
Solving MAXSAT by Decoupling Optimization and

Satisfaction

by

Jessica Davies

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

c© Copyright 2013 by Jessica Davies

Abstract

Solving MAXSAT by Decoupling Optimization and Satisfaction

Jessica Davies

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2013

Many problems that arise in the real world are di�cult to solve partly because they present computational

challenges. Many of these challenging problems are optimization problems. In the real world we are

generally interested not just in solutions but in the cost or bene�t of these solutions according to di�erent

metrics. Hence, �nding optimal solutions is often highly desirable and sometimes even necessary. The

most e�ective computational approach for solving such problems is to �rst model them in a mathematical

or logical language, and then solve them by applying a suitable algorithm.

This thesis is concerned with developing practical algorithms to solve optimization problems modelled

in a particular logical language, maxsat. maxsat is a generalization of the famous Satis�ability (SAT)

problem, that associates �nite costs with falsifying various desired conditions where these conditions

are expressed as propositional clauses. Optimization problems expressed in maxsat typically have two

interacting components: the logical relationships between the variables expressed by the clauses, and

the optimization component involving minimizing the falsi�ed clauses. The interaction between these

components greatly contributes to the di�culty of solving maxsat.

The main contribution of the thesis is a new hybrid approach, maxhs, for solving maxsat. Our

hybrid approach attempts to decouple these two components so that each can be solved with a di�erent

technology. In particular, we develop a hybrid solver that exploits two sophisticated technologies with

divergent strengths: SAT for solving the logical component, and Integer Programming (IP) solvers for

solving the optimization component. maxhs automatically and incrementally splits the maxsat problem

into two parts that are given to the SAT and IP solvers, which work together in a complementary way

to �nd a maxsat solution. The thesis investigates several improvements to the maxhs approach and

provides empirical analysis of its behaviour in practise. The result is a new solver, maxhs, that is shown

to be the most robust existing solver for maxsat.

ii

Acknowledgements

To all of the people that I got to know during my graduate studies, thank you for

the di�erent ways you helped me along the way. Thank you to the members of my

Committee, Sheila McIlraith and Toniann Pitassi, for your advice and encouragement. I

was very fortunate to be advised by Fahiem Bacchus. I will always appreciate his insight

and patience, which guided and inspired me along this path. Finally, thank you to my

parents for your constant love and support. I dedicate this thesis to you both.

iii

Preface

The research I conducted during the course of my PhD studies involved projects in several

di�erent areas of computer science, including automated reasoning, computational social

choice, and formal methods. This thesis is concerned with a particular topic that became

the focus of my research: practical algorithms for solving maxsat. Most of the results in

the thesis have been published in conference papers, Chapter 3 in (Davies and Bacchus,

2011), Chapter 4 in (Davies and Bacchus, 2011) and (Davies and Bacchus, 2013) and

Chapter 6 in (Davies, Cho, and Bacchus, 2010).

I was a co-author of the following papers during my PhD.

• Journal Papers

1. Davies, J., Katsirelos, G., Narodystka, N., Walsh, T. and Xia, L. Complexity of

and Algorithms for the Manipulation of Borda, Nanson and Baldwin's Voting

Rules. Arti�cial Intelligence. Accepted, 2012.

2. Simmonds, J., Davies, J., Gur�nkel, A., and Chechik, M. Exploiting Reso-

lution Proofs to Speed Up LTL Vacuity Detection for BMC. International

Journal on Software Tools for Technology Transfer (STTT). 12(5), p.319-335,

2010.

• Conference Papers

1. Davies, J., and Bacchus, F. Exploiting the Power of MIP Solvers in MAXSAT.

In Proceedings of Theory and Applications of Satis�ability Testing (SAT),

2013.

2. Davies, J., Narodytska, N., and Walsh, T. Eliminating the Weakest Link:

Making Manipulation Intractable? In Proceedings of the AAAI Conference on

Arti�cial Intelligence (AAAI), 2012.

iv

3. Davies, J., Katsirelos, G., Narodystka, N., and Walsh, T. Complexity of and

Algorithms for Borda Manipulation. AAAI outstanding paper award. In

Proceedings of the AAAI Conference on Arti�cial Intelligence (AAAI), 2011.

4. Davies, J., and Bacchus, F. Solving MAXSAT by Solving a Sequence of Simpler

SAT Instances. In Principles and Practice of Constraint Programming (CP),

2011.

5. Davies, J., Cho, J., and Bacchus, F. Using Learnt Clauses in MAXSAT. In

Principles and Practice of Constraint Programming (CP), 2010.

6. Simmonds, J., Davies, J., Gur�nkel, A., and Chechik, M. Exploiting Resolu-

tion Proofs to Speed Up LTL Vacuity Detection for BMC. In Proceedings of

Formal Methods in Computer-Aided Design (FMCAD), 2007.

7. Davies, J. and Bacchus, F. Using More Reasoning to Improve #SAT Solv-

ing. In Proceedings of the AAAI Conference on Arti�cial Intelligence (AAAI),

2007.

8. Samulowitz, H., Davies, J., and Bacchus, F. Preprocessing QBF. In Principles

and Practice of Constraint Programming (CP), 2006.

• Workshop Papers

1. Davies, J., Katsirelos, G., Narodystka, N., and Walsh, T. An Empirical Study

of Borda Manipulation. Third International Workshop on Computational So-

cial Choice (ComSoc 2010). Dusseldorf, Germany, 2010.

2. Davies, J. and Bacchus, F. Distributional Importance Sampling for Approxi-

mate Weighted Model Counting. The First Workshop on Counting Problems

in CSP and SAT, and Other Neighbouring Problems (Counting 2008). Sydney,

Australia, 2008.

v

Contents

1 Introduction 1

2 Background 8

2.1 Introduction . 8

2.2 The maxsat Problem . 10

2.3 Applications of maxsat . 13

2.3.1 Max-Cut . 14

2.3.2 Design Debugging . 15

2.3.3 Other Applications . 16

2.4 Resolution for maxsat . 17

2.4.1 The maxres Rule . 17

2.4.2 The Saturation Algorithm . 19

2.5 Existing maxsat Solvers . 21

2.5.1 Branch and Bound Solvers . 21

2.5.2 Sequence of SAT Instance Solvers 28

2.6 Conclusion . 36

3 Solving maxsat with Hitting Sets 37

3.1 Introduction . 37

3.2 The MaxHS Algorithm . 38

3.3 Bene�ts of maxhs . 42

vi

3.4 Factors A�ecting Performance . 43

3.5 Implementation . 47

3.5.1 Extracting Cores . 47

3.5.2 Computing a Minimum Cost Hitting Set 51

3.6 Core Diversi�cation . 51

3.6.1 Minimal Cores . 52

3.6.2 Re-refuting Cores . 53

3.6.3 Disjoint Cores . 53

3.6.4 Other Methods . 54

3.7 Experimental Evaluation . 55

3.7.1 Experimental Setup . 55

3.7.2 Experimental Results . 59

3.8 Related Work . 71

3.9 Conclusion . 72

4 Constraining the Hitting Sets 75

4.1 Realizable Hitting Sets . 76

4.1.1 Implementing Realizability . 78

4.1.2 Experiments with Realizability 82

4.2 Non-Core Constraints . 85

4.2.1 b-variable Equivalences . 86

4.2.2 maxhs with Non-Core Constraints 89

4.2.3 Seeding cplex with Constraints 91

4.2.4 Implementation . 93

4.2.5 Experimental Results . 93

4.3 Conclusions . 98

vii

5 Non-Optimal Hitting Sets 108

5.1 Introduction . 108

5.2 maxhs with Non-Optimal Hitting Sets 109

5.2.1 Methods to Compute Non-Optimal Hitting Sets 114

5.3 Combining Seeding and Non-Optimal Hitting Sets 115

5.4 Experimental Evaluation . 116

5.5 Related Work . 119

5.6 Conclusion . 120

6 Hitting Set Bounds in Branch and Bound for maxsat 126

6.1 Introduction . 126

6.2 Branch and Bound vs. Sequence of SAT 127

6.3 Hitting Set Bounds . 129

6.4 Lower Bounding the Minimum Cost Hitting Set 133

6.4.1 Heuristic Lower Bounds . 133

6.4.2 Linear Relaxation Lower Bound 135

6.5 Learning Clauses . 136

6.5.1 Relaxed DPLL Preprocessing . 136

6.5.2 Learning Clauses During Branch and Bound 138

6.6 Related Work . 140

6.7 Experimental Results . 140

6.7.1 Comparing the Lower Bound Heuristics 141

6.7.2 Solving Without Search . 143

6.8 Conclusion . 144

7 Conclusion 146

Appendices 151

viii

A Basic Terminology 151

B DPLL SAT Solvers 153

Bibliography 155

ix

Chapter 1

Introduction

Many problems that arise in the real world are di�cult to solve partly because they

present computational challenges. Furthermore, it is often important to �nd not just any

solution to the problem, but rather one that is �best� according to some objective. In

this case, the problem falls into the class of optimization problems. The most e�ective

approach to solving such problems is to �rst model them in a mathematical or logical

language, and then solve them by applying a suitable algorithm. This thesis is concerned

with developing practical algorithms to solve optimization problems modelled in a par-

ticular logical language, maxsat. maxsat is a generalization of the famous Satis�ability

problem.

Both SAT and maxsat deal with propositional logic formulas in Conjunctive Normal

Form.1 In the SAT problem, the goal is to �nd a truth assignment that satis�es all of

the clauses if one exists, and to report that no satisfying assignment exists otherwise.

However, when there is no satisfying assignment, it may still be useful to �nd the truth

assignment that satis�es as many clauses as possible, and this is the goal of maxsat. A

solution to a maxsat instance is a truth assignment that satis�es the maximal number

of clauses.

1Any Boolean function can be represented by a formula in CNF. A formula is in CNF if it is a
conjunction of clauses, each of which is a disjunction of literals (Boolean variables or their negations).

1

Chapter 1. Introduction 2

In order to facilitate the modelling of a variety of optimization problems, where some

constraints may be more important to satisfy than others, the maxsat problem can be

extended by associating di�erent costs with falsifying di�erent clauses. In this case, it

is natural to cast maxsat in terms of minimizing the total cost of the falsi�ed clauses.2

This thesis addresses the most general form of maxsat instances, commonly referred

to as Weighted Partial maxsat.3 Each propositional clause is associated with a weight

that is either a positive integer or in�nity. The solution to the maxsat instance is

a truth assignment to the propositional variables that minimizes the total weight of

falsi�ed clauses, called the cost of the assignment. Hence in�nite weight clauses express

conditions that must be satis�ed.

To illustrate how maxsat is used to model optimization problems, we describe a

natural encoding of the well-known Traveling Salesman Problem (TSP). In TSP, we

imagine that there is a salesman who needs to visit a number of cities (each at most once

except for the starting city), ending up back at the �rst city. Such an itinerary is called

a tour. For the sake of simplicity, we assume that it is possible to travel directly between

any of the cities, and that the distance in both directions is equal (this is the symmetric

TSP on a complete graph). A solution to the TSP is a tour of minimal length, where

the length is calculated as the sum of the distances.

In order to model TSP as maxsat, let n be the number of cities. We introduce

n(n+ 1) Boolean variables xij to represent visiting city i at time step j, where 1 ≤ i ≤ n

and 1 ≤ j ≤ n + 1. We add clauses over these variables to enforce the tour constraints,

as follows. In order to specify that some city is visited at every time step, we introduce

n + 1 clauses {x1j, x2j, ..., xnj}, 1 ≤ j ≤ n + 1. These clauses state that at time j, the

salesman is visiting at least one of the cities. We must also specify that it is impossible

to be in more than one city at the same time, using the clauses {¬xij,¬xkj} for all pairs

2Our de�nition of maxsat as a minimization problem is equivalent to the familiar de�nition because
minimizing the number of falsi�ed clauses necessarily maximizes the number of satis�ed clauses.

3In the remainder of the thesis whenever we refer to maxsat without any quali�cations we mean
Weighted Partial maxsat.

