain value (or its minimum if this value is already used by u).
By doing so, we should favor more pruning on max-closed or submodular subproblems.3

Instead of just checking the new Eq. (4) for the pair (u, r) alone, we use the opportunity to also check the original DEE
rule of Eq. (2) for all the pairs (u, v) such that v ∈ Di \ {u}. This is done in the function MultipleDominanceCheck (lines 15
and 16). Notice that Eq. (2) simplifies to E(iv) � ubu (line 16) due to AC∗ . This function computes at the same time the
sum of maximum costs ubu for value u (lines 12 and 13) and the sum of worst-cost differences δur for the pair (u, r).
The new function getDifference-Maximum(j, i, u, r) now returns the worst-cost difference, as suggested by Eq. (4), and also
the maximum cost in E(i, j) for i assigned u. When the maximum cost of a value is null for all its cost functions, we can

1 Depending on the definition of soft arc consistency, from [54] (as presented in Section 3.1) or from [18], Eq. (4) is stronger than or equivalent to Eq. (3).
2 In practice, we set the value u to the unary support offered by NC [54] or EDAC [55].
3 Assuming a problem with two variables i and j having the same domain and a single submodular cost function, e.g., E(iu , js) = 0 if u � s else u − s,

or a single max-closed constraint, e.g., u < s, then DEE1 assigns min(Di) to i and max(D j) to j.

D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79 65
Algorithm 1: Enforce DEE [59].

Procedure DEE((X, W): AC∗ consistent WCSP)

� := ∅ ;
1 foreach i ∈ X do
2 foreach (u, r) ∈ Di × Di such that u < r do

R := DominanceCheck(i, u, r) ;
3 if R = ∅ then R := DominanceCheck(i, r, u) ;

� := � ∪ R ;

4 foreach ir ∈ � do
remove r from Di ;
Q := Q ∪ {i} ;

/* Check if value u dominates value r */
Function DominanceCheck(i, u, r): set of dominated values

δur := E(ir) − E(iu) ;
5 if δur < 0 then return ∅ ;

foreach j ∈ X \ {i} do
δ := getDifference(j, i, u, r) ;
δur := δur + δ ;

6 if δur < 0 then return ∅ ;

return {ir} /* δur � 0 */ ;

/* Compute smallest difference in costs when using a instead of b */
Function getDifference(j, i, u, r): cost

7 δur := 0 ;
foreach s ∈ D j do

8 if E(ir, js) + E(ir) + E(js) + E∅ < k then
δur := min(δur, E(ir, js) − E(iu, js)) ;

return δur /* δur � 0 */ ;

/* Enforce AC∗ and DEE */
Procedure AC∗-DEE

Q := X ;
while Q �= ∅ do

W-AC∗2001(Q) ;
DEE(Q) ;

directly remove all the other values in the domain avoiding any extra work (line 14). Finally, if the selected pair (u, r) for
the variable i satisfies Eq. (4), removing the value r of Di , then a new pair for i will be checked at the next iteration of
DEE1 in the modified procedure AC∗-DEE1 (replacing DEE by DEE1 in AC∗-DEE).

Notice that DEE1 is equivalent to DEE on problems with Boolean variables, such as MaxSAT. For problems with non-
Boolean domains, DEE1 is still able to detect and prune several values per variable. Clearly, its time (resp. space) complexity
is O (n3d2) (resp. O (n) using only one residue per variable), reducing by a factor d2 the time and space complexity compared
to DEE.

4. Computational protein design instances

In our initial experiments with CPD in [2], we built 12 designs using the CPD dedicated tool osprey 1.0. A new version
of osprey being available since, we used this new 2.0 version [30] for all computations. Among different changes, this new
version uses a modified energy field that includes a new definition of the “reference energy” and a different rotamer library.
We therefore rebuilt the 12 instances from [2] and additionally created 35 extra instances from existing published designs,
as described in [83]. We must insist on the fact that the 12 rebuilt instances do not define the same energy landscape or
search space as the initial [2]’s instances (due to changes in rotamers set).

These designs include protein structures derived from the PDB that were chosen for the high resolution of their 3D-
structures, their use in the literature, and their distribution of sizes and types. Diverse sizes of sequence-conformation
combinatorial spaces are represented, varying by the number of mutable residues, the number of alternative amino
acid types at each position and the number of conformations for each amino acid. The Penultimate rotamer library was
used [64]. Over these 47 designs, we only report results on the 40 designs for which a GMEC could be identified and

66 D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79
Algorithm 2: Enforce DEE1.

Procedure DEE1((X, W): AC∗ consistent WCSP)

� := ∅ ;
foreach i ∈ X do

9 u := arg minv∈Di
E(iv) ;

10 r := arg maxv∈Di
E(iv) ;

11 if u = r /* ∀v ∈ Di, E(iv) = 0 */ then
if u = max(Di) then

r := min(Di) ;
else

r := max(Di) ;

R := MultipleDominanceCheck(i, u, r) ;
if R = ∅ then R := MultipleDominanceCheck(i, r, u) ;
� := � ∪ R ;

foreach ir ∈ � do
remove r from Di ;
Q := Q ∪ {i} ;

/* Check if value u dominates value r and possibly other values */
Function MultipleDominanceCheck(i, u, r): set of dominated values

δur := E(ir) − E(iu) ;
if δur < 0 then return ∅ ;

12 ubu := E(iu) ;
foreach j ∈ X \ {i} do

(δ, ub) := getDifference-Maximum(j, i, u, r) ;
δur := δur + δ ;

13 ubu := ubu + ub ;
if δur < 0 then return ∅ ;

14 if ubu = 0 then return {iv |v ∈ Di \ {u}} ;
R := {ir} /* δur � 0 */ ;

15 foreach v ∈ Di \ {u} do
16 if (E(iv) � ubu) then R := R ∪ {iv } ;

return R ;

/* Compute smallest cost difference and maximum cost for value u */
Function getDifference-Maximum(j, i, u, r): pair of costs

δur := 0 ;
ubu := 0 ;
foreach s ∈ D j do

if E(ir, js) + E(ir) + E(js) + E∅ < k then
δur := min(δur, E(ir, js) − E(iu, js)) ;

ubu := max(ubu, E(iu, js)) ;

return (δur, ubu) ;

/* Enforce AC∗ and DEE1 */
Procedure AC∗-DEE1 ()

Q := X ;
while Q �= ∅ do

W-AC∗2001(Q) ;
DEE1(Q) ;

proven by one of the tested solvers. All 47 designs are available for download both in native and WCSP formats at
http://genotoul.toulouse.inra.fr/~tschiex/CPD-AIJ.

Preparation of CPD instances Missing heavy atoms in crystal structures and hydrogen atoms were added with the tleap mod-
ule of the AMBER9 software package [12]. Each molecular system was then minimized in implicit solvent (Generalized Born
model [42]) using the Sander program and the all-atom ff99 force field of AMBER9. All E∅ , E(ir), and E(ir, js) energies of
rotamers (see Eq. (1)) were pre-computed using osprey 2.0. The energy function consisted of the Amber electrostatic, van
der Waals and the solvent terms. Rotamers and rotamer pairs leading to sterical clashes between molecules are associated

http://genotoul.toulouse.inra.fr/~tschiex/CPD-AIJ

D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79 67
Fig. 3. Histograms of E(1,12) costs (left) and of median costs of all binary cost functions (right) for the 1ENH instance (M = 102).

with huge energies (1038) representing forbidden combinations. For n residues to optimize with d possible (amino acid,
conformation) pairs, there are n unary and n.(n−1)

2 binary cost functions that can be computed independently.

Translation to WCSP format The native CPD problems were translated to the WCSP format before any pre-processing. To
convert the floating point energies of a given instance to non-negative integer costs, we subtracted the minimum energy to
all energies and then multiplied energies by an integer constant M and rounded to the nearest integer. The initial upper
bound k is set to the sum, over all cost functions, of the maximum energies (excluding forbidden sterical clashes). High
energies corresponding to sterical clashes are represented as costs equal to the upper bound k (the forbidden cost). The
resulting WCSP model was used as the basis for all other solvers (except osprey). To keep a cost magnitude compatible
with all the compared solvers, we used M = 102. Experiments with a finer discretization (M = 108) were used in previous
experiments [83] with no significant difference in computing efforts.

4.1. A new cost-based variable ordering heuristics

We analyzed the distribution of costs for the CPD problem in order to infer a new variable ordering heuristics. Fig. 3-left
shows the histogram of a typical binary cost function for one of the CPD instances (1ENH, one of the open instances).
Although the distribution has several modes, we chose to collect as an important feature of a cost function its median cost,
which is less sensitive to extrema than the mean cost.

Fig. 3-right shows the histogram of median costs for this instance. The problem has 666 binary cost functions and we
collected the median cost in every cost function. The distribution of median costs has a heavy right tail. This feature can
be exploited during search to focus on the most important variables first. For that, we define a new dynamic variable
ordering heuristics selecting at each node of the search tree the variable minimizing the ratio of its current domain size
divided by the sum of the median costs of all its current cost functions (including its unary cost function). The sum of the
median costs gives a rough estimate of the average lower bound increase if we select that variable, relating this heuristics
to strong branching in Operations Research [62,1]. In order to save computation time, median costs of binary cost functions
are computed only once, just after enforcing EDAC (and DEE), before the search.

5. Alternative models for the CPD

The rigid backbone CPD problem has a simple formulation and can be easily written in a variety of combinatorial
optimization frameworks. To evaluate CFN algorithms, the new DEE1 algorithm and our domain specific heuristics, we
compared these different variants with a variety of other solvers, coming from different fields. We present now the different
models used in the comparison.

5.1. CPD as a probabilistic graphical model

The notion of graphical model has been mostly associated with probabilistic graphical models, the most famous examples of
these are Markov random fields and Bayesian networks [49]. In those formalisms, a concise description of a joint distribution
of probabilities over a set of variables is obtained through a factorization in local terms, involving only few variables. For
terms involving at most two variables, if vertices represent variables and edges represent terms, a factorization can be
represented as a graph, hence the name of graphical models. The same idea is used for concisely describing set of solutions
(relations) in CSP or cost distributions in CFN.