Chapter 1. Introduction 3

of distinct cities i 6= k, 1 ≤ i, k ≤ n and all time steps 1 ≤ j ≤ n + 1. This ensures that

if some xij is true all other xkj for k 6= i must be false, i.e., if the salesman is visiting

city i at time step j they cannot also be visiting another city k at the same time. Now

we must express the property that every city be visited. The clauses {xi1, ...xin} for each

city i capture this property since they require city i to be visited at one of the �rst n time

steps (at time step n+ 1 the salesman revisits the starting city). Finally, we add the two

clauses {¬xi1, xin+1} and {xi1,¬xin+1} for every city i which ensure that the �rst and

last city are the same. We associate an in�nite weight with each of the clauses mentioned

so far, to make sure that the maxsat solution will satisfy all of these constraints.

Now, any assignment to the variables that satis�es the above mentioned clauses spec-

i�es a legal tour of the cities. It remains to express the di�erent distances between the

cities, which is achieved by using additional clauses with �nite weights. For every pair

of cities i 6= k, we add n clauses {¬xij,¬xkj+1} for 1 ≤ j ≤ n, each with weight equal

to the distance between cities i and k. A truth assignment falsi�es such a clause if and

only if it assigns true to both xij and xkj+1. This represents moving from city i at time

step j to city k at time step j + 1. If a truth assignment falsi�es such a clause, a cost

equal to the distance between i and k will be incurred. Thus, any truth assignment that

satis�es all of the clauses with in�nite weight from above, and therefore corresponds to a

valid tour, will have cost equal to the length of the tour. Therefore the maxsat solution,

which �nds a minimal cost truth assignment, corresponds to a minimal length tour as

required to solve the TSP.

This thesis is concerned with practical, exact algorithms to solve themaxsat problem.

The maxsat problem is complete for the complexity class FPNP, which contains many

important discrete optimization problems including TSP. Therefore, if we could develop

a robust and e�cient maxsat solver, it could be used to solve many di�erent kinds of

optimization problems by translating them to maxsat. However, since maxsat is FPNP-

complete, it is an even harder problem than SAT. So developing a robust and e�cient

Chapter 1. Introduction 4

maxsat solver is a very challenging goal, and ultimately any maxsat algorithm will

have limitations.

Yet we are encouraged by the example of SAT solvers, which although also tackling

hard problems (in this case NP-complete), often perform very e�ectively as a black-box

solver for many real-world applications. Since maxsat is a natural extension of SAT we

believe that in the future, maxsat solvers will also see a rise in popularity, based on

providing a convenient and e�cient approach for solving optimization problems.

Many maxsat solvers have been developed since the mid 1990's, and they have been

successfully applied to solve a variety of problems. For example, the Electronic Design

Automation (EDA) domain is a natural application area for maxsat since the problems

deal with many logical constraints that are easily expressed as conjunctions of clauses.

EDA tasks such as circuit routing and design debugging can be encoded as maxsat

and e�ciently solved using maxsat solvers that exploit SAT technology. Furthermore,

maxsat is used to model and solve problems in an increasing diversity of applications,

such as planning, scheduling, probabilistic inference, and bioinformatics as well.

The underlying algorithms implemented by existing state-of-the-art maxsat solvers

fall into two main classes: Branch and Bound search, and solving a sequence of decision

problems. In the latter class, most maxsat solvers exploit existing SAT technology,

by converting the decision problems to CNF and passing them to a SAT solver. In

contrast, the Branch and Bound solvers perform a backtracking search through the space

of truth assignments, and rely on calculating bounds to prune the search tree. It has

been observed that solvers that follow these two approaches tend to work e�ciently on

di�erent types of maxsat instances. Very generally, Branch and Bound solvers do better

on �crafted� instances, e.g. graph optimization problems like TSP, while maxsat solvers

that use a sequence of SAT problems approach are able to tackle the very large instances

arising in �industrial� applications like EDA. It is possible to speculate as to why this

is the case, but no experimentally or theoretically veri�ed explanation for the di�ering

Chapter 1. Introduction 5

behaviour of maxsat solvers currently exists.

As we described above, maxsat is a natural language to represent optimization prob-

lems and already many maxsat solvers have been developed. So it is striking that in

practice, the most commonly applied optimization technology is not maxsat but Inte-

ger Programming (IP). For example, the current best solver for TSP is based on the

techniques commonly used to solve IP problems (Applegate, Bixby, Chvátal, and Cook,

2007). IP is a formalism for representing linear optimization problems over discrete val-

ued variables, and it is well studied in the Operations Research community. In IP, the

goal is to �nd an assignment that satis�es a set of feasibility constraints, which are arbi-

trary linear inequalities over integer variables, and that minimizes or maximizes a linear

objective function. In the Operations Research community, sophisticated algorithms to

solve IP models have been developed. The main approach is Branch and Cut, which relies

on solving linear relaxations of the IP.4 The best existing implementations of Branch and

Cut are those incorporated in proprietary Mixed Integer Programming (MIP) packages,

such as IBM ILOG's cplex. These packages are an important tool in many industries,

e.g. airline crew scheduling.

Given the proven popularity of MIP solvers, it is natural to ask whether they are also

e�ective on maxsat instances. There is a simple encoding of maxsat to IP and we show

in Section 3.7 that the MIP solver cplex actually solves many maxsat instances faster

than existing specialized maxsat solvers. However, it also fails on many other instances

that specialized maxsat solvers can solve.

Although in principle SAT can also be translated to IP and solved using MIP solvers,

the performance of MIP solvers on SAT instances is known to be very poor. This is

because the special-purpose techniques employed by SAT solvers are particularly suited

to handling a large number of logical constraints, which occur in maxsat instances as

well. Thus it is not surprising that maxsat solvers that exploit SAT technology are

4The linear relaxation of an IP is an LP (Linear Program) that is derived by lifting the restriction
that the variables take on integer values.

Chapter 1. Introduction 6

able to solve many maxsat instances that are too challenging for MIP solvers. Hence,

a promising approach to create a more robust maxsat solver is to investigate ways to

combine SAT and MIP techniques.

In this thesis we introduce a new hybrid approach for solving maxsat, that ex-

ploits two sophisticated technologies with divergent but complementary strengths: SAT

and Integer Programming solvers. The proposed maxhs approach decouples the sat-

isfaction and optimization aspects of maxsat. Speci�cally, maxhs automatically and

incrementally splits the maxsat problem into two parts, given to the SAT and MIP

solvers respectively, and facilitates communication between the two sub-solvers so that

they work together to solve the maxsat problem. The SAT and MIP solvers are used

as black-boxes. Thus maxhs is able to exploit the di�erent abilities of SAT and MIP

solvers to e�ectively solve the maxsat problem, automatically and without touching the

SAT and MIP solvers' internal algorithms.

We demonstrate through an extensive empirical evaluation that our new maxsat

solver based on the maxhs approach is more robust than any existing maxsat solver.

Furthermore, the hybrid maxhs solver performs signi�cantly better than using a MIP

solver alone to solve maxsat.

The remainder of the thesis is organized as follows. In Chapter 2, the maxsat prob-

lem is de�ned, applications of maxsat are listed, and the main existing approaches for

solving maxsat are explained in detail. The maxhs approach is introduced in Chap-

ter 3, and the implementation of the maxhs solver is also described. Section 3.7 describes

the experimental setup used throughout the thesis, and is followed by an empirical com-

parison of the initial version of the maxhs solver and existing state-of-the-art solvers.

The following two chapters (Chapters 4 and 5) consider two signi�cant enhancements

to the basic maxhs approach, based on increasing the information provided to the MIP

solver, that result in greater robustness. Chapter 4 proposes to generalize the type of

constraints maxhs gives to the optimization subproblem, while Chapter 5 studies how

Chapter 1. Introduction 7

maxhs can utilize cheaper approximations of the optimization subproblem. The thesis

changes direction in Chapter 6, where some of the maxhs ideas are applied within a

Branch and Bound algorithm for maxsat. Finally, Chapter 7 concludes the thesis with

a summary of the contribution and ideas for future work.

Chapter 2

Background

2.1 Introduction

The Maximum Satis�ability (maxsat) problem is an extension of Satis�ability (SAT)

that is able to represent optimization problems. Many kinds of real-world optimization

problems can be expressed as maxsat, and then solved using a general purpose solver.

This approach is often a very e�cient method of getting an optimal answer to the original

problem.

maxsat, like SAT, deals with formulas in Conjunctive Normal Form, which consist

of a conjunction of clauses, where each clause is a disjunction of propositional literals.

In the SAT problem, the goal is to �nd a truth assignment that satis�es all clauses

of the formula, and to report that the formula is unsatis�able if such an assignment

does not exist. However, if the formula is unsatis�able, it may still be useful to �nd

a truth assignment that satis�es as many of the clauses as possible, and �nding such

an assignment is the aim of maxsat. If some of the clauses are more important to

satisfy than others, this can be enforced by associating a cost with falsifying each clause.

Furthermore, if some clauses are mandatory to satisfy, they can be given in�nite cost.

Section 2.2 de�nes the maxsat problem and highlights theoretical results that suggest

8

Chapter 2. Background 9

it is an important, but hard, problem to solve.

Solving maxsat is also important from a practical perspective. Many interesting

real-world problems have been expressed as maxsat, from areas such as electronic design

automation (EDA), planning, probabilistic inference, and software upgradeability. There

are potential applications in bioinformatics, scheduling, and combinatorial auctions as

well. Given the success story of SAT solvers, which can be treated as a blackbox to

solve very large problems arising from industrial applications, and the close relationship

of maxsat and SAT, it is possible that future maxsat solvers will play a signi�cant

role in solving real-world optimization problems. Section 2.3 begins by showing how a

familiar combinatorial optimization problem can be naturally expressed as maxsat, and

then describes some real-world applications of maxsat in detail.

The existence of important real-world applications motivates the development of ef-

�cient maxsat solvers. The �rst maxsat solvers were based on the Branch and Bound

algorithm, an established approach for solving combinatorial optimization problems.

Branch and Bound performs a depth-�rst search over partial assignments, keeping track

of the best complete assignment found so far. At each node of the search tree, a bound on

the quality of any complete assignment below the current node is calculated. This bound

can be used to prune the subtree. Typically, the performance of Branch and Bound is

signi�cantly a�ected by the strength of this bound. Section 2.5.1 explains the specialized

bounds used by maxsat solvers.

Some maxsat instances, especially those arising in industrial applications like EDA,

are too challenging for existing Branch and Bound maxsat solvers, yet can be easily

refuted by a state-of-the-art SAT solver. Such instances can sometimes be solved by

instead converting the maxsat problem to a sequence of SAT problems, and then ex-

ploiting a SAT solver as a blackbox to solve each one. These solvers work by adding fresh

variables to the soft clauses, called relaxation variables since they can e�ectively remove

soft clauses from the problem. Constraints over the relaxation variables are added to

Chapter 2. Background 10

control how many clauses are relaxed. The various methods used to reduce both the

number of calls to the SAT solver and the size or di�culty of the SAT instances, are

discussed in Section 2.5.2.

2.2 The maxsat Problem

We �rst de�ne the maxsat problem, as it will be used throughout the thesis. An instance

of the maxsat problem is given by a CNF formula and a weight for each clause in the

formula.

De�nition 1 (Instance of maxsat). An instance of the maxsat problem is given by a

propositional formula in Conjunctive Normal Form, F , and a weight wt(c) ∈ N+ ∪ {∞}

for every clause c in F .

Although De�nition 1 speci�es that the weights are integers, in practise the algorithms

introduced in this thesis can handle �nite precision real costs as easily as integers. The

weights are assumed to be greater than zero, since clauses with weight zero can be

removed from F without impact.

Clauses might be hard clauses, indicated by them having in�nite weight. Clauses with

�nite weight are called soft clauses. hard(F) is used to indicate the hard clauses of F

and soft(F) the soft clauses. In practise, the in�nite weight is represented by a suitable

large integer, for example, a value larger than the sum of the weights of all soft clauses.

De�nition 2 (Hard and Soft Clauses). hard(F) = {c ∈ F : wt(c) = ∞} is the set of

hard clauses of maxsat instance F . soft(F) = {c ∈ F : wt(c) 6= ∞} is the set of soft

clauses of F . It is the case that F = hard(F) ∪ soft(F) and hard(F) ∩ soft(F) = ∅.

In the literature, the type of maxsat instance de�ned in De�nition 1 is often called

Weighted Partial maxsat. Three common restrictions include Partial maxsat, where

all soft clauses have weight 1, and Weighted maxsat, where there are no hard clauses.

Chapter 2. Background 11

The �unweighted� maxsat problem is to satisfy as many clauses as possible; there are

no hard clauses, and all clause weights are 1.