68 D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79
Definition 2. A discrete Markov random field (MRF) is a pair (X,Φ) where X = {1, . . . ,n} is a set of n random variables and
� is a set of potential functions. Each variable i ∈ X has a finite domain Di of values that can be assigned to it. A potential
function φS ∈ �, with scope S ⊆ X , is a function φS : D S �→ R.

A discrete Markov random field (MRF) implicitly defines a non-normalized probability distribution over X . For a given
tuple t , the probability of t is defined as:

P (t) = exp(−∑
φS ∈� φS(t[S]))

Z
where Z is a normalizing constant.

From the sole point of view of optimization, the problem of finding an assignment of maximum probability, also known
as the maximum a posteriori (MAP) assignment in an MRF or a minimum cost solution of a CFN (the Weighted CSP) are
equivalent by monotonicity of the exp() function. Some technical differences remain: CFN are restricted to non-negative
costs (and some tools are restricted to integer costs). Being focused on optimization, CFN also emphasizes the possible
existence of a finite upper bound k that leads to the use of bounded addition to combine costs instead of plain addition of
potentials in MRFs.

The CPD problem can therefore directly be modeled as the MAP problem in an MRF exactly as we have described for CFN
before, additive using potentials to capture energies (see for example [86]). Combinations of values with cost k (forbidden)
are mapped to an infinite additive potential or a 0 value if multiplicative (exponential) potentials are used.

These models can be solved using MAP-MRF solvers such as daoopt [69] (winner of the Pascal Inference Challenge in
20114) or the recent version of the mplp [80] solver.

5.2. Integer linear programming model

A 0/1 linear programming (01LP) problem is defined by a linear criterion to optimize over a set of Boolean variables
under a conjunction of linear equalities and inequalities. The previous optimization problem over a graphical model can also
be represented as a 01LP problem using the encoding proposed in [51].

For every assignment ir of every variable i, there is a Boolean variable dir that is equal to 1 iff i = r. Additional constraints
enforce that exactly one value is selected for each variable. For every pair of values of different variables (ir, js) involved in
a binary energy term, there is a Boolean variable pir js that is equal to 1 iff the pair (ir, js) is used. Constraints enforce that
a pair is used iff the corresponding values are used. Then, finding a GMEC reduces to the following ILP:

min
∑
i,r

E(ir) �=k

E(ir).dir +
∑

i,r, j,s
j>i,E(ir , js) �=k

E(ir, js).pir js

s.t.
∑

r

dir = 1 (∀i) (5)

∑
s

pir js = dir (∀i, r, j) (6)

dir = 0 (∀i, r)E(ir) = k (7)

pir js = 0 (∀i, r, j, s)E(ir, js) = k (8)

dir ∈ {0,1} (∀i, r) (9)

pir js ∈ {0,1} (∀i, r, j, s) (10)

This model is also the ILP model IP1 proposed in [48] for side-chain positioning. It has a quadratic number of Boolean
variables. Constraints (7) and (8) explicitly forbid values and pairs with cost k (sterical clashes).

This model can be simplified by relaxing the integrality constraint on the pir js: indeed, if all dir are set to 0 or 1, the
constraints (5) and (6) enforce that the pir js are set to 0 or 1. The same observation has been previously done for in the
context of the linearization of a quadratic optimization model for wind farm design in [87]. In the rest of the paper, except
where it is otherwise mentioned, we relax constraint (10). This type of ILP model can be handled by various ILP solvers
such as IBM ILOG cplex.

5.3. 0/1 quadratic programming model

A 01QP problem is defined by a quadratic criterion to optimize over a set of Boolean variables under a conjunction of
linear equality and inequality constraints. A compact encoding of the problem can be obtained using the ability of expressing
the product of Boolean variables, getting rid of a quadratic number of pir js variables of the 01LP model.

4 See http://www.cs.huji.ac.il/project/PASCAL/.

http://www.cs.huji.ac.il/project/PASCAL/

D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79 69
For every value ir , there is again a Boolean variable dir that is equal to 1 iff i = r. Additional linear constraints enforce
that exactly one value is selected for each variable. The use of a given pair of rotamers at positions (ir, js) can then be
simply captured by the product dir .d js . Then, finding a GMEC reduces to the following compact QP:

min
∑
i,r

E(ir).dir +
∑

i,r, j,s
j>i

E(ir, js).dir .d js

s.t.
∑

r

dir = 1 (∀i)

dir ∈ {0,1} (∀i, r)

dir = 0 (∀i, r)E(ir) = k (11)

dir + d js � 1 (∀i, r, j, s)E(ir, js) = k (12)

Values and pairs generating sterical clashes are explicitly forbidden by constraints (11) and (12). This model can be
handled by the QP solver of IBM ILOG CPLEX.

5.4. 0/1 quadratic optimization model

Another compact model can be obtained in the more restricted case of pure Boolean Quadratic Optimization (BQO),
where a quadratic criterion is optimized but no linear constraints can be expressed.

For every value ir , there is again a Boolean variable dir that is equal to 1 iff i = r. We must integrate the fact that
exactly one value must be selected in each domain in the criterion itself. To capture the fact that there is at most one value
selected per domain, we penalize the simultaneous selection of every pair ir, is of rotamers of the same variable i with a
sufficiently large penalty M . To guarantee that at least one value will be selected in each domain, we shift all finite energies
by a constant negative term N such that all shifted finite energies are strictly negative. If an assignment selects no value in
a given domain, then selecting one value can only result in an assignment with a lower cost, by introducing new negative
terms in the global energy. An optimal solution must therefore contain exactly one value per domain.

The corresponding model can be written as:

min
∑
i,r

(
E(ir) − N

)
.dir +

∑
i,r, j,s

j>i

(
E(ir, js) − N

)
.dir .d js +

∑
i,r,s
s>r

M.dir .dis

For N we just use the largest negative integer that is strictly below the opposite of the largest finite energy in a given
instance. M must be chosen in such a way that no combination of energy can compensate for the cost M . The selection of
one additional value ir can just contribute to the criterion by the addition of the energy E(ir) and the energies E(ir, js) for
all other variables j and their rotamers js . M is therefore set to the opposite of the largest negative integer below the most
negative sum of these energies, overall all variables i and rotamers ir .

The corresponding Boolean quadratic optimization problem can be solved using the semidefinite programming based
exact best-first branch-and-bound solver biqmac [78].

5.5. Weighted partial MaxSAT

Definition 3. A weighted partial MaxSAT (WPMS) instance is a set of pair 〈C, w〉, where C is a clause and w is a number in
N ∪ {∞}, which is called the weight of that clause. A clause is a disjunction of literals. A literal is a Boolean variable or its
negation.

If the weight of a clause is ∞, it is called a hard clause, otherwise it is a soft clause. The objective is to find an assignment
to the variables appearing in the clauses such that all hard clauses are satisfied and the weight of all falsified soft clauses is
minimized.

The CPD problem can be encoded into a WPMS instance. We present two encodings, which are based on existing trans-
lations of CSP into SAT: the direct encoding [5], which is closer to the CFN model, and the tuple encoding, which was
presented but not named by Bacchus [6] and is quite similar to the ILP model.

Direct encoding In the direct encoding, we have one proposition dir for each variable/value pair (i, r), which is true if
variable i is assigned the value r. We have hard clauses (¬dir ∨ ¬dis) for all i ∈ [1,n] and all r < s, r, s ∈ Di , as well as a
hard clause (

∨
r dir) for all i. These clauses ensure that the propositional encoding of the CFN allows exactly one value for

each variable. The cost functions are represented respectively by an empty clause with weight E∅ , unit clauses ¬dir with
weight E(ir) and binary clauses ¬dir ∨ ¬d js with weight E(ir, js).

70 D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79
Tuple encoding The tuple encoding encodes variable domains the same way as the direct encoding, therefore we have a
proposition dir for each variable/value pair i = r, along with clauses that enforce that each variable is assigned exactly one
value. The constant and unary energy terms are also respectively represented as an empty soft clause with weight E∅ and
soft unit clauses ¬dir with weight E(ir).

For all non-zero pairwise energy term E(ir, js), we have a proposition pir js as well as the soft clause (¬pir js) with
weight E(ir, js). This represents the cost to pay if the corresponding pair (energy term) is used. We also have the hard
clauses (dir ∨ ¬pir js) and (d js ∨ ¬pir js). These enforce that if a pair is used, the corresponding values must be used. Finally,
for all the pairs of variables (i, j) and all the values ir , hard clauses (¬dir ∨ ∨

s∈D j
pir js) enforce that if a value ir is used,

one of the pair pir j· must be used.
This encoding is similar to the 01LP encoding and was originally proposed in the context of SAT encodings for classical

CSP [6]. Unit Propagation (UP) on the tuple encoding enforces arc consistency in the original CSP (the set of values that are
deleted by enforcing AC have their corresponding literal set to false by UP).

5.6. Constraint programming model

In [72], a generic translation of WCSPs into crisp CSPs with extra cost variables has been proposed. In this transforma-
tion, the decision variables remain the same as in the original WCSP and every cost function is reified into a constraint,
which applies on the original cost function scope augmented by one extra variable representing the assignment cost. This
reification of costs into domain variables transforms a WCSP in a crisp CSP with more variables and augmented arities.
Typically, unary and binary cost functions are converted into table constraints of arity two and three respectively. Another
extra cost variable encodes the global GMEC criterion, related by a sum constraint to all the unary and binary cost variables.
All the cost variables are positive integer bounded by the same initial upper bound k as in the WCSP format.

The resulting CSP model has been expressed in the minizinc [65] constraint programming (CP) language. It can be
solved using any CP solvers such as gecode, mistral, or Opturion/CPX, the recent winner of the MiniZinc Challenge
2013.

6. Experimental results

For computing the GMEC, all computations were performed on a single core of an AMD Operon 6176 at 2.3 GHz, 128 GB
of RAM, and a 9000-second time-out. These computations were performed on the GenoToul cluster.

6.1. Solvers tested

The solvers tested have different configurability in terms of parameters. Solvers such as mplp offer essentially no tuning,
while others offer a large number of options. SAT solvers that participate routinely in the SAT competition have excellent
default settings and those settings were kept unmodified. For one solver that explicitly requires tuning, we contacted the
author for some advice. There is always a question whether dramatically different results could be obtained by different
settings. The situation here corresponds to the situation of a non-naive user faced with several optimization tools.

DEE/A* optimization The underlying principles of DEE/A∗ have been described in Section 2.1. To solve the different protein
design cases, we used osprey version 2.0 (cs.duke.edu/donaldlab/osprey.php). The procedure starts by extensive DEE pre-
processing (algOption = 3, includes simple Goldstein, Magic bullet pairs, 1- and 2-split positions, Bounds and pairs pruning)
followed by A∗ search. Only the GMEC conformation is generated by A∗ (initEw = 0).

CFN solver toulbar2 is a depth-first branch-and-bound solver using soft local consistencies for bounding and specific
variable and value ordering heuristics for efficiency. The default EDAC [55] consistency may simultaneously reformulate all
the cost functions involving one variable (a star subgraph). The default variable ordering strategy is based on the Weighted
Degree heuristics [8] with Last Conflict [60], while the default value ordering consists in choosing for each variable its fully
supported value as defined by EDAC.

We used toulbar2 version 0.9.6 (mulcyber.toulouse.inra.fr/projects/toulbar2/) using binary branching and an initial
limited discrepancy search phase [41] with discrepancy less than or equal to 1. We tested this vanilla version (options -d:
-l=1 -dee=0) and incrementally introduced our new cost-based variable ordering heuristics (option -m) and different
levels of DEE processing: maintaining DEE1 during search (-dee=1), pre-processing with DEE (-dee=4), both together
(-dee=2), or maintaining DEE during search (-dee=3).

daoopt solver We decided to include daoopt as the winning solver of the 2011 PASCAL probabilistic inference challenge
in the “MAP” category. We downloaded daoopt version 1.1.2 from its repository (https://github.com/lotten/daoopt) and
contacted the author for some advice. The distributed version of daoopt is not the same as the PIC challenge version. It
lacks the Dual Decomposition bound strengthening component [69] that relies on private code.

This solver relies on Stochastic Local Search for finding initial solutions followed by depth-first AND/OR search [22] and
mini-bucket lower bounds [23] for pruning. Mini-bucket lower bounds require space and time in O (di) (where i is a user

http://cs.duke.edu/donaldlab/osprey.php
http://mulcyber.toulouse.inra.fr/projects/toulbar2/
https://github.com/lotten/daoopt

D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79 71
controlled parameter). CPD is certainly not an ideal domain for daoopt: the complete graph makes AND/OR search useless
and the large maximum domain size d makes mini-buckets space and time intensive. We used the “1 hour” settings for the
PIC challenge from [69], modified to account for the complete graph that makes optimization of the AND/OR decomposition
useless. This leads to the parameters -i 35 -slsX 10 -slsT 6 -lds 1 and tried to allocate different amounts of
memory to mini-buckets (option -m with 500 MB, 5 GB or 50 GB), the i parameter being then automatically set by the
solver to use a maximum amount of memory. We kept only the results for the best tuning (5 GB, the worst results being
obtained with 50 GB). Note that because of large domain sizes, and the O (di) space complexity of mini-buckets, a fine
tuning of this parameter should have limited influence on the results.

The WCSP instances were transformed into the UAI “MARKOV” format through the application of an exponential trans-
formation of costs into multiplicative potentials. Costs above the upper bound were translated to zero potentials to preserve
pruning. The exponential basis was chosen so that the largest multiplicative potentials are equal to 1.

MPLP MAP-MRF solver We downloaded the sources for the recent version 2 of the mplp (Message Passing Linear Program-
ming) implementation [80,81] available at http://cs.nyu.edu/~dsontag/.

This solver uses a Message Passing based bound and duality theory to identify optimal solutions of an MAP-MRF problem
through successive tightening of subsets of variables. The message passing used in mplp defines reparametrizations of the
underlying MRF. These reparametrizations are similar to the reformulations done by local consistencies in CFN [79,18]. The
solver is unique in all the solvers considered in that it does not use branching but only increasingly strong inference by
applying reparametrizations to set of variables that initially contain only pairwise potentials, reasoning on stars [35], and
are incrementally enlarged to include several potentials and strengthen the corresponding bound [81,80].

All costs were divided by 1000 and the optimality gap threshold kept to the default of 2 · 10−4. The solver does not have
any parameter.

ILP and QP optimization We used cplex version 12.2 with parameters EPAGAP, EPGAP, and EPINT set to zero to avoid
premature stop. No other tuning was done.

Boolean quadratic optimization We used the biqmac [78] solver (http://biqmac.uni-klu.ac.at/biqmaclib.html) from sources
provided by Angelika Wiegele. biqmac is a branch-and-bound solver relying on a strong Semidefinite Programming (SDP)
bound for Boolean quadratic optimization. The SDP framework is known to provide strong bounds for a variety of combi-
natorial optimization problems among which MaxCut and Max2SAT, with guaranteed approximation ratios [36]. Two solver
settings (with branching rule set to 2 or 3, as advised by the author) were tried with no significant difference in the
performances.

Weighted partial MaxSAT optimization The same problems have been translated to WPMS using the two previously described
encodings. There are two categories of complete WPMS solvers that we consider here: branch-and-bound (B&B) solvers and
sequence-of-SAT solvers.

• Sequence-of-SAT solvers reformulate the WPMS problem as a series of SAT instances that allow us to successively
increase the lower bound or decrease the upper bound for the optimal solution of the WPMS instance. A particular
technique used by several sequence-of-SAT solvers, such as WPM1 [4] and maxhs [20], is identifying unsatisfiable cores
of the WPMS instance. An unsatisfiable core is a subset of the soft clauses of the instances which, taken together with
the hard clauses of the instances, cannot all be satisfied by any assignment. The sequence of SAT instances then builds
a collection of cores. The last SAT instance produces an assignment that violates at least one clause from each core but
satisfies all other clauses. This assignment can be shown to be optimal.

• B&B solvers explore a backtracking search tree. At each node of the tree, they compute a lower bound on the cost of
the best solution that can be found in the subtree rooted at that node. If that lower bound is higher than the cost of
the best solution found so far, the solver backtracks. The solver minimaxsat [43] employs a method that is typically
used in B&B solvers. In its case, the lower bound computation consists in performing unit propagation over the entire
formula, including soft clauses. Unit propagation is able to detect some but not all unsatisfiable cores of the reduced
formula at the current node. These cores are collected and used to transform the formula into an equivalent formula
with a higher lower bound.

As B&B solvers, we have used akmaxsat [52] as it was among the best B&B performers in the latest MaxSAT evaluation
and minimaxsat [43], which was shown to be one of the best solvers over all the instances of all MaxSAT evaluations
in [21]. Among sequence-of-SAT solvers, we have used bin-c-d, wpm1 and wpm2, which are among the best performers
in recent evaluations, as well as maxhs, which was shown to be the best solver for the entire ensemble of instances of
MaxSAT evaluations [21].

We can observe that there exists a bijection between cores of the direct encoding of an instance and cores of the tuple
encoding. However, there exist cores in the tuple encoding that can be detected just by unit propagation, but require a
longer refutation in the direct encoding. On the other hand, the tuple encoding is larger and hence unit propagation is
slower. Since both B&B and sequence-of-SAT solvers essentially rely on collecting cores of the formula, both types of solver

http://cs.nyu.edu/~dsontag/
http://biqmac.uni-klu.ac.at/biqmaclib.html

72 D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79
Fig. 4. A figure showing the number of problems that can be solved by each approach (X-axis) as a function of time allowed for solving each problem
(Y -axis).

can benefit from the tuple encoding by detecting more cores with less search. However, the overhead of performing unit
propagation on a larger formula may not pay off in runtime.

CP solvers We used gecode version 4.2.0 (http://www.gecode.org/), mistral version 1.3.40 (using its Python interface
numberjack at http://numberjack.ucc.ie/ and http://github.com/eomahony/Numberjack/tree/fzn), and Opturion/CPX
version 1.0.2 (http://www.opturion.com/cpx.html). mistral uses a Weighted Degree heuristics [8] and a restart strategy
with geometric factor 1.3 and base 256. Opturion/CPX combines CP and SAT solving techniques, learning clauses from
failures. By default, it uses a Luby restart policy. No tuning was done for gecode nor Opturion/CPX (both using free
search mode).

All the Python and C translating scripts used are available together with the CPD instances at http://genotoul.toulouse.
inra.fr/~tschiex/CPD-AIJ.

6.2. Results

Several solvers were unable to solve any of the instances in the 9000 s allocated globally per problem for each approach
(including any pre-processing used in the method such as DEE in the DEE/A∗ approach). Despite the compact associated
models, neither cplex for the quadratic programming model, nor biqmac for the quadratic Boolean optimization model
could solve any single instance in less than 9000 s. Similarly, most of the WPMS solvers failed to solve any instance, in
either of the two encoding tested. The only exception to this is the maxhs solver when applied to the tuple encoding.
Finally, neither Opturion/CPX nor gecode nor mistral could solve any single instance. In Table 1, we therefore only
report the results obtained by the WPMS solver maxhs, the CPD solver osprey, the ILP solver cplex, the MAP-MRF solvers
daoopt and mplp, and the CFN solver toulbar2 in its vanilla version (using the default variable ordering heuristics and
no DEE).

A cactus plot giving a global view of the overall results is available in Fig. 4 and more detailed results are given in
Table 1. The table shows that the CPU-times are very well correlated across different models and solvers, and show a clear
ordering in terms of difficulty of these problems for all solvers, from WPMS/maxhs, MAP-MRF/daoopt, DEE/A∗/osprey,
ILP/cplex, MAP-MRF/mplp, and CFN/toulbar2.

The variant of the ILP model originally proposed by [51], where the pir js variables are constrained to be 0/1 variables
was also tested. It was overall less efficient than the relaxed model we used. The ratio in terms of speedup was never
very important (between 0.2 and 3.4 with a mean of 1.4 over all the solved instances) showing the robustness of cplex.
It is often claimed, following [86], that LP technology is not able to deal with large instances of MRF. This experiment,
on realistically designed instances of CPD, using state-of-the-art energy functions, including sterical clashes, shows that the
recent 12.2 version of cplex gives reasonably good results on these problems.