The weight wt(c) associated with a clause c of a maxsat instance F represents the

cost of falsifying that clause. The goal of solving maxsat is to �nd a truth assignment

that falsi�es the least weight of clauses, i.e. that incurs the least cost. The cost of a

truth assignment is de�ned as follows.

De�nition 3 (Cost of a Truth Assignment). If π is a truth assignment to the variables

in maxsat instance F then cost(π,F) is the sum of the weights of the clauses falsi�ed

by π: cost(π,F) =
∑
{c∈F | π 6|=c} wt(c).

Sometimes it will also be necessary to refer to the cost of a set of clauses.

De�nition 4 (Cost of a Clause Set). If H is a set of weighted clauses then cost(H) is

the sum of the clause weights in H: cost(H) =
∑

c∈H wt(c).

To solve a maxsat instance, a truth assignment of minimal cost must be found.

De�nition 5 (maxsat Solution). If F is a maxsat instance then a solution to F is a

truth assignment π to the variables of F such that cost(π,F) is minimal.

We use mincost(F) to denote the cost of a solution to maxsat instance F .

De�nition 6 (mincost(F)). mincost(F) denotes the cost of a solution to maxsat in-

stance F .

Solving maxsat can be equivalently de�ned in terms of maximizing the sum of the

weights of the satis�ed clauses. In this thesis, the maxsat problem is de�ned in terms

of minimization of cost because it allows hard clauses to be treated the same as other

weighted clauses.

If the hard clauses of maxsat instance F are not satis�able, then every truth assign-

ment will falsify at least one hard clause and therefore mincost(F) =∞.

Chapter 2. Background 12

De�nition 7 (Unsatis�able). If mincost(F) = ∞ then the maxsat instance F is said

to be unsatis�able.

In the remainder of the thesis, it is assumed that hard(F) is satis�able and that

F = hard(F)∪soft(F) is unsatis�able. It is straightforward to extend all of the results to

deal with these corner cases. Furthermore, from a practical point of view both conditions

can be easily tested with a SAT solver and if either is violated the maxsat solution is

immediately known: if hard(F) is unsatis�able then mincost(F) = ∞ and any truth

assignment is a solution; and if F is satis�able then mincost(F) = 0 and the SAT

solution is also a maxsat solution.

We will also need two additional basic de�nitions. In the context of SAT, an UNSAT

core is any unsatis�able subset of the formula. In maxsat, where some clauses are hard

and some are soft, we de�ne a core similarly as a subset of the soft clauses that can not

be satis�ed at the same time as the hard clauses.

De�nition 8 (Core). A core κ for a maxsat formula F is a subset of soft(F) such

that κ ∪ hard(F) is unsatis�able.

Note that every truth assignment falsi�es at least one clause of κ∪ hard(F), and any

truth assignment that satis�es the hard clauses will falsify at least one clause in κ itself.

Finally, the decision version of the maxsat problem is de�ned as follows.

De�nition 9 (maxsat Decision Problem). The maxsat decision problem is to deter-

mine for a particular k ∈ R+ ∪ ∞ if there is a truth assignment π to the variables of

maxsat instance F such that cost(π,F) = k.

The maxsat decision problem is NP-complete and maxsat is NP-hard (Cook, 1971),

so it is not expected that an algorithm to e�ciently solve all instances will be found.

Another way to understand the di�culty of solving maxsat is to consider the com-

plexity of solving maxsat given access to a SAT oracle.

Chapter 2. Background 13

De�nition 10 (FPNP). FPNP is the class of all functions from strings to strings that can

be computed in polynomial time by a deterministic Turing machine with a SAT oracle.

Theorem 1. (Papadimitriou, 1994) The maxsat problem with �nite integer weights is

complete for the complexity class FPNP.

Many other well-known optimization problems are also FPNP-complete, including

The Traveling Salesman Problem, Knapsack, weighted Max-Cut and weighted Bisection

Width.1

2.3 Applications of maxsat

There are many potential applications of maxsat. For example, wherever SAT is cur-

rently employed to solve a real-world problem, if there are preferences over the SAT

solutions they can be captured using maxsat, in order to �nd a preferred solution. Or

in the case that the SAT encoding of a problem is over-constrained and there is no sat-

isfying assignment, the maxsat solution that satis�es as many constraints as possible

may still be of practical utility. Going farther, any optimization problem in FPNP, which

also includes many practical optimization problems, can be expressed as maxsat. Of

course, maxsat is more suited to some applications than others, since for example, there

may be no reasonably compact maxsat model. There are alternative ways to model and

solve optimization problems that generalize maxsat, such as Weighted Constraint Sat-

isfaction and Integer Linear Programming. In this section we �rst explain how a familiar

1An instance of the Traveling Salesman Problem is given by a list of n cities and a nonnegative integer
distance between each pair of cities. The problem is to �nd a shortest tour, that begins and ends at
the same city and visits each other city exactly once. An instance of the Knapsack problem is given by
a set of n items, each with a positive integer value vi and weight wi, and a maximum total weight G.
The problem is to �nd a subset of the items such that their total weight is at most G and their total
value is maximized. The weighted Max-Cut problem is posed on an undirected graph with positive edge
weights, and its solution is a partition of the vertices into two sets such that the total weight of the edges
that cross the partition is maximized. The weighted Bisection Width problem is similar to weighted
Max-Cut except that the desired partition must divide the vertices into two equally sized sets such that
the total weight of the edges crossing the bisection is minimized.

Chapter 2. Background 14

optimization problem can be easily encoded as maxsat. Then we go on to highlight

real-world problems where maxsat solvers have been applied successfully.

2.3.1 Max-Cut

The Maximum Cut problem is to �nd a partition of the vertices of an undirected graph

into two sets such that the number of edges going between the sets is maximized. The

Weighted Maximum Cut problem adds positive weights to the edges of the graph, and

the goal becomes to maximize the sum of the weights of the edges in the cut. Next we

give two possible maxsat encodings of the Weighted Maximum Cut problem.

Binary Clause Encoding

Let G = (V,E) be an undirected graph with edge weights given by the function ω : E →

R≥0. For every vertex i ∈ V in the graph, the maxsat instance has a boolean variable

vi that represents whether or not vertex i is in the �rst partition. For each edge (i, j) in

the graph, there are two binary soft clauses in the maxsat instance of the form (vi ∨ vj)

and (¬vi ∨ ¬vj). The cost of each of these two clauses is equal to the weight of the

edge. So F = {(vi ∨ vj), (¬vi ∨ ¬vj) : (i, j) ∈ E} where wt((`i ∨ `j)) = ω((i, j)) for each

(`i ∨ `j) ∈ F .

Therefore, every time two vertices i, j that are connected by an edge are assigned

to the same partition, a cost of ω((i, j)) is incurred by falsifying exactly one of the two

clauses (vi ∨ vj) and (¬vi ∨ ¬vj). Since the solution to the maxsat instance minimizes

the cost, the weight of edges that are not in the cut will be minimized. This maximizes

the weight of the cut.

The number of variables in this encoding is |V | and the number of soft clauses is 2|E|.

Chapter 2. Background 15

Hard Clause Encoding

In this alternative encoding of Weighted Maximum Cut, the maxsat instance has a

variable eij for each edge (i, j) ∈ E in addition to the variables corresponding to the

vertices. If the variable eij is true, it will mean that the edge (i, j) is in cut. Hard

clauses are used to ensure that the set of true variables actually corresponds to a cut

in the graph, as follows. For each edge (i, j) ∈ E there are four hard clauses that say

that eij is true if and only vertices i and j are in di�erent partitions. So hard(F) =

{(vi ∨ ¬vj ∨ eij), (¬vi ∨ vj ∨ eij), (vi ∨ vj ∨ ¬eij), (¬vi ∨ ¬vj ∨ ¬eij) : (i, j) ∈ E}. Finally,

for each variable there is a soft unit clause (eij) with weight equal to the weight of the

corresponding edge in the graph.

This encoding is larger than the binary clause encoding in terms of both the number

of variables and clauses. There are |V | + |E| variables, |E| soft clauses and 4|E| hard

clauses.

This example of encoding Weighted Maximum Cut in maxsat illustrates that more

than one naturalmaxsatmodel may exist. For example, the costs may be associated only

with the unit clauses, as in the hard clause encoding, or with violating non-unit clauses,

as in the binary clause encoding.2 The choice of encoding may a�ect the performance of

state-of-the-art maxsat solvers.

2.3.2 Design Debugging

maxsat solvers can be used to �nd the source of errors in the design of digital circuits.

In order to verify that a circuit implements the intended behaviour, various inputs to

the circuit are tested. If the output of the circuit does not match the desired output, the

circuit must be debugged. This means that the source of the faulty behaviour must be

found and then �xed. Debugging is very time consuming for humans to perform, and can

2If all of the soft clauses of a maxsat instance are unit, then it is also a Binate Covering problem, a
Pseudo-Boolean Optimization problem and an Integer Linear Program.

Chapter 2. Background 16

also be challenging to automate e�ciently. maxsat can be used within the debugging

task in order to rule out irrelevant parts of the circuit and focus on the potential error

sources (Chen, Safarpour, Veneris, and Marques-Silva, 2009; Chen, Safarpour, Marques-

Silva, and Veneris, 2010).

In design debugging, the circuit is translated to CNF in the usual way, by introducing a

variable to represent the output of each gate, and clauses that constrain its value to be the

appropriate function of its input variables. The circuit's CNF formula C is conjoined with

the assignment to the input variables I that resulted in the faulty output during testing.

Finally, the correct output O is also asserted, resulting in the formula C ∧ I ∧O, which is

unsatis�able since the circuit represented by C does not actually produce output O when

given input I. The input and output unit clauses are hard clauses, and the circuit clauses

are soft with uniform weights. Therefore, the maxsat solution will provide a minimal

subset of C that if removed will allow the circuit to be �xed. Thus the maxsat solution

represents a possible source of error, which can be further analyzed and aggregated with

other potential error sources in order to fully debug the circuit.

2.3.3 Other Applications

Another application of maxsat in Electronic Design Automation is FPGA (Field Pro-

grammable Gate Array) routing (Xu, Rutenbar, and Sakallah, 2003). maxsat solvers

perform well on scheduling problems for image capture on the SPOT5 Earth observ-

ing satellite (Bensana, Lemaitre, and Verfaillie, 1999). The optimal protein alignment

problem from biology was �rst cast as a Max Clique problem and solved e�ciently using

dedicated algorithms (Strickland, Barnes, and Sokol, 2005). However, the same instances

when translated to maxsat are challenging for state-of-the-art maxsat solvers, as can

be seen in the results of the 2009-2012 maxsat Evaluations on the PROTEIN-INS fam-

ily (Argelich, Li, Manyà, and Planes, 2007�2012). Another application in bioinformatics

is haplotype inference by pure parsimony (HIPP), which seeks to explain the genetic

Chapter 2. Background 17

makeup of a population (Graça, Marques-Silva, Lynce, and Oliveira, 2011; Graça, Lynce,

Marques-Silva, and Oliveira, 2012). The winner determination problem in combinato-

rial auctions can be solved using Integer Programming solvers (Andersson, Tenhunen,

and Ygge, 2000), but maxsat solvers are also e�ective on arti�cially generated in-

stances (Leyton-Brown, Pearson, and Shoham, 2000). In planning, maxsat is used

in optimal planning with action costs (Robinson, Gretton, Pham, and Sattar, 2010),

preference-based planning (Juma, Hsu, and McIlraith, 2011), and optimizing partial-

order plans (Muise, McIlraith, and Beck, 2011), as well as to learn action models from

plan examples (Yang, Wu, and Jiang, 2007). The Most Probable Explanation (MPE)

problem in probabilistic networks can be expressed as maxsat (Park, 2002). Another

industrial application is upgrading software package installations (Argelich, Berre, Lynce,

Marques-Silva, and Rapicault, 2010).

2.4 Resolution for maxsat

This section describes an algorithm for solving maxsat that is similar to the Davis-

Putnam algorithm for SAT, that is based on ordered resolution (Davis and Putnam,

1960). The algorithm is based on the maxres rule, which is an equivalence-preserving

transformation rule that generalizes Resolution. The maxres rule is de�ned �rst, fol-

lowed by a description of how it can be applied by the Saturation algorithm to solve

maxsat. Finally, the limitations of this algorithm are discussed from a practical per-

spective.