6.3. Non-vanilla toulbar2

The results obtained on the same 40 CPD instances using the vanilla toulbar2, enhanced with our new variable
ordering heuristics and increasingly stronger DEE processing are given in Table 2. None of the 7 open unreported instances
could be solved by these new variants.

The new variable ordering heuristics consistently offer improved results. The effect of additional DEE processing is mostly
visible on the difficult instances, the most visible and persistent improvements being obtained when using DEE in pre-
processing, and for some instances (e.g., 1BRS, 1RIS) also maintaining DEE1 during search. They offer speedups up to 6 (on
1GVP). Further tests on a variety of CFN benchmarks (http://costfunction.org) are reported in [34]. They show that DEE1

allows to solve more problems and DEE1 is now a default option of toulbar2.

http://www.gecode.org/
http://numberjack.ucc.ie/
http://github.com/eomahony/Numberjack/tree/fzn
http://www.opturion.com/cpx.html
http://genotoul.toulouse.inra.fr/~tschiex/CPD-AIJ
http://costfunction.org
http://genotoul.toulouse.inra.fr/~tschiex/CPD-AIJ

D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79 73
Table 1
For each instance: protein (PDB id.), number of mutable residues, maximum domain size (maximum number of rotamers), and CPU-time for solving using
maxhs, daoopt, DEE/A∗ , cplex, mplp, and toulbar2. A ‘–’ indicates that the corresponding solver did not prove optimality within the 9000-second
time-out. A ‘!’ indicates the solver stops with a SEGV signal.

PDB id. n d maxhs daoopt DEE/A∗ cplex mplp toulbar2

2TRX 11 44 4086 268.6 31.5 2.6 2.8 0.1
1PGB 11 45 5209 300.4 135.3 3.6 0.5 0.1
1HZ5 12 45 5695 350.2 75.0 7.6 16.7 0.1
1UBI 13 45 – 826.9 2812.6 139.2 37.3 0.2
1PGB 11 148 – – 8695.2 – 1291 4.3
1HZ5 12 148 – – 2398.3 1555 1217 2.4
1UBI 13 148 – – – – – 1557
2PCY 18 44 – – 1281.1 26.9 14.5 0.2
2DHC 14 148 – – – – 5388 14.1
1CM1 17 148 – – 138.4 473.1 87.5 3.3

1MJC 28 182 3698 631.7 4.6 4.1 0.8 0.1
1CSP 30 182 – – 200.0 1380 1264 0.8
1BK2 24 182 – – 93.2 125.0 114.9 0.6
1SHG 28 182 – – 138.0 39.4 ! 0.2
1CSK 30 49 – – 41.7 12.5 9.6 0.1
1SHF 30 56 – – 44.3 8.6 3.1 0.1
1FYN 23 186 – – 622.0 2548 3136 2.8
1PIN 28 194 – – – – – 3.7
1NXB 34 56 – – 11.1 17.0 4.5 0.2
1TEN 39 66 – – 113.0 45.4 17.1 0.2
1POH 46 182 – – 77.9 29.0 13.1 0.3
2DRI 37 186 – – – – 4458 42.8
1FNA 38 48 – – 3310 124.9 121.2 0.5
1UBI 40 182 – – – 2572 979.4 2.4
1C9O 43 182 – – 2310 1635 155.7 1.8
1CTF 39 56 – – – 263.2 549.2 0.7
2PCY 46 56 – – 2080 54.0 20.3 0.4
1DKT 46 190 – – 5420 1254 3103 2.5
2TRX 61 186 – – 487.0 765.0 344.1 0.9
1CM1 42 186 – – – – – 17.4
1BRS 44 194 – – – – – 346.5
1CDL 40 186 – – – – – 341.8
1LZ1 59 57 – – – 601.6 1084 1.5
1GVP 52 182 – – – – – 361.8
1RIS 56 182 – – – – 8483 288.4
2RN2 69 66 – – – 480.8 565.2 1.2
1CSE 97 183 – – 367.0 172.9 60.9 0.7
1HNG 85 182 – – 5590 2360 5934 2.8
3CHY 74 66 – – – – 8691 59.6
1L63 83 182 – – – 1480 1779 2.9

4 5 25 29 33 40

6.4. Analysis of results

It is unusual to apply such a wide range of NP-complete solving methods on a common set of benchmarks. Most compar-
isons are usually performed on a closely related family of solvers, sharing a common modeling language (SAT, CSP, MRF. . .).

Solvers are complex systems involving various mechanisms. The effect of their interactions during solving is hard to
predict. Therefore, explaining the differences in efficiency observed between the different approaches is not straightforward.
However, given the simplicity of our encodings, the fact that these instances are challenging for some approaches while at
the same time being simpler to solve for other approaches should provide a source of inspiration for solver designers.

Quadratic programming and quadratic optimization One of the first surprising results is the difficulty of these instances for
quadratic programming with cplex. The quadratic model is very dense with nd Boolean variables only. cplex is a totally
closed-source black box but the behavior of the solver provides some information on its weak spot here. On the simplest
problems, QP/cplex consumes memory very quickly and grows a very large node file. On the simple 2TRX problem (n = 11,
first line of Table 1), QP/cplex solver explored 51,003,970 nodes and was interrupted by the time-out with an optimality
gap of 774%. This indicates a poor lower bound that leads to memory intensive best first search. On bigger problems, the
number of nodes is never large because each node takes quite a time to explore. On the 1UBI problem (n = 13,d = 148),
it explored only 5233 nodes with an unbounded gap. It is therefore reasonable to assume that the lower bound used by
cplex is too slow to compute on these problems and does not provide the additional strength that would compensate for
the computing cost.

74 D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79
Table 2
For each instance: CPU-time for solving using toulbar2 and different combinations of options for DVO and DEE. A ‘–’ indicates that the corresponding
solver did not prove optimality with the 9000-second time-out. The tb2 column gives the results obtained using the vanilla toulbar2 for reference.
The DVO corresponds to the activation of the new variable ordering heuristics described in Section 4.1. This option is kept activated in all the remaining
columns. These columns correspond respectively to additionally maintaining DEE1 during search, pre-processing using DEE, doing both, and maintaining
DEE during search. The last line reports the number of times a method was faster than the others.

PDB n d tb2 DVO DEE1 DEEpre DEEpre + DEE1 DEE

2TRX 11 44 0.1 0.1 0.1 0.1 0.1 0.1
1PGB 11 45 0.1 0.1 0.1 0.1 0.1 0.1
1HZ5 12 45 0.1 0.1 0.1 0.1 0.1 0.1
1UBI 13 45 0.2 0.2 0.2 0.2 0.3 0.5
1PGB 11 148 4.3 3.8 3.4 3.1 8.6 15.1
1HZ5 12 148 2.4 2.4 2.3 2.2 3.1 3.5
1UBI 13 148 1557 1068 1736 1133 1162 –
2PCY 18 44 0.2 0.2 0.2 0.2 0.2 0.2
2DHC 14 148 14.1 8.0 7.0 7.0 14.5 52.0
1CM1 17 148 3.3 3.1 3.2 3.1 3.1 3.1

1MJC 28 182 0.1 0.1 0.1 0.1 0.1 0.1
1CSP 30 182 0.8 0.6 0.5 0.7 0.7 0.8
1BK2 24 182 0.6 0.6 0.6 0.5 0.7 0.5
1SHG 28 182 0.2 0.2 0.2 0.2 0.2 0.2
1CSK 30 49 0.1 0.1 0.1 0.1 0.1 0.1
1SHF 30 56 0.1 0.1 0.1 0.1 0.1 0.1
1FYN 23 186 2.8 2.9 2.6 3.0 3.2 3.8
1PIN 28 194 3.7 3.0 3.0 4.8 6.2 12.0
1NXB 34 56 0.2 0.2 0.2 0.2 0.2 0.2
1TEN 39 66 0.2 0.2 0.2 0.2 0.2 0.2
1POH 46 182 0.3 0.3 0.3 0.4 0.4 0.4
2DRI 37 186 42.8 16.4 37.7 9.6 15.5 51.2
1FNA 38 48 0.5 0.4 0.3 0.4 0.4 0.5
1UBI 40 182 2.4 1.0 0.7 0.9 0.9 1.3
1C9O 43 182 1.8 1.5 1.7 2.3 2.4 3.6
1CTF 39 56 0.7 0.9 0.6 0.6 0.7 0.8
2PCY 46 56 0.4 0.4 0.4 0.4 0.4 0.4
1DKT 46 190 2.5 2.8 2.4 2.6 2.7 3.9
2TRX 61 186 0.9 0.9 0.9 1.8 1.7 1.9
1CM1 42 186 17.4 11.8 13.2 8.6 11.6 20.0
1BRS 44 194 346.5 241.4 135.4 70.4 60.1 129.0
1CDL 40 186 341.8 198.1 159.0 79.6 128.8 286.4
1LZ1 59 57 1.5 1.1 1.0 0.9 1.0 1.1
1GVP 52 182 361.8 248.5 408.2 38.3 66.8 163.5
1RIS 56 182 288.4 147.4 77.9 37.8 28.8 122.8
2RN2 69 66 1.2 1.1 1.1 1.2 1.1 1.2
1CSE 97 183 0.7 0.8 0.6 0.6 0.6 0.6
1HNG 85 182 2.8 2.4 2.3 3.1 2.8 3.6
3CHY 74 66 59.6 27.9 10.7 10.6 14.9 20.3
1L63 83 182 2.9 2.8 2.3 2.4 2.5 2.7

14 19 26 25 16 14

The model we devised for BQO using biqmac is compact, with the same n.d 0/1 variables. biqmac uses a semidefinite
programming lower bound that is known to provide among the strongest polynomial time lower bounds for a variety of
optimization problems [76]. Despite this, even the smallest CPD instances could not be solved. We tried to extend the
9000-second deadline for the simplest instance. After several hours of computing, biqmac stopped and reported that only
a few nodes had been explored. The SDP technology used in biqmac may provide excellent bounds, but the time needed
to compute them is currently too large to offer a viable alternative for CPD. The biqmac library at http://biqmac.uni-klu.ac.
at/biqmaclib.html contains a variety of QP and (closely related) MaxCut problems that can be used for benchmarking. We
tested toulbar2 on the 10 beasley instances of size n = 100. They are solved in less than 1 second each by toulbar2,
whereas biqmac took around 1 minute each, as reported in [78].