2.4.1 The maxres Rule

In propositional logic, an inference rule is a way of deriving new conclusions that are logi-

cally implied by the original formula. For example, the Resolution rule (see Appendix A)

is an inference rule that can be used to derive any clause logically implied by the input

Chapter 2. Background 18

CNF formula. Inference can be thought of as transforming a formula into one that is

equivalent, but in some sense more informative.

Although Resolution is sound and complete for SAT, it is not a sound method of

inference for maxsat.

Example 1. Consider the maxsat instance F = {(¬x, y), (x), (¬y)} where all clauses

have weight 1. The clause (y) can be derived through Resolution on the �rst two clauses

of F . However, adding this clause changes the maxsat solutions. The truth assignment

π = (x = true, y = false) is a solution to F since it falsi�es only one clause. On the other

hand, π is not a solution to F ∪ {(y)}: π falsi�es two clauses while σ = (x = true, y =

true) falsi�es only one.

Themaxres rule is similar to Resolution but is sound and complete formaxsat (Bonet,

Levy, and Manyà, 2007). maxres is a transformation rule, in that it removes some

clauses from the formula and replaces them with another set of clauses. This is in con-

trast to Resolution, which only adds clauses.

maxres is applied to two weighted clauses (x,A) and (¬x,B) with wt((x,A)) = w1

and wt((x,B)) = w2, where A and B are possibly empty sets of literals. Let m be

the minimum of w1 and w2, and de�ne an ordering on the literals in A and B so that

A = {a1, .., ak} and B = {b1, ..., bj}. maxres removes the clauses above the horizontal

line in Figure 2.1 from the formula and replaces them by the clauses appearing below

the line. The clauses containing negated ai and bi variables are called the compensation

clauses. Here, if any weight (including in�nity) is subtracted from an in�nite weight,

the result is always in�nity. Note that if A is empty, none of the compensation clauses

containing ¬ai are really generated, and similarly if B is empty. Any tautologies or

0-weight clauses that would be generated are omitted. Also, if one of the clauses is

subsumed by another hard clause generated in this maxres step, the subsumed clause

will be omitted. This means that if both input clauses are hard, maxres behaves exactly

the same as Resolution.

Chapter 2. Background 19

Clause Weight

(x,A) w1

(¬x,B) w2

(A,B) m
(x,A) w1 −m
(¬x,B) w2 −m
(x,A,¬b1) m
(x,A, b1,¬b2) m
.
.
(x,A, b1, ..., bj−1,¬bj) m
(¬x,B,¬a1) m
.
.
(¬x,B, a1, ..., ak−1,¬ak) m

Figure 2.1: The maxres rule. A = {a1, ..., ak}, B = {b1, ..., bj}, k, j ≥ 0, and m is the
minimum of w1 and w2. maxres replaces the two weighted clauses above the line by the
set of weighted clauses appearing below the line.

It is easy to verify that the maxres rule is sound for maxsat, by showing that it

preserves the cost of every truth assignment. This guarantees that applying maxres

does not change the maxsat solutions.

Proposition 1. (Bonet et al., 2007) If F is a maxsat instance and F ′ is the re-

sult of applying one maxres step to F , then for all truth assignments π, cost(π,F) =

cost(π,F ′).

2.4.2 The Saturation Algorithm

The maxres rule is potentially useful because it can simplify the maxsat formula and

reveal more information about the optimal solution. In fact, it is possible to solvemaxsat

by using the maxres rule alone. That is, maxres is complete as well as sound for

maxsat.

Theorem 2. (Bonet et al., 2007) maxres is complete for maxsat. That is, given an

Chapter 2. Background 20

instance of maxsat F , there is a sequence of maxres transformations starting with F

that results in a maxsat theory F ′ such that the cost of the empty clauses in F ′ is equal

to mincost(F), and the rest of the clauses in F ′ are satis�able. Furthermore, any truth

assignment satisfying the non-empty clauses of F ′ is a solution to F .

The proof that maxres is complete for maxsat (Theorem 2) requires the following

de�nition of saturation.

De�nition 11 (Saturation). A maxsat theory F is saturated with respect to variable x

if for every pair of clauses C1, C2 in F that clash on x, C1 and C2 also clash on another

variable y 6= x.

An algorithm to �nd a sequence of maxres transformations that satis�es the con-

ditions of Theorem 2 is maxsat-Saturation, shown in Figure 1 (Bonet et al., 2007).

maxsat-Saturation works as follows. Given an ordering over the variables, maxsat-

Saturation performs maxres steps resolving on xi until the formula Ai−1 is saturated

with respect to xi. The algorithm sets aside the clauses that still contain xi, and sat-

urates the clauses not containing xi by the next variable xi+1. These saturation steps

continue until all variables have been saturated. Bonet et al. prove that the result of

maxsat-Saturation is a set of empty clauses whose weights sum to mincost(F) and a

satis�able set of clauses (those that were set aside in each saturation step) whose satis-

fying truth assignments are solutions for F . Bonet et al. show how a truth assignment

that is a solution to F is easy to build given the sequence of set aside clauses {Bi}ni=1,

by greedily assigning one literal at a time starting with xn.

The worst-case time complexity of maxsat-Saturation is O(m2n), where m is the

number of clauses in F and n is the number of variables. Indeed, Algorithm 1 is unlikely

to work well in practise. In the worst case one maxres step increases the number of

clauses in the formula by ‖A‖ + ‖B‖ + 1, or O(n) where n is the number of variables.

Furthermore, the clauses produced by maxres may be quite long. It is likely that the

space required by maxsat-Saturation will be prohibitive in practise.

Chapter 2. Background 21

Algorithm 1: The Saturation algorithm for solving maxsat. F is a maxsat

formula. Returns mincost(F).

maxsat-Saturation
(
F)1

A0 = F2

for i=1 to n do3

S = Saturate(Ai−1, xi)4

Ai = {C ∈ S : xi /∈ C}5

Bi = S \ Ai6

/* Any truth assignment that satis�es
⋃n
i=1Bi is a solution to the maxsat

instance F . */
/* An contains only empty clauses. */
return ΣC∈Anwt(C)7

Yet themaxres rule is used in practicalmaxsat solving. maxres is utilized by state-

of-the-art Branch and Bound maxsat solvers to transform the current formula at each

node of the search tree (Heras, Larrosa, and Oliveras, 2008; Larrosa, Heras, and de Givry,

2008; Li, Manyà, Mohamedou, and Planes, 2009; Kügel, 2010). The goal of applying

maxres during Branch and Bound is to create more empty clauses, since they provide a

lower bound on the cost of a solution to the current formula. The transformation may also

simplify the current formula, for example, by reducing the number of clauses. However,

the maxres rule can quickly produce many large clauses that are not necessarily useful,

so in practise, maxres is only applied in particular cases where it is found to pay o�.

2.5 Existing maxsat Solvers

The existing maxsat solvers can be divided into two groups based on their underlying

algorithm: the Branch and Bound solvers, and the sequence of SAT instance solvers.

2.5.1 Branch and Bound Solvers

Branch and Bound algorithms are a common approach for solving optimization problems,

including maxsat. Branch and Bound searches the binary tree of partial assignments to

Chapter 2. Background 22

the variables, starting with the empty assignment at the root. At each node of the tree

an uninstantiated variable is chosen to branch on. The children of this node correspond

to assigning the variable to true and false. This tree is explored in a depth-�rst manner,

to �nd a complete assignment with minimal cost.

However, it may be unnecessary to visit all 2n complete assignments. A �rst step

to pruning the search space is to keep track of the cost already incurred by the partial

assignment at the current node. If this known cost meets or exceeds the cost UB of the

best complete assignment found so far, then the subtree below this node can be pruned.

Furthermore, if it can be anticipated that some additional cost must be incurred by

any complete assignment below the current node then that information can also be used

to backtrack. A method of proving that any complete assignment extending a partial

assignment has cost at least C is called a lower bound function, and it is a signi�cant

factor in the performance of Branch and Bound algorithms.

Algorithm 2 shows a recursive version of this basic algorithm. The initial call to

maxsat-B&B-1 requires an upper bound on the cost of the maxsat solution, which is

usually supplied by a local search procedure that tries to �nd a complete assignment with

small cost (Tompkins and Hoos, 2004). On line 2, it is assumed that the LowerBound(F)

function returns a value at least as large as the sum of the weights of the empty clauses in

F . On Line 5, SumEmpty is a function that returns the sum of the weights of the empty

clauses in the given formula. On Line 6, ChooseLiteral is a function that returns a literal

(whose variable appears in the given formula) according to the variable and value ordering

heuristics. This chosen literal is also sometimes called the branching literal or the decision

literal. Most maxsat solvers use a variable ordering heuristic that favours variables that

appear in many clauses, many short clauses, or clauses with large weight (Wallace and

Freuder, 1996; Alsinet, Manyà, and Planes, 2003; Xing and Zhang, 2005). On lines 7 and

8, the chosen literal and then its negation are instantiated, with the reduced formulas

given to the recursive calls.

Chapter 2. Background 23

Algorithm 2: The basic Branch and Bound algorithm for solving maxsat. F is a
maxsat formula. On the initial call, UB = cost(π) for some complete assignment
π. Returns mincost(F) if it is less than UB, and UB otherwise.

maxsat-B&B-1
(
F , UB

)
1

if LowerBound(F) ≥ UB then2

return UB3

if F contains no variables then4

return SumEmpty(F)5

v = ChooseLiteral(F)6

UB = maxsat-maxsat-B&B-1
(
F|v, UB

)
7

return maxsat-maxsat-B&B-1
(
F|¬v, UB

)
8

It is important for the Branch and Bound search to try to prune the part of the

search space where the hard clauses of F can not be satis�ed, since this can drastically

reduce the size of the search space that must be visited. maxsat solvers can apply

Unit Propagation (UP), and clause learning (see Appendix B) to the hard clauses in F

in order to perform this type of pruning soundly and e�ciently (Argelich and Manyà,

2007). maxsat solvers use the two watched literal data structure, �rst developed for SAT

solvers (Moskewicz, Madigan, Zhao, Zhang, and Malik, 2001), in order to support e�cient

UP and backtracking (see Appendix B) (Argelich and Manyà, 2005). The VSIDS variable

ordering heuristic, also borrowed from SAT solving, works well for maxsat solvers that

learn hard clauses (Heras, Larrosa, and Oliveras, 2007).

The �rst Branch and Bound solver for maxsat was developed by Wallace and Freuder

in the mid 1990s (Wallace and Freuder, 1996). Over the years, the most signi�cant

improvements have been gained by better lower bounds and the application of additional

transformation rules (i.e. on lines 7 and 8 of Algorithm 2 after instantiating the chosen

literal).

Lower Bounds Using Disjoint Cores

Wallace and Freuder introduced the Inconsistency Count lower bound, that only takes

into account the unit clauses in the current formula. The sum over all variables v of

Chapter 2. Background 24

the minimum of the number of unit clauses (v) and the number of unit clauses (¬v)

is a lower bound on the optimal number of falsi�ed clauses: LB = #Empty(F) +

Σv(min{ic(v), ic(¬v)}) (Wallace and Freuder, 1996).

Note that each pair of con�icting unit clauses is actually a core of the current formula,

which in this context is usually referred to as an inconsistent subformula. The correctness

of the Inconsistency Count lower bound is based on the fact that every truth assignment

will falsify either (v) or (¬v), independently of all other variables.

This idea of �nding disjoint inconsistent subformulas can be extended to �nding

disjoint inconsistent sets each of which may contain more than two clauses (Li, Manyà,

and Planes, 2005, 2006; Darras, Dequen, Devendeville, and Li, 2007). Unit propagation

is used to �nd such inconsistent sets, because it can be implemented e�ciently and

undone very easily (see Appendix B). Given the current formula F at an internal node

of the search, the disjoint inconsistent sets are found by applying unit propagation until a

con�ict is found, removing the involved clauses, and repeating UP until no more con�icts

can be found in this way. The lower bound is then the sum of the weights of the minimum

weight clauses from each inconsistent set. Once the lower bound has been calculated, all

of the changes to the formula are undone before continuing search.

The number of disjoint inconsistent sets that will be found is dependent on the order

in which unit clauses are propagated, and propagating the most recently created unit

clause seems to work best in practise (Li et al., 2006). Additional inconsistent sets can

be found by applying Failed Literal Detection,3 since if unit propagation �nds a con�ict

in both F ∪ {`} and F ∪ {¬`}, the set of clauses involved (excluding (`) and (¬`)), is an

inconsistent subformula of F .

One drawback to such lower bound functions is that the same inconsistent subformulas

may be rediscovered at descendent nodes in the search. This is very likely to happen

because when the next decision literal is instantiated, only some limited transformations

3Failed Literal Detection on a literal x is performed by temporarily adding the unit clause (x) to the
current formula F and then applying UP, i.e., UP is applied to F ∪ {(x)}.

Chapter 2. Background 25

are applied to the formula as a result of this new variable assignment. The changes

to the formula are limited because unit propagation can not be soundly applied to the

soft clauses. Therefore, many of the clauses remain unchanged when a new decision is

instantiated. In order to reduce the amount of recomputation, some of the inconsistent

sets can be memorized (Darras et al., 2007). However in the next section we see a more

popular method of making the lower bound computation incremental, based on maxres

transformations.

Transformations and Lower Bounds

The best performing Branch and Bound solvers in the latest maxsat Evaluation combine

a lower bound based on disjoint inconsistent subformula detection with sound transfor-

mations based on maxres.

The main idea is to use UP to �nd an inconsistent subformula R, and then apply some

series of MAXRES steps to the clauses in R. The goal is to generate a new empty clause,

since it will immediately contribute to the lower bound and also record the inconsistency

for all descendent nodes. Furthermore, if this process is repeated until UP can �nd no

more con�icts, the resulting lower bound may be greater than the lower bound that

can be calculated using disjoint inconsistent subformulas. Intuitively, the inconsistent

subformulas no longer have to be disjoint.

The challenge with this approach is that maxres can become expensive to apply,

since in general each MAXRES step adds many compensation clauses to the formula.

Therefore, several ways to apply maxres to inconsistent subformulas have been pro-

posed.

For example, minimaxsat (Heras et al., 2007, 2008) takes the inconsistent set found

by UP and applies the analysis algorithm used to learn clauses in SAT (Algorithm 13 in

Appendix B), except that each Resolution step in the derivation is replaced by a maxres

step. It is possible to use maxres to copy the derivation of the learnt clause because each

Chapter 2. Background 26

clause is used no more than once. However, Heras et al. found that this transformation

only pays o� if the intermediate clauses generated by Algorithm 13 are all of length three

or less.

All other recent Branch and Bound maxsat solvers are based on maxsatz (Li,

Manyà, and Planes, 2007), includingwmaxsatz-2009 (Li et al., 2009), incmaxsatz (Lin,

Su, and Li, 2008), wmaxsatz+ (Li, Manyà, Mohamedou, and Planes, 2010), ak-

maxsat_ls (Kügel, 2010) and iut_rr (Ramezani and Mousavi, 2012). These solvers

apply transformations if the inconsistent set of clauses contains a subformula matching

one of three patterns. The �rst pattern is a Chain containing two unit clauses and k ≥ 0

binary clauses: {(`1), (¬`1, `2), (¬`2, `3), ..., (¬`k, `k+1), (¬`k+1)}. The second pattern is

Cycle Resolution restricted to three variables. The third pattern is a combination of the

�rst two patterns. In each case, the transformation rule can be justi�ed by a series of

maxres steps.

Note that only binary and unit clauses are involved in the transformations applied

by the maxsatz family of solvers, which limits the strength of their lower bounds. Also,

not all inconsistent sets discovered by unit propagation will match one of the speci�c

patterns, e.g.

{(`1), (¬`1, `2), (¬`1, `3), (¬`2, `4), (¬`3,¬`4)} does not match the Chain or Cycle pat-

terns. Nevertheless, the best performing Branch and Bound solver in the 2011 maxsat

Evaluation was akmaxsat_ls, that uses just these rules (Kügel, 2010).

Other Lower Bounds

A few other distinct lower bounds have been proposed. One translates the current

maxsat formula F to an Integer Program, and then solves its linear relaxation which

gives a lower bound on mincost(F) (Xing and Zhang, 2005).4 Another lower bound re-

quires that the originalmaxsat CNF F be relaxed by variable-splitting until its treewidth

4This solver also uses a unique inference rule based on a non-linear formulation of maxsat.

Chapter 2. Background 27

is less than 8. The relaxed CNF F ′ is then compiled to Deterministic Decomposable Nega-

tion Normal Form (d-DNNF), which allows mincost(F ′) to be calculated in time linear in

the size of the d-DNNF formula. During search, the d-DNNF formula can be conditioned

on the current partial assignment to get a lower bound for that node (Pipatsrisawat and

Darwiche, 2007). The MHET method (Hsu and McIlraith, 2010) is related to the soft

arc consistency notions studied in Weighted Constraint Satisfaction (Cooper, de Givry,

Sanchez, Schiex, Zytnicki, and Werner, 2010).

Preprocessing

Transformations similar to those that are applied at each node of a Branch and Bound

search tree can also be performed prior to search as a preprocessing step. For example,

some early maxsat solvers applied an ordered form of Neighbourhood Resolution to

binary clauses (Alsinet, Manyà, and Planes, 2004), or deleted pure literals as a prepro-

cessing step (Zhang, Shen, and Manyà, 2003). Preprocessing was studied in more depth

in the context of approximate maxsat solvers (Heras and Bañeres, 2010). However,

preprocessing is not a component of any state-of-the-art exact maxsat solver. Therefore

it is a promising direction to explore in order to tackle maxsat instances that remain

challenging for existing approaches.

Performance of Branch and Bound maxsat Solvers

The Branch and Bound solvers were developed for random 2CNF and 3CNF formulas,

as well as for applications like Max-Cut, Max-Clique, and Graph Colouring (�Crafted�

instances). In the maxsat Evaluations, a Branch and Bound solver has always won in all

the Random and Crafted categories. However, Branch and Bound solvers can solve very

few of the Industrial category instances. The reason for this has not been adequately

explained, although it must either be due to the size of the search space explored or

the time taken at each node, or a combination of both factors. It should be possible to

Chapter 2. Background 28

develop more e�ective lower bounds for Industrial instances.

2.5.2 Sequence of SAT Instance Solvers

Another approach to solving maxsat is to convert the problem to a sequence of SAT

instances. Each SAT instance in the sequence can be solved using a state-of-the-art

SAT solver. Therefore, any improvement to SAT solvers immediately bene�ts maxsat

solvers based on this approach. These maxsat solvers can handle some large instances

from industrial applications that are too challenging for existing Branch and Bound

algorithms (Argelich et al., 2007�2012).

Using the maxsat Decision Problem

The most obvious sequence of SAT instances can be described as follows. Given an

unweighted maxsat instance, it is �rst determined if there is an assignment that falsi�es

zero clauses. If not, it is determined if there is an assignment that falsi�es only one

clause. This process is repeated, each time increasing the number of allowed falsi�ed

clauses, until the answer is `yes', at which point the minimum number of falsi�ed clauses

has been determined. The decision problem posed at each stage is simply an instance of

the decision version of maxsat, which can be encoded as SAT since it is in NP. Each

SAT instance can be solved by using a state-of-the-art SAT solver.

This algorithm is shown in Algorithm 3. The maxsat decision problem is encoded

as SAT by �rst adding a distinct relaxation variable bi to each of the soft clauses (line

4). These new variables are called relaxation variables because setting one true causes

its clause to be relaxed (i.e., immediately satis�ed). At each iteration, a linear constraint

that limits how many clauses are relaxed is translated to CNF and added to the SAT

instance (line 7). The upper bound on the cost of the relaxation, k, is increased by the

smallest weight in the input formula (not necessarily 1), until it equals mincost(F), at

which point the SAT instance will �nally be satis�able, terminating the loop.

Chapter 2. Background 29

There are many ways to translate the linear constraint to CNF (line 7). Some en-

codings introduce new variables. The size of the CNF encoding of the linear constraint

can make the SAT instances harder to solve. Xu et al. proposed an encoding of the

Σibi ≤ k constraint based on a linear circuit of m incrementers, one for each relaxation

variable. The CNF encoding of this circuit adds O(mlog(k)) variables and O(mlog2(k))

clauses to the original maxsat theory. This encoding is su�cient for instances with a

small number of soft clauses, and instances with a small optimum (Xu et al., 2003).5

Later improvements aimed for an encoding that was mostly independent of the bound k,

in order to allow more learnt clauses to be saved from one iteration to the next (Fu and

Malik, 2006).

Fu and Malik were also the �rst to suggest that refuting the augmented SAT instances

might be more di�cult than refuting the original formula. They note that the adder

circuits, used to implement the cardinality constraints, include many XOR gates. Since

unit propagation does not derive very useful information from clauses encoding XORs,

the SAT solver's performance may be degraded. They also pointed out that a binary

rather than linear search over k should be used when the maxsat solution is larger than

log(m). However, the instances they experimented with did not challenge the limits of

the simple sequence of SAT approach.

There is also an opposite approach that starts with satis�able SAT instances and

works towards an unsatis�able instance. That is, starting with an upper bound on the

optimum (trivial or obtained by local search) the maxsat solver decreases the allowed

weight of falsi�ed clauses until an unsatis�able instance is found. In this case, it is possible

to take advantage of the solutions returned by the SAT solver to reduce the number

of iterations. The cost of the satisfying truth assignment π (ignoring the relaxation

variables) returned by the SAT solver can be used as the next value of k in the constraint

5Xu et al. applied Algorithm 3 to FPGA routing problems that had a small number of soft clauses,
and unsatis�able SAT benchmarks from the DIMACS repository that while containing only soft clauses,
had optimums of at most 4.

Chapter 2. Background 30

Algorithm 3: An algorithm to solve maxsat using a sequence of instances of the
maxsat Decision Problem. The input F is a maxsat formula, and the return value
is mincost(F).

maxsat-seq-1
(
F)1

m = min{wt(C) : C ∈ F}2

k = −m3

/* Add a new relaxation variable to every soft clause in F */
F = {Ci ∪ {bi} : Ci ∈ soft(F)} ∪ hard(F)4

repeat5

k = k +m6

Fk = F∪ CNF(Σibiwt(Ci) ≤ k)7

until SAT-Solver(Fk) returns SAT8

return k9

Σbiwi ≤ k. This SAT→UNSAT approach is very e�ective on some instances, and was

utilized by the winner of the Industrial Partial maxsat category in the 2011 maxsat

Evaluation, qmaxsat (Koshimura, Zhang, Fujita, and Hasegawa, 2012).

However, a drawback to these two algorithms is that the SAT instances can become

very hard to solve because of the added variables and constraints. This is especially

true for large instances with few hard clauses, since the number of variables in the SAT

instances will be even larger than the number of soft clauses in the maxsat theory.

Furthermore, if mincost(F) is large in comparison to the minimum weight, or a good

upper bound on the optimum can not be found, the number of iterations (i.e., SAT

solving episodes) required can be prohibitive unless binary search is used.

Several alternative sequence of SAT algorithms were developed to address these is-

sues, for example by using simpler linear constraints, reducing the number of relaxation

variables, reducing the number of iterations required, or eliminating the linear constraints

entirely. These algorithms are described next.

Relaxing Cores

When given an unsatis�able CNF formula, some modern SAT solvers can output a core

(see Section A for the de�nition of core) with not much more work than they use to

Chapter 2. Background 31

refute the theory. Although there is no guarantee that the core will be a strict subset of

the original clauses, in practise it usually is. An optimal truth assignment for a maxsat

formula will only falsify a clause if it appears in some core of the formula; this follows

from Proposition 2 in Chapter 3.6 Therefore, only clauses that belong to some core may

need to be relaxed. On the other hand, at least one clause in every core will need to

be relaxed. Therefore the number of relaxation variables used by a sequence of SAT

approach can be reduced, by only adding them to clauses that appear in cores.

The �rst sequence of SAT algorithm to exploit this insight was Fu and Malik's Diag-

nosis algorithm (Fu and Malik, 2006), whose extension to Weighted Partial maxsat is

shown in Algorithm 4 (Manquinho, Marques-Silva, and Planes, 2009; Ansótegui, Bonet,

and Levy, 2009). The algorithm works by �nding and �blocking� cores of the working

formula. In every execution of the loop on line 5, the SAT solver is called on the cur-

rent CNF formula. If the formula is satis�able, the loop terminates and the cost of the

optimum is returned on line 13. Otherwise, the SAT solver returns a core of the current

formula. The formula is updated by splitting each soft clause that appears in the core

into two copies, one whose weight is decreased by the minimum cost m of a clause in the

core (discarding it if its weight is decreased to zero), and the other with weight m and

containing a new relaxation variable (line 9). This update can be thought of as blocking

m copies of the unweighted version of the core. Finally, a hard constraint saying one

of these relaxation variables must be true is added on line 11. Note that a clause can

eventually contain more than one relaxation variable, if the clause appears in more than

one of the cores.