Integer linear programming Considering 01LP, it is known that the continuous LP relaxation of the 0/1 linear programming
model we used in Section 5.2 is the dual of the LP problem encoded by Optimal Soft Arc Consistency (OSAC) [17,14] when
the upper bound k used in CFN is infinite. OSAC is known to be stronger than any other soft arc consistency level, including
EDAC and Virtual Arc Consistency (VAC) [16]. However, as soon as the upper bound k used for pruning in CFN decreases
to a finite value, soft local consistencies may prune values and EDAC becomes incomparable with the dual of these relaxed
LPs. To better evaluate the pruning power of cplex, we compared the number of nodes it explored with those explored
by toulbar2 in its vanilla mode or with the new heuristics and DEE pre-processing. Table 3 shows that among the 28
instances solved, 18 are solved by cplex before search starts, 7 are solved by the non-vanilla version of toulbar2 w/o

http://biqmac.uni-klu.ac.at/biqmaclib.html
http://biqmac.uni-klu.ac.at/biqmaclib.html

D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79 75
Table 3
For each instance solved by both cplex and toulbar2, we report the number of nodes explored by each solver (with the number of backtracks in
parentheses when available) and the number of nodes per minute developed. toulbar2 is the vanilla version, toulbar2+ uses the new variable ordering
heuristics and DEE as pre-processing.

PDB id. n d cplex toulbar2 toulbar2+

nodes nd/min nodes (bt) nd/min nodes (bt) nd/min

2TRX 11 44 0 – 8 (0) 6857 10 (1) 7500
1PGB 11 45 0 – 17 (1) 11 333 16 (1) 10 667
1HZ5 12 45 0 – 25 (5) 15 000 29 (7) 17 400
1UBI 13 45 51 22.0 143 (61) 39 000 82 (31) 24 600
1HZ5 12 148 0 – 89 (34) 2225 54 (16) 1453
2PCY 18 44 0 – 53 (6) 13 826 40 (9) 10 909
1CM1 17 148 0 – 14 (0) 258 0 (0) 0

1MJC 28 182 0 – 22 (0) 14 667 2 (0) 1714
1CSP 30 182 547 23.8 540 (245) 42 078 42 (16) 3877
1BK2 24 182 3 1.4 28 (3) 2800 19 (3) 2375
1SHG 28 182 214 326 268 (101) 69 913 51 (16) 19 125
1CSK 30 49 0 – 38 (5) 20 727 14 (3) 7636
1SHF 30 56 0 – 35 (4) 17 500 12 (0) 6000
1FYN 23 186 0 – 84 (20) 1819 43 (8) 863
1NXB 34 56 0 – 30 (0) 9474 14 (0) 4667
1TEN 39 66 0 – 75 (6) 20 455 22 (5) 6600
1POH 46 182 0 – 111 (5) 21 484 15 (0) 2195
1FNA 38 48 0 – 189 (47) 25 200 84 (28) 12 600
1UBI 40 182 287 6.7 1,669 (766) 41 900 539 (228) 36 337
1C9O 43 182 49 1.8 222 (57) 7525 82 (16) 2112
1CTF 39 56 94 21.4 294 (95) 24 845 110 (33) 10 820
2PCY 46 56 0 – 62 (5) 10 629 20 (0) 3158
1DKT 46 190 0 – 210 (36) 5122 134 (24) 3045
2TRX 61 186 6 0.5 111 (14) 7239 85 (16) 2818
1LZ1 59 57 735 73.5 807 (308) 31 855 178 (53) 11 609
2RN2 69 66 0 – 105 (17) 5385 110 (17) 5500
1CSE 97 183 0 – 94 (0) 8418 9 (0) 915
1HNG 85 182 48 1.2 411 (110) 8745 96 (21) 1870
1L63 83 182 0 – 196 (17) 4055 58 (3) 1468

backtracks. For the remaining less trivial problems, the number of nodes explored by cplex and toulbar2 are often
similar with no clear winner. Overall, these results show comparable pruning power. It also shows that the problems solved
by cplex are relatively simple problems but the computation of the lower bound is quite expensive in cplex. It typically
develops from 1 to 50 nodes per minute while toulbar2 develops from 1 to 40 thousand nodes per minute. Note that
the problems that are not solved by cplex are much harder, requiring more than 120,000 nodes to explore for the hardest
solved problem (not shown in the table).

Markov random field MAP The relaxed LP is also equivalent, in the pairwise case, to the LP relaxation of MRFs in the
so-called local polytope [81]. In its original version [35], mplp is only guaranteed to produce this LP bound if domains are
Boolean. It is therefore weaker than OSAC for CFN and comparable to Virtual AC [14]. With the recent additions described
in [81,80], mplp has the ability to incrementally tighten its bound by performing local inference on several potentials (or
cost functions) organized in cyclic structures. The strength of this lower bound is such that mplp version 2 is often able to
prove optimality based just on this bound and the cost of the assignment that optimizes unary reparameterized potentials.
Still, weaker but faster CFN lower bounds combined with search apparently offer a better solution on these realistic CPD
instances.

In the MRF community, the inefficiency of pure LP on large MRF instances is well-known [86]. These experiments show
that, combined with branching, the incrementality of the LP bound allows 01LP to get very decent results on these problems.
However, the quadratic size of the 01LP model probably explains the better efficiency of mplp.

MaxSAT The most surprising result is probably the difficulty of these problems for MaxSAT solvers, either branch-and-
bound based or core-based. To analyze branch and bound based algorithm behavior, we instrumented the two solvers
MiniMaxSat and akmaxsat to report the best upper bound found and the number of nodes explored. Additionally, ak-
maxsat reports the lower bound computed at the root node of the search tree. In the direct encoding, MiniMaxSat is fast
and may explore up to 36 thousand nodes per second (two orders of magnitude faster than toulbar2). In 15 problems,
it was able to identify sub-optimal solutions ending up with a non-trivial upper bound (within 3.2% to 0.26% of the op-
timum) but never started the final optimality proof, showing a weak lower bound. Indeed, the lower bound computed by
akmaxsat at the root of the search tree is never higher than 27% of the optimum. In contrast, the lower bound computed
by toulbar2 at the root was often 99% of the optimum and never less than 97%. We conclude that the direct encoding
does not allow for strong propagation and lower bounds.

76 D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79
The tuple encoding was chosen to put WPMS solvers in a situation where UP applied to a hardened version of the for-
mula would be able to detect more unsatisfiable cores. Since this operation is at the heart of the lower bounding procedures
of such solvers, it should allow the derivation of a stronger lower bound. Additionally, unit propagation on the hardened
version of the tuple encoding is equivalent to enforcing arc consistency on the hardened CFN. In CFN, VAC precisely identi-
fies subproblems whose hardened version is arc inconsistent (and therefore define inconsistent cores) to increase the lower
bound. VAC is known to be capable of producing stronger lower bounds than the default local consistency EDAC [55] used
in toulbar2. Hence, the tuple encoding provides enough information to give better lower bounds than what EDAC com-
putes. The empirical results verify that the lower bound computed at the root is much stronger with the tuple encoding
than with the direct encoding. For several instances akmaxsat computes a lower bound that is 92% of the optimum. How-
ever, this is still far from the lower bound computed by toulbar2. But the more important problem with this encoding
is that with a quadratic number of extra variables, both minimaxsat and akmaxsat were extremely slow, exploring at
most 2 nodes before the 9000-second time-out and in several instances timed out before even finishing the lower bound
computation at the root node. They never produced a single incumbent assignment.

On the other hand, the maxhs core-based solver is able to exploit the stronger tuple encoding, being able to solve 4
problems to optimality. Analyzing the behavior of maxhs on these instances reveals that the solver spends almost all of its
time trying to reduce the size of the cores it finds, using a greedy minimization algorithm. This is because these protein
design instances contain some very large cores (tens of thousands of clauses) which cannot be significantly reduced in size.
Such cores arise, for example, from the binary cost functions in the CFN model. In this case, the core expresses the condition
that the cost of at least one tuple in the cost function will be incurred, and the core therefore contains as many clauses
as there are tuples in the originating cost function. We observed that as a result, maxhs is usually unable to complete its
initial disjoint core phase within the timeout. Given this observation, we also experimented with running maxhs with the
core minimization option turned off, on the set of 12 instances which update those in [2], using the tuple encoding. With
core minimization turned off, maxhs was able to complete the disjoint core phase on all 12 instances. This allowed us to
compare the lower bound produced by the disjoint core phase of maxhs with the lower bound produced at the root node
by toulbar2. Over the 12 instances, the lower bound produced by maxhs was between 84% and 98% of the lower bound
produced by toulbar2, and it was calculated within only 35 s except for two cases. Note that this bound calculated by
maxhs differs from that of toulbar2 in that maxhs uses a complete SAT solver to find the cores, and the cores are strictly
disjoint. Based on these observations, we believe the potential to improve the performance of the maxhs approach on these
instances is very promising.

For other core-based solvers, either because of the quadratic number of variables or because of a different exploitation
of non-AC/UP cores, these CPD instances remain very hard. Whether it is a fundamental, technical, or implementation
difference, identifying the cause of this difference should allow to improve the existing WPMS technology.

Constraint programming The generic translation of WCSPs into crisp CSPs suffers from the large magnitude of costs, re-
sulting in large domains for the extra cost variables with very slow arc consistency propagation of table constraints for
mistral, developing approx. 215 nodes per minute. In comparison, Opturion/CPX develops 721 nd/min. It also requires
huge memory space for expressing the table constraints. Only 22 instances among the 42 could fit into 128 GB during
minizinc to flatzinc translation. By dividing all costs by 100 (i.e., M = 1), mistral was able to solve 4 instances:
1CSK in 964 s and 90,562 nodes, 1HZ5 (d = 45) in (759 s& 179,319 nd), 1PGB (d = 45) in (76 s& 29,939 nd), and 2TRX
(n = 11) in (47.3 s& 28,057 nd). gecode (resp. Opturion/CPX) solved only one: 2TRX in (2234 s& 213,423 nd) (resp.
1PGB in (6916 s& 204,597 nd)). For the unsolved instances, Opturion/CPX found better solutions than mistral on av-
erage. The difference in performances between the three solvers might come from the different search strategies, mistral
used geometric restarts, whereas Opturion/CPX used Luby restarts, and gecode no restarts.