There are two advantages to Algorithm 4 compared to Algorithm 3. First, each of

6Proposition 2 shows that mincost(F) is equal to the cost of a minimal cost hitting set (MCHS) of
the cores of F . Consider a truth assignment π that falsi�es a clause c that does not appear in any core
of F . We show that π can not be a maxsat solution, as follows. It is clear that π must falsify at least
one clause in every core of F (since each core is unsatis�able). Thus the set of clauses falsi�ed by π, hs,
is a hitting set of the cores. Consider the set of clauses hs ′ = hs \ {c}. Since c does not appear in any
core of F , hs ′ is also a hitting set of the cores. But cost(hs ′) < cost(hs) = cost(π). Therefore cost(π) is
greater than the cost of the MCHS of the cores. So by the proposition, π is not an optimal assignment.

Chapter 2. Background 32

the added constraints is over a smaller set of variables (just those appearing in the core).

Second, the cardinality constraints, whose coe�cients are all equal to one, are easier to

encode as CNF than the arbitrary linear constraints used in Algorithm 3. However, the

formulas at successive iterations also get larger and larger because Algorithm 4 must

duplicate soft weighted clauses appearing in the cores.

Several di�erent encodings of the cardinality constraints have been proposed, that can

signi�cantly a�ect the performance of Algorithm 4. Fu and Malik used the basic quadratic

encoding of the constraint, which uses one clause to say that at least one variable is true,

and a binary clause for each pair of variables saying at least one of them is false (Fu

and Malik, 2006). Marques-Silva and Planes chose a more e�cient BDD-based encoding,

that adds only a linear number of variables and clauses (Marques-Silva and Planes, 2007;

Eén and Sörensson, 2006). Later, a bitwise encoding was tried, that adds only O(log(n))

variables but O(nlog(n)) clauses to encode a constraint over n variables (Marques-Silva

and Manquinho, 2008). The original wpm1 solver of Ansótegui et al. (Ansótegui et al.,

2009) uses a linear encoding based on signed CNF (Ansótegui and Manyà, 2004).

There is an encoding of arbitrary pseudo-boolean constraints to CNF that is of

polynomial size and on which unit propagation achieves Generalized Arc Consistency

(GAC) (Bailleux, Boufkhad, and Roussel, 2009), however, to our knowledge it has not

been applied in any maxsat solver. An alternative to encoding the linear constraints as

CNF is to handle them natively using a Pseudo-Boolean solver (Manquinho et al., 2009).

The solver wpm1 (Ansótegui et al., 2009), based on Algorithm 4, won the Industrial

unweighted and weighted partial maxsat categories in the 2011 maxsat Evaluation.

Other Algorithms that Add Constraints

Many other sequence of SAT algorithms have been proposed that are similar to Algo-

rithms 3 and 4. They all involve adding relaxation variables to soft clauses appearing

in cores of the working formula, along with linear inequality constraints on these variables.

Chapter 2. Background 33

Algorithm 4: The Diagnosis algorithm of Fu and Malik, extended to weighted
partial maxsat. F is a maxsat formula. Returns mincost(F).

maxsat-seq-2
(
F)1

/* Split the formula into hard and soft clauses */
FH = hard(F)2

FS = soft(F)3

cost = 04

/* The SAT solver ignores the clause weights */
while R = SAT-Solver(FH ∪ FS) returns a core do5

B = ∅6

/* Find a minimal weight clause in the core */
m = min{wt(C) : C ∈ R}7

for C ∈ soft(R) do8

/* Reduce the weight of C by m */
wt(C) = wt(C)−m9

/* Create a new clause that is a copy of C, relaxed by a new variable. */
C ′ = C ∪ {b}10

/* The weight of the new clause is m */
wt(C ′) = m11

FS = FS ∪ {C ′}12

B = B ∪ {b}13

/* Add a hard constraint that one of the new relaxation variables must be
true */

FH = FH ∪ CNF(Σb∈Bb = 1)14

cost = cost + m15

return cost16

msu3 is an algorithm for unweighted maxsat (Marques-Silva and Planes, 2007). It be-

gins with a preliminary phase that �nds as many disjoint cores of the original maxsat

formula as possible. The number of disjoint cores provides a lower bound on the opti-

mum. The second phase is similar to Algorithm 3 except it can begin with k equal to

the number of disjoint cores found, and relaxation variables are only added as needed to

the clauses appearing in the cores.

msu4 is also restricted to unweighted maxsat (Marques-Silva and Planes, 2008). The

algorithm adds ≥ 1 constraints to relax each core it �nds, until the formula becomes

Chapter 2. Background 34

satis�able. When the formula becomes satis�able, the number of satis�ed relaxation

variables in the solution is used to strictly upper bound the total number of relaxation

variables that can be true. The algorithm alternates between series of UNSAT and SAT

instances, until it terminates when the number of cores found equals the number of re-

laxation variables satis�ed by a solution.

pm2 is an algorithm for partial maxsat (Ansótegui et al., 2009) that is like Algorithm 3

but also adds a new ≥ j constraint for each core R where j equals the number of previ-

ously found cores that are subsets of R.

wpm2 solves weighted partial maxsat (Ansótegui, Bonet, and Levy, 2010). Its dis-

tinguishing feature is that the discovered cores are grouped into �covers�, which are a

decomposition of the cores into disjoint sets. The relaxation variables in each cover are

constrained to relax a particular weight of clauses k, that is updated to be the next

largest value that the clauses' weights can sum up to. Even calculating the next value

of k can be expensive, since it requires solving the NP-hard Subset Sum problem and

additional calls to a SAT solver. The performance of wpm2 is also a�ected by the struc-

ture of the cores, since in the worst case all cores will eventually belong to the same cover.

WMSU1-ROR is a modi�cation of Algorithm 4, that attempts to avoid adding relax-

ation variables by applying maxres to transform the core instead (Heras and Marques-

Silva, 2011). Given the core R returned by the SAT solver, a Resolution refutation is

calculated by a specialized tool. As much of this refutation as possible is copied by ap-

plying maxres steps to the working formula F . The result is a transformed formula

F ′, and a core of F ′, R′, that is easily obtained from R. If the transformation derived

the empty clause, it means the core is trivial and the sequence of SAT algorithm can

continue without adding any relaxation variables for this step. Otherwise, the core R′ is

Chapter 2. Background 35

relaxed as in Algorithm 4 before the next iteration begins.

wpm1-bsd (Ansótegui, Bonet, Gabàs, and Levy, 2012) andPAR (Martins, Manquinho,

and Lynce, 2012b) both modify Algorithm 4 in a similar manner. Their idea is to only

allow the SAT solver to �nd cores over a restricted subset of the original maxsat prob-

lem, increasing the size of this subset when no more cores can be found. The restricted

subset can be chosen in di�erent ways, but the most promising approach is to choose the

clauses with largest weights �rst. This ensures that cores whose min weight clause is of

largest weight are found �rst, which may signi�cantly reduce the overall number of cores

needed by Algorithm 4.

bincd is a state-of-the-art solver for weighted partial maxsat (Heras, Morgado, and

Marques-Silva, 2011; Morgado, Heras, and Marques-Silva, 2012). The bincd algorithm is

similar to wpm2, since in bincd intersecting cores are also organized into disjoint covers.

However, bincd maintains both a lower and upper bound on the cost of each cover and

performs a binary search on this cost by testing the midpoint value (Heras et al., 2011).

This is in contrast to wpm2 where each cover only has a lower bound, that is successively

increased to the next possible larger value. In (Morgado et al., 2012), bincd is improved

by using a global upper bound, and as a consequence the upper bounds that the original

version of bincd maintained for each cover become instead estimates of the cost that

the cover contributed to the global upper bound. Another improvement is that when

the lower bound for a cover is increased, a Subset Sum calculation is used to �nd the

next possible larger value as in wpm2. Morgado et al. also proposed to use a biased

binary search where instead of testing the middle value between the bounds, the value

between the bounds is chosen based on the ratio between the number of calls to the

SAT solver that have answered SAT and the number of calls that have reported UNSAT.

Their policy will choose a value that is closer to the lower bound if the SAT solver has

Chapter 2. Background 36

returned a majority of SAT answers in the computation so far, and a value closer to the

upper bound if the SAT solver has returned a majority of UNSAT answers.

2.6 Conclusion

This section has described the main recent approaches for solving the maxsat problem.

Exact algorithms for maxsat can be divided into those that use a Branch and Bound

search, and those that pose a sequence of SAT queries. In both cases, the algorithms

need to reason with intersecting cores of a CNF formula. So far, two techniques have

been used to deal with interesting inconsistencies: maxres and adding linear constraints

over relaxation variables. The maxres rule is di�cult to apply in practise because it can

easily increase the size of the formula without making progress. Therefore, in practise

it is only applied to particular patterns of cores involving short clauses, which limits its

power and applicability. On the other hand, the technique of adding relaxation variables

and constraints can create CNF formulas that are very hard for SAT solvers to refute.

In the remainder of this thesis we explore a new approach, o�ering greater power and

�exibility to reason about the cores of a maxsat instance.

Chapter 3

Solving maxsat with Hitting Sets

3.1 Introduction

Section 2.5.2 described existing maxsat solvers based on a sequence of SAT approach,

that convert the optimization problem into a sequence of decision problems, each of which

is then encoded as a SAT problem and solved with a modern SAT solver. This approach

is very successful when only a few decision problems must be posed before a solution

is found. However, the SAT decision problems can be much larger than the original

maxsat instance, and performance can be signi�cantly degraded as larger and larger

decision problems must be solved.

This chapter introduces a new approach for solving maxsat that also utilizes a se-

quence of SAT problems, but in contrast to previous algorithms, the SAT problems

become progressively easier. In particular, the SAT solver is only ever asked to solve

problems that are composed of a subset of the clauses of the original maxsat problem.

The new approach decomposes the maxsat problem into two parts. One part com-

putes minimum cost hitting sets, while in the other part the SAT solver tests the satis-

�ability of subsets of the original problem. This decomposition allows the SAT solver to

deal only with the logical structure of the original problem. Furthermore, the sequence

37

Chapter 3. Solving maxsat with Hitting Sets 38

of satis�ability problems that have to be solved can only become easier. However, the

hitting set computations can and do become harder. It is hoped that splitting the prob-

lem in this manner will more e�ectively exploit the strengths of modern SAT solvers as

well the strengths of solvers that are e�ective at performing the optimization required,

e.g., integer programming solvers.

3.2 The MaxHS Algorithm

The cores of a maxsat instance play an important role in determining the maxsat

solution. We have already seen that inconsistent clause subsets (i.e., cores) are used to

derive lower bounds in Branch and Bound maxsat solvers. Recall that the Diagnosis

algorithm of Fu and Malik (Algorithm 4 on page 33) solves maxsat by �nding and

relaxing cores until no additional cores can be found. In this section we formalize the

connection between cores and the maxsat solution, showing that any solution to a

maxsat instance must falsify at least one clause from every core. In other words, the

clauses falsi�ed by the maxsat solution will form a minimum cost hitting set of the

cores. We then show how this hitting set connection can be used to guide the discovery

of cores within a complete algorithm for maxsat.

We begin by de�ning the minimum cost hitting set problem (MCHS), which is a

well-studied NP-hard optimization problem. We are interested in the MCHS problem

because, as we will show, solving maxsat can be decomposed into solving a series of

MCHS and SAT problems.

De�nition 12 (The Minimum Cost Hitting Set Problem). Let K = {κ1, κ2, ..., κk} be a

collection of k �nite sets where each κi is a subset of a universe of positively weighted

elements. Then a hitting set of K is a subset of elements hs such that hs ∩ κi 6= ∅ for

each 1 ≤ i ≤ k. The cost of a set of elements is the sum of their weights. A minimum

cost hitting set of K is a hitting set of K such that there is no other hitting set of smaller

Chapter 3. Solving maxsat with Hitting Sets 39

cost.