DEE/A* The DEE/A∗ combination uses strong polynomial time dominance analysis using several variants of dead-end elim-
ination. This pre-processing is followed by best-first search relying on an obsolete lower bound instead of the stronger lower
bounds offered by soft local consistencies such as EDAC [55], or the LP relaxation bound. To confirm this, we computed the
number of nodes explored by osprey during A∗ search. Except for simple problems where DEE alone could solve the prob-
lem, osprey explored trees larger than those explored by ILP or CFN by several orders of magnitude. On problem 1DKT,
it explored more than 107 nodes while ILP/cplex solved the problem without search and toulbar2 explored 134 nodes.
This confirms the weakness of current bounds in exact CPD algorithms. Otherwise, osprey is quite fast and can develop
more than 110,000 nodes per minute. Despite the exploration of huge trees, no DEE/A∗ execution led to memory exhaus-
tion before time-out. With an extended time-out of 100 hours [83], only 2 instances ultimately led to memory exhaustion.
The replacement of A∗ by iterative alternatives to A∗ such as IDA∗ [50] would therefore probably have little influence on
the results of DEE/A∗ .

7. Conclusions

The simplest formal optimization problem underlying CPD looks for a Global Minimum Energy Conformation (GMEC)
over a rigid backbone and altered side-chains (identity and conformation). In computational biology, exact methods for
solving the CPD problem combine dominance analysis (DEE) and an A∗ search.

D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79 77
The CPD problem can also be directly formulated as a Cost Function Network, with a very dense graph and relatively
large domains. We have shown how DEE can be integrated with local consistency with a reasonable time complexity.

The CPD can also be easily reduced to optimization in MRF, 01LP, 01QP, weighted partial MaxSAT, and Boolean quadratic
optimization, offering an ideal benchmark for a large cross-technology comparison.

On a variety of real instances, we have shown that state-of-the-art optimization algorithms on graphical models ex-
ploiting bounds based on the reformulation (or reparametrization) of the graphical model, but also 01LP algorithms, give
important speedups compared to usual CPD algorithms combining dead-end elimination with A∗ . Among all the tested
solvers, toulbar2 was the most efficient solver and its efficiency was further improved by the use of DEE during search.

We also showed that these CPD problems define challenging benchmarks for a variety of solvers, including weighted par-
tial MaxSAT solvers, either branch-and-bound or core-based, and quadratic programming or quadratic optimization solvers,
including semidefinite programming based solvers.

In practice, it must be stressed that just finding the GMEC is not a final answer to real CPD problems. CPD energies
functions represent an approximation of the real physics of proteins and optimizing a target score based on them (such as
stability, affinity, . . .) is not a guarantee of finding a successful design. Indeed, some designs may be so stable that they are
unable to accomplish the intended biological function. The usual approach is therefore to design a large library of proteins
whose sequences are extracted from all solutions within a small threshold of energy of the GMEC. This problem is also
efficiently solved by toulbar2 [83].

Although it is easy to formulate as a discrete optimization problem, another important limitation of the rigid back-
bone/rotamer CPD problem lies in the restrictions generated by these two assumptions. In practice, rotamers offer a
continuous range of rotations along dihedral angles and backbones also have degrees of flexibility. Several approaches have
been proposed and introduced in osprey in the last few years that relax either or both of these two assumptions while
still offering a guarantee of optimality [40,29,31]. When flexibility counts, osprey is therefore a reference tool. All these
approaches ultimately require to solve the very same type of optimization problems involving a sum of precomputed pair-
wise lower bounds on energy terms. In this context, it becomes crucial to be able to enumerate all the solutions within
a threshold of the optimum. These approaches should therefore ultimately also benefit from algorithmic improvements in
GMEC optimization, as far as exhaustively enumerating all the solutions within a threshold of the optimum is feasible.

Acknowledgements

This work has been partly funded by the Agence Nationale de la Recherche (ANR-10-BLA-0214 and ANR-12-MONU-
0015-03), the INRA and the Region Midi-Pyrénées. We would like to thank Damien Leroux for his help in the generation
of encodings using Python. We thank the Computing Center of Region Midi-Pyrénées (CALMIP, Toulouse, France) and the
GenoToul Bioinformatics Platform of INRA-Toulouse for providing computing resources and support.

The Insight Centre for Data Analytics is supported by a research grant from Science Foundation Ireland (SFI) under Grant
number SFI/12/RC/2289.

References

[1] T. Achterberg, T. Koch, A. Martin, Branching rules revisited, Oper. Res. Lett. 33 (2005) 42–54.
[2] D. Allouche, S. Traoré, I. André, S. de Givry, G. Katsirelos, S. Barbe, T. Schiex, Computational protein design as a cost function network optimization

problem, in: Principles and Practice of Constraint Programming, Springer, 2012, pp. 840–849.
[3] C. Anfinsen, Principles that govern the folding of protein chains, Science 181 (1973) 223–253.
[4] C. Ansótegui, M.L. Bonet, J. Levy, Solving (weighted) partial maxsat through satisfiability testing, in: Theory and Applications of Satisfiability Testing–SAT

2009, Springer, 2009, pp. 427–440.
[5] J. Argelich, A. Cabiscol, I. Lynce, F. Manyà, Encoding Max-CSP into partial Max-SAT, in: 38th International Symposium on Multiple Valued Logic, 2008,

ISMVL 2008, IEEE, 2008, pp. 106–111.
[6] F. Bacchus, GAC via unit propagation, in: Principles and Practice of Constraint Programming–CP 2007, Springer, 2007, pp. 133–147.
[7] F.E. Boas, P.B. Harbury, Potential energy functions for protein design, Curr. Opin. Struct. Biol. 17 (2007) 199–204, http://dx.doi.org/10.1016/j.sbi.

2007.03.006, http://www.ncbi.nlm.nih.gov/pubmed/17387014.
[8] F. Boussemart, F. Hemery, C. Lecoutre, L. Sais, Boosting systematic search by weighting constraints, in: ECAI, 2004, p. 146.
[9] J.U. Bowie, R. Luthy, D. Eisenberg, A method to identify protein sequences that fold into a known three-dimensional structure, Science 253 (1991)

164–170.
[10] F. Campeotto, A. Dal Palù, A. Dovier, F. Fioretto, E. Pontelli, A constraint solver for flexible protein models, Science 253 (1991) 164–170.
[11] J.M. Carothers, J.A. Goler, J.D. Keasling, Chemical synthesis using synthetic biology, Curr. Opin. Biotechnol. 20 (2009) 498–503.
[12] D. Case, T. Darden, T. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, K. Merz, D. Pearlman, M. Crowley, R. Walker, W. Zhang, B. Wang, S. Hayik,

A. Roitberg, G. Seabra, K. Wong, F. Paesani, X. Wu, S. Brozell, V. Tsui, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, P. Beroza, D. Mathews, C.
Schafmeister, W. Ross, P. Kollman, Amber 9, Technical report, University of California, San Francisco, 2006.

[13] E. Champion, I. André, C. Moulis, J. Boutet, K. Descroix, S. Morel, P. Monsan, L.A. Mulard, M. Remaud-Siméon, Design of α-transglucosidases of controlled
specificity for programmed chemoenzymatic synthesis of antigenic oligosaccharides, J. Am. Chem. Soc. 131 (2009) 7379–7389.

[14] M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, T. Werner, Soft arc consistency revisited, Artif. Intell. 174 (2010) 449–478.
[15] M.C. Cooper, High-order consistency in valued constraint satisfaction, Constraints 10 (2005) 283–305.
[16] M.C. Cooper, S. de Givry, M. Sánchez, T. Schiex, M. Zytnicki, Virtual arc consistency for weighted CSP, in: Proc. of AAAI’08, 2008, pp. 253–258.
[17] M.C. Cooper, S. de Givry, T. Schiex, Optimal soft arc consistency, in: Proc. of IJCAI’2007, Hyderabad, India, 2007, pp. 68–73.
[18] M.C. Cooper, T. Schiex, Arc consistency for soft constraints, Artif. Intell. 154 (2004) 199–227.
[19] B.I. Dahiyat, S.L. Mayo, Protein design automation, Protein Sci. 5 (1996) 895–903, http://dx.doi.org/10.1002/pro.5560050511, http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=2143401&tool=pmcentrez&rendertype=abstract.

http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4163687465726265726732303035s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4350442D32303132s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4350442D32303132s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib416E66696E73656E3733s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib77706D31s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib77706D31s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib617267656C69636832303038s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib617267656C69636832303038s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6261636368757332303037s1
http://dx.doi.org/10.1016/j.sbi.2007.03.006
http://www.ncbi.nlm.nih.gov/pubmed/17387014
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib626F757373656D61727432303034s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib626F77696531393931s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib626F77696531393931s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib43616D70656F74746F3133s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6361726F746865727332303039s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6361736532303036s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6361736532303036s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6361736532303036s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6368616D70696F6E32303039s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6368616D70696F6E32303039s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib636F6F70657232303130s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib636F6F7065723035s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib636F6F70657232303038s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4364473037s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib636F6F7065722E65613034s1
http://dx.doi.org/10.1002/pro.5560050511
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2143401&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2143401&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1016/j.sbi.2007.03.006

78 D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79
[20] J. Davies, F. Bacchus, Solving MAXSAT by solving a sequence of simpler SAT instances, in: Principles and Practice of Constraint Programming–CP 2011,
Springer, 2011, pp. 225–239.

[21] J. Davies, F. Bacchus, Exploiting the power of MIP solvers in MaxSAT, in: Theory and Applications of Satisfiability Testing–SAT 2013, Springer, 2013,
pp. 166–181.