We will now explain how the MCHS problem can be used to solve maxsat. As

mentioned in Section 2.2, it is assumed that the hard clauses of the maxsat instance are

satis�able, and that the cost of the maxsat solution is greater than zero. Under these

conditions, it is easy to observe that every truth assignment necessarily falsi�es at least

one clause in every core of the maxsat instance, and therefore, every truth assignment

corresponds to a hitting set of the instance's cores. Thus the cost of the maxsat solution

will be at least the cost of the minimum cost hitting set of the cores. This raises the

question of whether there exists a truth assignment that actually achieves this minimum

cost. The answer is a�rmative: the maxsat solution always achieves this minimum cost.

Proposition 2. If F is a maxsat instance, K is the set of all cores of F , and hs is a

minimum cost hitting set of K, then mincost(F) = cost(hs).

Proof. Let hs be a minimum cost hitting set of K. Any truth assignment falsi�es a set of

clauses that form a hitting set of K. Therefore, since hs is a MCHS of K, mincost(F) ≥

cost(hs). It is not possible to prove the empty clause from F \ hs , otherwise there would

be a core κ in K such that κ ⊆ (F − hs). But then hs would not hit κ and hs would not

be a hitting set of K. Thus F \hs is satis�able and therefore mincost(F) ≤ cost(hs).

Proposition 2 says that the technique of �nding hitting sets can solve the maxsat

problem: it is a complete method. However, as stated it is also quite impractical. For

one there are an exponential number of possible cores of F . Consider the case where

instead of having access to all cores of F , an incomplete collection of cores is available.

In this case a minimum hitting set provides a lower bound on mincost(F).

Proposition 3. If K is any set of cores of maxsat instance F , and hs is a minimum

cost hitting set of K, then mincost(F) ≥ cost(hs). That is, cost(hs) is a lower bound on

the cost of the solution of F .

Chapter 3. Solving maxsat with Hitting Sets 40

Proof. If K and K′ are two sets of cores with K ⊂ K′, with minimum cost hitting sets hs

and hs ′ respectively, then cost(hs) ≤ cost(hs ′), because every hitting set of K′ must be a

hitting set of K.

So any set of cores of a maxsat instance can provide a lower bound on the maxsat

solution's cost. Can an incomplete set of cores ever be su�cient to prove the maxsat

solution itself? If in fact an incomplete set of cores is enough, how can we know that the

lower bound they provide is equal to the optimum? The next theorem gives a condition

on a set of cores and their MCHS under which we can derive the maxsat solution.

Theorem 3. If K is a set of cores for the maxsat problem F , hs is a minimum cost hit-

ting set of K, and π is a truth assignment satisfying F \hs then mincost(F) = cost(π) =

cost(hs).

Proof. mincost(F) ≤ cost(π) as mincost(F) is the minimum over all possible truth

assignments. cost(π) ≤ cost(hs) as the clauses π falsi�es are a subset of hs (π satis�es

all clauses in F − hs). On the other hand mincost(F) ≥ cost(hs). Any truth assignment

must falsify at least one clause from every core κ ∈ K. Thus for any truth assignment τ ,

cost(τ) must include at least the cost of a hitting set of K. This cannot be any less than

cost(hs) which has minimum cost.

So any set of cores K is su�cient to determine the maxsat solution if the maxsat

formula can be rendered satis�able by removing a set of clauses that forms a minimum

cost hitting set of K. Thus, a SAT check provides the stopping condition for a maxsat

algorithm that accumulates cores and calculates lower bounds based on the cores' MCHS.

This idea for a new maxsat algorithm is formalized in Algorithm 5. The algorithm starts

o� with an empty set of cores K. At each stage it computes a minimum cost hitting set hs

via the function �FindMinCostHittingSet� and calls a SAT solver to determine if F \ hs

is satis�able. If it is satis�able then the SAT solver returns (true, κ) with κ set to a

satisfying assignment for F \hs . Otherwise, if F \hs is still unsatis�able, the SAT solver

Chapter 3. Solving maxsat with Hitting Sets 41

Algorithm 5: The MaxHS algorithm for solving maxsat

maxhs-basic
(
F
)

1

K = ∅2

while true do3

hs = FindMinCostHittingSet(K)4

(sat?,κ) = SatSolver(F \ hs)5

; // If SAT, κ contains the satisfying truth assignment.
; // If UNSAT, κ contains an UNSAT core.
if sat? then6

break ; // Exit While Loop7

// Add new core to set of cores
K = K ∪ {κ}8

return
(
κ, cost(κ)

)
9

returns (false, κ) with κ set to a new core of F \ hs . New cores are added to K, while

satisfying assignments cause the algorithm to terminate.

Proposition 4. Algorithm 5 correctly returns a solution to the inputted maxsat problem

F . That is, it returns a truth assignment κ for F that achieves mincost(F).

Proof. First observe that Algorithm 5 only returns when it breaks out of the while loop,

and this occurs only when the current F \ hs is satis�able. Since in this case hs is a

minimum cost hitting set of a set of cores and κ is a truth assignment satisfying F \ hs ,

by Theorem 3 cost(κ) = mincost(F). This shows that the algorithm is sound.

Second, to show that the algorithm is complete, it simply needs to be shown that

it must terminate. Since F is a �nite set of clauses, the set of cores of F must also be

�nite. Each iteration of the while loop computes a new core of F and adds it to K.

This core cannot be the same as any previous core, hence the while loop must eventually

terminate. Consider the hitting set hs computed at line 4 prior to the computation of

κ at line 5. κ ∩ hs = ∅ since κ ⊆ (F \ hs). However, for any previously computed core

κ− we have that κ− ∩ hs 6= ∅ since hs is a hitting set of all previous cores. Hence for all

previous cores κ−, κ 6= κ−.

Chapter 3. Solving maxsat with Hitting Sets 42

3.3 Bene�ts of maxhs

The worst-case behaviour of Algorithm 5 is analyzed in Section 3.4 below, but �rst we

point out why it is a promising basis for a new state-of-the-art maxsat solver. First,

maxhs is able to immediately exploit advances in practical SAT solving, since it uses

a SAT solver as a black-box. This is a bene�t shared with existing maxsat solvers

based on a sequence of SAT approach. However, all existing algorithms must add extra

variables and constraints to the SAT instances, which may result in very challenging

instances for the SAT solver. In contrast, maxhs only asks the SAT solver to deal with

subsets of the original maxsat formula. We expect that in practise, the various subsets

of the maxsat formula are likely to be of similar di�culty for the SAT solver to refute.

Therefore, maxhs better exploits SAT solver technology than the existing sequence of

SAT algorithms.

The second bene�t of maxhs is that it allows the SAT solver to be combined with

another powerful technology in a hybrid approach. maxhs decomposes the maxsat

problem into a SAT problem and a MCHS problem; the latter is equivalent to the Set

Cover problem.1 The Set Cover problem, like maxsat, is an NP-hard optimization

problem, but it has been well studied from a theoretical and practical perspective by the

computer science and operations research communities respectively. Very large instances

of Set Cover, arising in industrial applications, are routinely solved by sophisticated

Mixed Integer Programming solvers like cplex. The maxhs algorithm can utilize such

a MIP solver as a black-box, to solve the MCHS instances e�ciently.

As we have discussed, the maxhs algorithm allows the di�ering strengths of SAT

1An instance of Set Cover is a �nite set K = {κ1, ..., κm} where each κi ∈ K is a �nite set of elements
from universe U =

⋃
κi∈K κi. There is also a weight wt(κi) ∈ R>0 associated with each κi ∈ K. The

answer to the Set Cover instance is a subset K′ ⊆ K, such that
⋃
κ∈K′ κ = U , that is, a set of sets whose

union contains all possible elements. Furthermore, K′ must be a minimum cost subset satisfying this
property, where the cost of K′ is given by cost(K′) = Σκ∈K′wt(κ). The equivalent MCHS instance is
as follows. For each e ∈ U in the Set Cover instance, there is a set Se = {κi : e ∈ κi} in the MCHS
instance. Then the MCHS solution is a minimum cost set of κi that hits every Se, i.e. whose union
includes every e ∈ U .

Chapter 3. Solving maxsat with Hitting Sets 43

solvers and MIP solvers to be combined, in a clean and e�ective manner. Both solvers

are used as a black-box, and the problems given to each are well suited to the solvers'

abilities.

3.4 Factors A�ecting Performance

The worst case complexity of solving maxsat with a Branch and Bound solver is 2O(n)

where n is the number of variables. However, the worst case complexity of Algorithm 5 is

worse. There are 2m possible cores where m is the number of soft clauses. This provides

a worst case bound on the number of iterations executed in the algorithm. Each iteration

requires solving a SAT problem of 2O(n) and a hitting set problem of 2O(m) (one has to

examine sets of clauses to �nd a hitting set). This leaves the worst case complexity

2O(m) × (2O(n) + 2O(m)) = 2O(m) since m > n (typically, the number of clauses m is much

larger than the number of variables n).

Fortunately, we can say more about the expected behaviour of maxhs than just its

worst case complexity. The performance of the maxhs algorithm is a�ected by three

factors: the di�culty of the SAT instances, the di�culty of the MCHS instances, and the

total number of cores required. These factors are not independent of each other, since as

the number of cores grows, the MCHS instances get larger and therefore harder to solve.

The time spent by the SAT solver may also be traded o� against the other two factors.

For example, more time can be spent on SAT solving in order to �nd particular cores

that reduce the total number of cores required, or change the structure of the MCHS

instances making them easier to solve. Thus the interplay between these three factors

o�ers a rich space in which to explore trade-o�s.

On the other hand, the performance of maxhs is likely to be quite variable and hard

to predict because of these three factors. maxhs relies on two potentially expensive

subroutines, the SAT solver and the MCHS solver, whose runtimes can not be predicted

Chapter 3. Solving maxsat with Hitting Sets 44

easily. In fact, any one of the three factors can be the source of exponential runtime in

maxhs, as shown by the following three examples.

Example 2. Let F be an instance of the Pigeon Hole Principle, where all clauses are

considered soft with uniform weights. Note that removing any single clause from F will

make the remaining clauses satis�able. Therefore, maxhs will terminate after the �rst

core is found. So only one MCHS problem will be solved, and it is trivial. However, the

time spent by the SAT solver to �nd the single core will be exponential.

Example 3. Given any known MCHS solver, there exists some MCHS instance for

which its runtime will be exponential (unless P = NP). Let K be a MCHS instance. We

construct a maxsat instance F that is equivalent to K as follows. For each set κ ∈ K,

where κ = {e1, ..., ek}, there is a hard clause (e1∨, ...,∨ek). Finally, there is a soft clause

(¬e) with weight wt(e) for each element e ∈
⋃
κ∈K κ. A minimal core is a core such that

any proper subset is not a core. It is easy to see that the minimal cores of F correspond

to the hard clauses of F and therefore the total number of minimal cores is equal to

|K|. The SAT solver can �nd each of the minimal cores in polynomial time, by using

unit propagation alone. The number of minimal cores required by maxhs is at most |K|.

So the only possible source of exponential runtime on K is solving the MCHS problems,

and assuming that P 6= NP, there is some MCHS instance K on which maxhs will take

exponential time.

Proposition 5. Let E = {e1, ..., en} be a universe of n equally weighted elements. Let

Kn,r = {κ ⊂ E : |κ| = r} be an instance of the MCHS problem where 1 ≤ r ≤ n. Then

the MCHS of Kn,r is of size n− r + 1.

Proof. By induction on n. When n = 1, r = 1 and there is only one set in K1,1. The

MCHS is of size 1 = n− r+ 1. Let n ≥ 1 and assume that the size of the MCHS of Kn,r

is n− r + 1 for all 1 ≤ r ≤ n. Now consider Kn+1,r for some 1 ≤ r ≤ n+ 1. If r = n+ 1

then Kn+1,r has only one set to hit and its MCHS is of size 1 = (n + 1) − (n + 1) + 1.

Chapter 3. Solving maxsat with Hitting Sets 45

So assume that r < n + 1. Let hs be a MCHS for Kn+1,r and without loss of generality

assume that hs contains element en+1. Consider K′ = Kn+1,r \ {κ ∈ Kn+1,r : en+1 ∈ κ}.

Each element of E = {e1, ..., en+1} appears in exactly
(
n
r−1

)
of the sets of Kn+1,r, because

given any element there are
(
n
r−1

)
ways to choose the other r − 1 elements to make up a

set. So |K′| = |Kn+1,r| −
(
n
r−1

)
=
(
n+1
r

)
−
(
n
r−1

)
=
(
n
r

)
as shown below.