[22] R. Dechter, R. Mateescu, AND/OR search spaces for graphical models, Artif. Intell. 171 (2007) 73–106.
[23] R. Dechter, I. Rish, Mini-buckets: a general scheme for bounded inference, J. ACM 50 (2003) 107–153.
[24] J. Desmet, M. De Maeyer, B. Hazes, I. Lasters, The dead-end elimination theorem and its use in protein side-chain positioning, Nature 356 (1992)

539–542, http://www.ncbi.nlm.nih.gov/pubmed/21488406.
[25] J. Desmet, J. Spriet, I. Lasters, Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimiza-

tion, Proteins 48 (2002) 31–43, http://dx.doi.org/10.1002/prot.10131, http://www.ncbi.nlm.nih.gov/pubmed/12012335.
[26] A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, W.H. Freeman and Co., New York, 1999.
[27] E.C. Freuder, Eliminating interchangeable values in constraint satisfaction problems, in: Proc. of AAAI’91, Anaheim, CA, 1991, pp. 227–233.
[28] B.R. Fritz, L.E. Timmerman, N.M. Daringer, J.N. Leonard, M.C. Jewett, Biology by design: from top to bottom and back, BioMed Res. Int. 2010 (2010).
[29] P. Gainza, K.E. Roberts, B.R. Donald, Protein design using continuous rotamers, PLoS Comput. Biol. 8 (2012) e1002335.
[30] P. Gainza, K.E. Roberts, I. Georgiev, R.H. Lilien, D.A. Keedy, C.Y. Chen, F. Reza, A.C. Anderson, D.C. Richardson, J.S. Richardson, et al., Osprey: protein design

with ensembles, flexibility, and provable algorithms, Methods Enzymol. 523 (2013) 87–107, http://dx.doi.org/10.1016/B978-0-12-394292-0.00005-9.
[31] I. Georgiev, D. Keedy, J.S. Richardson, D.C. Richardson, B.R. Donald, Algorithm for backrub motions in protein design, Bioinformatics 24 (2008) i196–i204.
[32] I. Georgiev, R.H. Lilien, B.R. Donald, Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with applica-

tion to protein design, Bioinformatics (Oxford) 22 (2006) e174–e183, http://dx.doi.org/10.1093/bioinformatics/btl220, http://www.ncbi.nlm.nih.gov/
pubmed/16873469.

[33] I. Georgiev, R.H. Lilien, B.R. Donald, The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search
algorithm for computing partition functions over molecular ensembles, J. Comput. Chem. 29 (2008) 1527–1542, http://dx.doi.org/10.1002/jcc.20909,
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263346&tool=pmcentrez&rendertype=abstract.

[34] S. de Givry, S. Prestwich, B. O’Sullivan, Dead-end elimination for weighted CSP, in: Principles and Practice of Constraint Programming–CP 2013, Springer,
2013.

[35] A. Globerson, T.S. Jaakkola, Fixing max-product: convergent message passing algorithms for map lp-relaxations, in: Advances in Neural Information
Processing Systems, 2007, pp. 553–560.

[36] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,
J. ACM 42 (1995) 1115–1145.

[37] R.F. Goldstein, Efficient rotamer elimination applied to protein side-chains and related spin glasses, Biophys. J. 66 (1994) 1335–1340, http://dx.doi.org/
10.1016/S0006-3495(94)80923-3, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275854&tool=pmcentrez&rendertype=abstract.

[38] D. Gront, D.W. Kulp, R.M. Vernon, C.E. Strauss, D. Baker, Generalized fragment picking in Rosetta: design, protocols and applications, PLoS ONE 6 (2011)
e23294.

[39] I. Grunwald, K. Rischka, S.M. Kast, T. Scheibel, H. Bargel, Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered
proteins, Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 367 (2009) 1727–1747, http://dx.doi.org/10.1098/rsta.2009.0012, http://www.ncbi.nlm.nih.gov/
pubmed/19376768.

[40] M.A. Hallen, D.A. Keedy, B.R. Donald, Dead-end elimination with perturbations (deeper): a provable protein design algorithm with continuous sidechain
and backbone flexibility, Proteins 81 (2013) 18–39.

[41] W.D. Harvey, M.L. Ginsberg, Limited discrepancy search, in: Proc. of the 14th IJCAI, Montréal, Canada, 1995.
[42] G. Hawkins, C. Cramer, D. Truhlar, Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges

from a dielectric medium, J. Phys. Chem. 100 (1996) 19824–19839.
[43] F. Heras, J. Larrosa, A. Oliveras, Minimaxsat: an efficient weighted Max-SAT solver, J. Artif. Intell. Res. 31 (2008) 1–32.
[44] J. Janin, S. Wodak, M. Levitt, B. Maigret, Conformation of amino acid side-chains in proteins, J. Mol. Biol. 125 (1978) 357–386.
[45] A.S. Khalil, J.J. Collins, Synthetic biology: applications come of age, Nat. Rev. Genet. 11 (2010) 367–379.
[46] S.D. Khare, Y. Kipnis, P. Greisen, R. Takeuchi, Y. Ashani, M. Goldsmith, Y. Song, J.L. Gallaher, I. Silman, H. Leader, J.L. Sussman, B.L. Stoddard, D.S.

Tawfik, D. Baker, Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis, Nat. Chem. Biol. 8 (2012) 294–300,
http://dx.doi.org/10.1038/nchembio.777, http://www.ncbi.nlm.nih.gov/pubmed/22306579.

[47] G.A. Khoury, J. Smadbeck, C.A. Kieslich, C.A. Floudas, Protein folding and de novo protein design for biotechnological applications, Trends Biotechnol.
32 (2014) 99–109.

[48] C.L. Kingsford, B. Chazelle, M. Singh, Solving and analyzing side-chain positioning problems using linear and integer programming, Bioinformatics
(Oxford) 21 (2005) 1028–1036, http://dx.doi.org/10.1093/bioinformatics/bti144, http://www.ncbi.nlm.nih.gov/pubmed/15546935.

[49] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques, The MIT Press, 2009.
[50] R.E. Korf, Depth first iterative deepening: an optimal admissible tree search, Artif. Intell. 27 (1985) 97–109.
[51] A. Koster, S. van Hoesel, A. Kolen, Solving frequency assignment problems via tree-decomposition, Technical report RM/99/011, Universiteit Maastricht,

Maastricht, The Netherlands, 1999.
[52] A. Kuegel, Improved exact solver for the weighted Max-SAT problem, in: Workshop Pragmatics of SAT, 2010.
[53] B. Kuhlman, D. Baker, Native protein sequences are close to optimal for their structures, Proc. Natl. Acad. Sci. USA 97 (2000) 10383–10388, http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=27033&tool=pmcentrez&rendertype=abstract.
[54] J. Larrosa, On arc and node consistency in weighted CSP, in: Proc. AAAI’02, Edmondton, CA, 2002, pp. 48–53.
[55] J. Larrosa, S. de Givry, F. Heras, M. Zytnicki, Existential arc consistency: getting closer to full arc consistency in weighted CSPs, in: Proc. of the 19th

IJCAI, Edinburgh, Scotland, 2005, pp. 84–89.
[56] J. Larrosa, P. Meseguer, T. Schiex, G. Verfaillie, Reversible DAC and other improvements for solving max-CSP, in: Proc. of AAAI’98, Madison, WI, 1998.
[57] J. Larrosa, T. Schiex, Solving weighted CSP by maintaining arc consistency, Artif. Intell. 159 (2004) 1–26.
[58] A.R. Leach, A.P. Lemon, Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm, Proteins 33 (1998)

227–239, http://www.ncbi.nlm.nih.gov/pubmed/9779790.
[59] C. Lecoutre, O. Roussel, D.E. Dehani, WCSP integration of soft neighborhood substitutability, in: Principles and Practice of Constraint Programming,

Springer, 2012, pp. 406–421.
[60] C. Lecoutre, L. Saïs, S. Tabary, V. Vidal, Reasoning from last conflict(s) in constraint programming, Artif. Intell. 173 (2009) 1592, 1614.
[61] J.C. Lewis, S. Bastian, C.S. Bennett, Y. Fu, Y. Mitsuda, M.M. Chen, W.A. Greenberg, C.H. Wong, F.H. Arnold, Chemoenzymatic elaboration of monosaccha-

rides using engineered cytochrome p450bm3 demethylases, Proc. Natl. Acad. Sci. 106 (2009) 16550–16555.
[62] J. Linderoth, M. Savelsbergh, A computational study of search strategies for mixed integer programming, INFORMS J. Comput. 11 (1999) 173–187.
[63] L.L. Looger, H.W. Hellinga, Generalized dead-end elimination algorithms make large-scale protein side-chain structure prediction tractable: implications

for protein design and structural genomics, J. Mol. Biol. 307 (2001) 429–445, http://dx.doi.org/10.1006/jmbi.2000.4424, http://www.ncbi.nlm.nih.gov/
pubmed/11243829.

http://refhub.elsevier.com/S0004-3702(14)00033-2/bib64617669657332303131s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib64617669657332303131s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib64617669657332303133s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib64617669657332303133s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6465636874657232303037s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib64656368746572323030336D696E69s1
http://www.ncbi.nlm.nih.gov/pubmed/21488406
http://dx.doi.org/10.1002/prot.10131
http://www.ncbi.nlm.nih.gov/pubmed/12012335
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib66657273687431393939s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib46726575646572393161s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib667269747A32303130s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib436F6E74526F74s1
http://dx.doi.org/10.1016/B978-0-12-394292-0.00005-9
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4261636B527562s1
http://dx.doi.org/10.1093/bioinformatics/btl220
http://www.ncbi.nlm.nih.gov/pubmed/16873469
http://www.ncbi.nlm.nih.gov/pubmed/16873469
http://dx.doi.org/10.1002/jcc.20909
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263346&tool=pmcentrez&rendertype=abstract
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib5364474445453133s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib5364474445453133s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib676C6F626572736F6E32303037s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib676C6F626572736F6E32303037s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib676F656D616E7331393935s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib676F656D616E7331393935s1
http://dx.doi.org/10.1016/S0006-3495(94)80923-3
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275854&tool=pmcentrez&rendertype=abstract
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib67726F6E7432303131s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib67726F6E7432303131s1
http://dx.doi.org/10.1098/rsta.2009.0012
http://www.ncbi.nlm.nih.gov/pubmed/19376768
http://www.ncbi.nlm.nih.gov/pubmed/19376768
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib444545506572s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib444545506572s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib47696E73626572673935s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4861776B696E7331393936s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4861776B696E7331393936s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6D696E696D6178736174s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6A616E696E31393738s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6B68616C696C32303130s1
http://dx.doi.org/10.1038/nchembio.777
http://www.ncbi.nlm.nih.gov/pubmed/22306579
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6B686F75727932303134s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6B686F75727932303134s1
http://dx.doi.org/10.1093/bioinformatics/bti144
http://www.ncbi.nlm.nih.gov/pubmed/15546935
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6B6F6C6C657232303039s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4B6F72663835s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4B6F737465723939s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4B6F737465723939s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib616B6D6178736174s1
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=27033&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=27033&tool=pmcentrez&rendertype=abstract
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4C6172726F736132303032s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4C6172726F736132303035s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4C6172726F736132303035s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib5363686965783938s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4C6172726F7361533034s1
http://www.ncbi.nlm.nih.gov/pubmed/9779790
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4C65636F7574726532303132s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4C65636F7574726532303132s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4C65636F757472653039s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6C6577697332303039s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6C6577697332303039s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4C696E6465726F746831393939s1
http://dx.doi.org/10.1006/jmbi.2000.4424
http://www.ncbi.nlm.nih.gov/pubmed/11243829
http://www.ncbi.nlm.nih.gov/pubmed/11243829
http://dx.doi.org/10.1016/S0006-3495(94)80923-3

D. Allouche et al. / Artificial Intelligence 212 (2014) 59–79 79
[64] S.C. Lovell, J.M. Word, J.S. Richardson, D.C. Richardson, The penultimate rotamer library, Proteins 40 (2000) 389–408, http://www.ncbi.nlm.nih.gov/
pubmed/10861930.

[65] K. Marriott, N. Nethercote, R. Rafeh, P. Stuckey, M.G. de la Banda, M. Wallace, The design of the zinc modelling language, Constraints 13 (2008) 229–267.
[66] V.J. Martin, D.J. Pitera, S.T. Withers, J.D. Newman, J.D. Keasling, Engineering a mevalonate pathway in Escherichia coli for production of terpenoids, Nat.

Biotechnol. 21 (2003) 796–802.
[67] B.M. Nestl, B.A. Nebel, B. Hauer, Recent progress in industrial biocatalysis, Curr. Opin. Chem. Biol. 15 (2011) 187–193, http://dx.doi.org/10.1016/

j.cbpa.2010.11.019, http://www.ncbi.nlm.nih.gov/pubmed/21195018.
[68] R. Niedermeier, P. Rossmanith, New upper bounds for maximum satisfiability, J. Algorithms 36 (2000) 63–88.
[69] L. Otten, A. Ihler, K. Kask, R. Dechter, Winning the Pascal 2011 map challenge with enhanced AND/OR branch-and-bound, in: DISCML’12 Workshop, at

NIPS’12, Lake Tahoe, NV, USA, 2012.
[70] C. Pabo, Molecular technology. Designing proteins and peptides, Nature 301 (1983) 200, http://www.ncbi.nlm.nih.gov/pubmed/6823300.
[71] S.G. Peisajovich, D.S. Tawfik, Protein engineers turned evolutionists, Nat. Methods 4 (2007) 991–994, http://dx.doi.org/10.1038/nmeth1207-991, http://

www.ncbi.nlm.nih.gov/pubmed/18049465.
[72] T. Petit, J. Régin, C. Bessière, Meta constraints on violations for over constrained problems, in: Proceedings of IEEE ICTAI’2000, Vancouver, BC, Canada,

2000, pp. 358–365.
[73] N. Pierce, J. Spriet, J. Desmet, S. Mayo, Conformational splitting: a more powerful criterion for dead-end elimination, J. Comput. Chem. 21 (2000)

999–1009.
[74] N.A. Pierce, E. Winfree, Protein design is NP-hard, Protein Eng. 15 (2002) 779–782, http://www.ncbi.nlm.nih.gov/pubmed/12468711.
[75] J. Pleiss, Protein design in metabolic engineering and synthetic biology, Curr. Opin. Biotechnol. 22 (2011) 611–617, http://dx.doi.org/10.1016/

j.copbio.2011.03.004, http://www.ncbi.nlm.nih.gov/pubmed/21514140, 2011.
[76] P. Raghavendra, Optimal algorithms and inapproximability results for every CSP?, in: Proceedings of the 40th Annual ACM Symposium on Theory of

Computing, ACM, 2008, pp. 245–254.
[77] K. Raha, A.M. Wollacott, M.J. Italia, J.R. Desjarlais, Prediction of amino acid sequence from structure, Protein Sci. 9 (2000) 1106–1119, http://dx.doi.org/

10.1110/ps.9.6.1106, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2144664&tool=pmcentrez&rendertype=abstract.
[78] F. Rendl, G. Rinaldi, A. Wiegele, Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations, Math. Program. 121 (2010) 307.
[79] T. Schiex, Arc consistency for soft constraints, in: Principles and Practice of Constraint Programming–CP 2000, Singapore, 2000, pp. 411–424.
[80] D. Sontag, D.K. Choe, Y. Li, Efficiently searching for frustrated cycles in MAP inference, in: Proceedings of the Twenty-Eighth Conference on Uncertainty

in Artificial Intelligence (UAI-12), AUAI Press, Corvallis, Oregon, 2012, pp. 795–804.
[81] D. Sontag, T. Meltzer, A. Globerson, Y. Weiss, T. Jaakkola, Tightening LP relaxations for MAP using message-passing, in: 24th Conference in Uncertainty

in Artificial Intelligence, AUAI Press, 2008, pp. 503–510.
[82] M. Swain, G. Kemp, A CLP approach to the protein side-chain placement problem, in: Principles and Practice of Constraint Programming–CP 2001,

Springer, 2001, pp. 479–493.
[83] S. Traoré, D. Allouche, I. André, S. de Givry, G. Katsirelos, T. Schiex, S. Barbe, A new framework for computational protein design through cost function

network optimization, Bioinformatics 29 (2013) 2129–2136.
[84] C.A. Voigt, D.B. Gordon, S.L. Mayo, Trading accuracy for speed: a quantitative comparison of search algorithms in protein sequence design, J. Mol. Biol.

299 (2000) 789–803, http://dx.doi.org/10.1006/jmbi.2000.3758, http://www.ncbi.nlm.nih.gov/pubmed/10835284.
[85] R. Wallace, Directed arc consistency preprocessing, in: M. Meyer (Ed.), Selected Papers from the ECAI-94 Workshop on Constraint Processing, in: Lect.

Notes Comput. Sci., vol. 923, Springer, Berlin, 1995, pp. 121–137.
[86] C. Yanover, T. Meltzer, Y. Weiss, Linear programming relaxations and belief propagation–an empirical study, J. Mach. Learn. Res. 7 (2006) 1887–1907.
[87] P.Y. Zhang, D.A. Romero, J.C. Beck, C.H. Amon, Solving wind farm layout optimization with mixed integer programming and constraint programming,

in: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR), Springer, 2013, pp. 284–299.

http://www.ncbi.nlm.nih.gov/pubmed/10861930
http://www.ncbi.nlm.nih.gov/pubmed/10861930
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4D617272696F74743038s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6D617274696E32303033s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib6D617274696E32303033s1
http://dx.doi.org/10.1016/j.cbpa.2010.11.019
http://www.ncbi.nlm.nih.gov/pubmed/21195018
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4E69656465726D6569657232303030s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4F7474656E3132s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4F7474656E3132s1
http://www.ncbi.nlm.nih.gov/pubmed/6823300
http://dx.doi.org/10.1038/nmeth1207-991
http://www.ncbi.nlm.nih.gov/pubmed/18049465
http://www.ncbi.nlm.nih.gov/pubmed/18049465
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib506574697432303030s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib506574697432303030s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib70696572636532303030s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib70696572636532303030s1
http://www.ncbi.nlm.nih.gov/pubmed/12468711
http://dx.doi.org/10.1016/j.copbio.2011.03.004
http://www.ncbi.nlm.nih.gov/pubmed/21514140
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib5344502D32303038s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib5344502D32303038s1
http://dx.doi.org/10.1110/ps.9.6.1106
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2144664&tool=pmcentrez&rendertype=abstract
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib4269714D616332303130s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib536368696578303062s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib736F6E7461673132s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib736F6E7461673132s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib736F6E7461673038s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib736F6E7461673038s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib737761696E32303031s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib737761696E32303031s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib42696F696E666F2D32303133s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib42696F696E666F2D32303133s1
http://dx.doi.org/10.1006/jmbi.2000.3758
http://www.ncbi.nlm.nih.gov/pubmed/10835284
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib57616C6C6163653934s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib57616C6C6163653934s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib79616E6F76657232303036s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib5A68616E6732303133s1
http://refhub.elsevier.com/S0004-3702(14)00033-2/bib5A68616E6732303133s1
http://dx.doi.org/10.1016/j.cbpa.2010.11.019
http://dx.doi.org/10.1016/j.copbio.2011.03.004
http://dx.doi.org/10.1110/ps.9.6.1106

	Computational protein design as an optimization problem
	1 Introduction
	2 The computational protein design approach
	2.1 Exact CPD methods

	3 From CPD to CFN
	3.1 Local consistency in CFN
	3.2 Maintaining dead-end elimination
	3.2.1 Enforcing DEE
	3.2.2 Enforcing DEE1

	4 Computational protein design instances
	4.1 A new cost-based variable ordering heuristics

	5 Alternative models for the CPD
	5.1 CPD as a probabilistic graphical model
	5.2 Integer linear programming model
	5.3 0/1 quadratic programming model
	5.4 0/1 quadratic optimization model
	5.5 Weighted partial MaxSAT
	5.6 Constraint programming model

	6 Experimental results
	6.1 Solvers tested
	6.2 Results
	6.3 Non-vanilla toulbar2
	6.4 Analysis of results

	7 Conclusions
	Acknowledgements
	References