(
n+ 1

r

)
−
(

n

r − 1

)
=

(n+ 1)!

(n+ 1− r)!r!
− n!

(n− r + 1)!(r − 1)!

=
(n+ 1)!− n!r

(n+ 1− r)!r!

=
n![(n+ 1)− r]
(n+ 1− r)!r!

=
n!

(n− r)!r!

=

(
n

r

)

It is easy to see that K′ is actually equal to Kn,r. Furthermore, hs ′ = hs \ {en+1} is a

hitting set for K′, of size |hs| − 1. By the Induction Hypothesis and our assumption that

r < n+ 1, the MCHS of K′ = Kn,r is of size n− r+ 1. Thus n− r+ 1 ≤ |hs ′| = |hs| − 1.

So |hs| ≥ n − r + 2 = (n + 1) − r + 1. It remains to show that a hitting set of size

(n+1)− r+1 exists for Kn+1,r. Such a hitting set can be constructed by taking a MCHS

of Kn,r and adding element en+1.

Proposition 6. Let n be an even number and let E = {e1, ..., en} be a universe of equally

weighted elements. Let Kn,r = {κ ⊂ E : |κ| = r} be an instance of the MCHS problem

where r = n
2
. Let K′ = Kn,r \ κ′ for some κ′ ∈ Kn,r. Then the MCHS of K′ is strictly

smaller than the MCHS of Kn,r.

Proof. By Proposition 5, the MCHS of Kn,r is of size n − r + 1 = n − n
2

+ 1 = n
2

+ 1.

We will show that the MCHS of K′ is of size at most n
2
and is therefore strictly smaller.

Chapter 3. Solving maxsat with Hitting Sets 46

We do this by arguing that the n− r = n
2
elements that do not appear in κ′ hit all sets

in K′. Assume for contradiction that there is a set κ ∈ K′ that is not hit by E \ κ′.

That is, assume that κ ∩ (E \ κ′) = ∅. Since κ ⊂ E, this means that κ ⊆ κ′. But this

is impossible since |κ| = |κ′|, κ ∈ K′ and κ′ /∈ K′ and K′ contains no duplicate sets.

Therefore, n− r = n
2
elements are enough to hit all sets in K′.

Example 4. Let F be a maxsat instance with an even number n of soft clauses with

uniform weights, (x1), ..., (xn) and let the hard clauses of F form a clausal encoding of the

cardinality constraint Σn
i=1xi < n/2. On this family of problems, an exponential number

of cores will always be required by maxhs, as we explain next. The solutions to F are the

truth assignments that set as many of the variables to true as possible without violating

the hard cardinality constraint. Thus a solution to F will set exactly n
2
− 1 of the xi

variables to true and the rest to false, and n
2

+ 1 is the optimal cost. Any subset of the

n soft clauses, with size greater than or equal to n
2
, is a core of F . Therefore, F has

at least
(
n
n/2

)
cores. By Proposition 6, for any number of cores k <

(
n
n/2

)
, the cost of

their MCHS is less than the optimum. Therefore, maxhs will require at least
(
n
n/2

)
cores,

which is exponential in n. Each core has a polynomial size refutation, assuming a suitable

encoding of the cardinality constraint is used (Bailleux et al., 2009).

We will see that in practise, the cores are often easy for a SAT solver to refute and

the SAT solving time makes up a small fraction of the total time taken by maxhs. The

limiting factor is the time taken to solve the MCHS instances, which grows quickly as

more cores are added. This limits the total number of iterations maxhs can accomplish.

However, the number of cores required by maxhs does vary depending on which cores

are discovered by the SAT solver. Therefore it is important to solve the maxsat problem

in as few iterations as possible, by �nding the right set of cores. Section 3.6 introduces

techniques which improve the quality of the cores by encouraging core diversity.

In the remainder of the thesis, we take an experimental approach to investigate the

trade-o�s that a�ect the performance of maxhs. The �rst step is to implement the basic

Chapter 3. Solving maxsat with Hitting Sets 47

maxhs algorithm, as described in the next section.

3.5 Implementation

Algorithm 5 was implemented in C++. The two main decisions that must be made

when implementing maxhs are which SAT solver to use, and how to solve the MCHS

problems. We chose to use minisat-2.0 as the SAT solver, because of its good perfor-

mance and extensible source code (Eén and Sörensson, 2003). minisat is based on the

DPLL algorithm as described in Appendix B. For the MCHS problems, we �rst tried

creating two special-purpose solvers, based on A∗ search and Branch and Bound respec-

tively. However, their preliminary performance was not very promising in comparison to

the more general and mature MIP solver cplex. We believe that considerable ingenuity

and engineering would be required to outperform cplex on the MCHS instances arising

from maxhs. Therefore, in order to focus on questions raised by maxhs as a whole, we

decided to use cplex to solve the MCHS problems.

3.5.1 Extracting Cores

The minisat-2.0 SAT solver is used to compute cores. Our implementation of maxhs

actually incorporates the source code of the �core� solver of minisat-2.0. This o�ers more

�exibility and e�ciency than invoking the SAT solver as a separate process, as well as

allowing the state of the SAT solver (e.g. the learnt clauses and activities) to persist from

one SAT solving episode to the next. We use a simple trick of introducing relaxation

variables to the soft clauses, which makes extracting cores very simple (Ryvchin and

Strichman, 2011). This trick also means that any clauses learned by the SAT solver

in one iteration are sound for all other iterations as well. Similar to other core-based

maxsat solvers (see Section 2.5.2), a unique �relaxation variable� is added to each clause

of soft(F). So soft clause Ci becomes Ci ∪{bi} where bi appears nowhere else in the new

Chapter 3. Solving maxsat with Hitting Sets 48

theory. The hard clauses of F are left unchanged.

De�nition 13 (b-Variable Relaxation). If F is a maxsat instance, then the b-variable

relaxation of F is a CNF formula F b = {(Ci ∨ bi) : Ci ∈ soft(F)} ∪ hard(F).

The CNF formula F b is called the b-variable relaxation of F because the b-variables

can be used to relax the constraints of F . If bi is set to true, the clause Ci is removed

from the theory. On the other hand, if bi is set to false, the clause Ci is activated.

Each solution of F b has an associated cost, which is equal to the sum of the weights

of the clauses corresponding to the b-variables it sets to true.

De�nition 14 (bcost). If π is a truth assignment to the variables of F b, we de�ne its

cost as bcost(π): if π 6|= F b then bcost(π) =∞, otherwise bcost(π) =
∑

bi:π|=bi wt(Ci).

The problem of �nding a minimum cost solution of F b is equivalent to solving the

original maxsat instance. As shown by the following proposition, the minimum bcost

satisfying assignments for F b correspond to solutions of F .

Proposition 7. mincost(F) = minπ bcost(π), where the minimum is taken over all truth

assignments π to the variables of F b. Furthermore, if π achieves a minimum value of

bcost(π), then π restricted to the variables of F is a solution for F .

Proof. Let π be a truth assignment of minimum bcost , and let π′ be π restricted to the

variables of F . Then π satis�es every clause of F b, since a truth assignment satisfying

hard(F) can be extended to a satisfying assignment for F b by assigning all of the b-

variables to true, and furthermore,
∑

bi
wt(Ci) <∞ so the minimal bcost assignment will

be one that satis�es F b.

Next, we show that π sets a b-variable to true if and only if it is necessary to satisfy

the clause. Suppose for contradiction that π′ satis�es a clause Ci of F such that π assigns

the corresponding b-variable for that clause, bi, the value true. Then the assignment to

the variables of F b that is the same as π but with bi set to false has bcost strictly less

Chapter 3. Solving maxsat with Hitting Sets 49

than that of π (since Ci remains satis�ed even though the value of bi is changed, and bi

does not appear in any other clause of F b.). This is a contradiction since π was chosen to

have minimal bcost . Therefore, for every clause Ci of F that is satis�ed by π′, π assigns

its bi to false.

On the other hand, if π′ falsi�es Ci, it must be the case that bi is set to true in π

since π satis�es all clauses in F b. Thus we have shown that the b-variables that π sets

to true correspond to the clauses that π′ falsi�es, and bcost(π) = cost(π′).

Finally, we show that bcost(π) = cost(π′) = mincost(F) and thus that π′ is a maxsat

solution. Assume for contradiction that cost(π′) > mincost(F). Then bcost(π) =

cost(π′) > mincost(F). Let σ be a maxsat solution to F . We can de�ne a truth

assignment σ′ to the variables of F b by extending σ to the b-variables as follows. If σ

falsi�es clause Ci ∈ F , then σ′ assigns bi to true, and if σ satis�es Ci then σ
′ assigns bi

to false. Then cost(σ) = bcost(σ′), but cost(σ) = mincost(F) < bcost(π) and therefore

bcost(σ′) < bcost(π). This contradicts the fact that π has minimal bcost .

The b-variable relaxation allows any subset of F to be selected through the proper

instantiation of the b-variables. Therefore, when Algorithm 5 needs to test the satis�a-

bility of F \ hs , the b-variables associated with the clauses in hs are set to true, and all

other b-variables are set to false.

Observation 1. Let hs be a subset of soft(F) and let π = {bi : Ci ∈ hs} ∪ {¬bi : Ci ∈

soft(F) \ hs} be a truth assignment to the b-variables of F b. Then F \ hs is the same as

F b reduced by π, i.e., F \ hs = F b|π.2

Proof. First we note that truth assignment π assigns a value to every b-variable in F b,

so after F b is reduced by π, only original variables will remain in F b|π. Consider a clause

in F \ hs . If the clause is hard, it appears unchanged in F b and after reduction by π it

will still remain unchanged in F b|π (since it does not contain a b-variable). So consider a

2See Appendix A

Chapter 3. Solving maxsat with Hitting Sets 50

clause Ci in soft(F) \ hs . By de�nition of π, π assigns bi to false. Therefore, the relaxed

clause Ci ∪ {bi} ∈ F b will be reduced to Ci by π. Thus we have shown that Ci ∈ F b|π

and therefore F \ hs ⊆ F b|π.

For the other direction, consider a clause in F b|π. If the clause did not contain a

b-variable in F b then it was a hard clause of F , and therefore it will also appear in F \hs

since hs ⊆ soft(F). So let Ci ∈ F b|π and assume that Ci ∪ {bi} ∈ F b. If π had assigned

bi to true, then Ci would have been satis�ed by reducing F b by π. So it must be the case

that π assigned bi to false. By the de�nition of π, this only occurs if Ci ∈ F \ hs . Thus

we have also shown that F b|π ⊆ F \ hs .

These b-variable assignments are added as �assumptions� in minisat. minisat pro-

vides the assumption interface to test whether a given set of literals can be extended to

a satisfying assignment. minisat can take as input a set of assumptions A, speci�ed as

a set of literals, along with a CNF formula F and then determine if F ∧A is satis�able.

It will return a satisfying truth assignment for F ∧A if one exists (this truth assignment

necessarily extends A). Otherwise it will report unsat and return a learnt clause C

which is a disjunction of negated literals of A. This clause has the property that ¬C

speci�es a subset of A such that F ∧ ¬C is unsatis�able. This means F |= C. We

give minisat the CNF F b and the assumptions A = π as speci�ed in Observation 1. If

F \ hs is UNSAT, minisat will compute a con�ict clause over the assumptions�the set

of assumptions that lead to failure. The true b-variables do not impose any constraints

so they cannot appear in the con�ict clause. Instead, the con�ict clause contains the set

of false b-variables that caused UNSAT. The core is simply the set of clauses associated

with the b-variables of the computed con�ict.

Proposition 8. If F b |= (bi1∨, ...,∨bik) for some set of b-variables {bij}|kj=1, then κ =

{Ci1, ..., Cik} is a core of F .

Chapter 3. Solving maxsat with Hitting Sets 51

Proof. Assume for contradiction that κ is not a core of F . Therefore, by de�nition

κ∪hard(F) is satis�able. Let π be a truth assignment to the variables of F that satis�es

κ ∪ hard(F). We de�ne a truth assignment π′ to the variables of F b that extends π as

follows. If bi corresponds to a clause Ci ∈ κ, then π′ assigns bi to false. Otherwise,

if bi does not correspond to a clause in κ, π′ assigns bi to true. Then π′ will satisfy

F b and falsify (bi1∨, ...,∨bik). This contradicts the fact that F b |= (bi1∨, ...,∨bik), so by

contradiction κ is a core of F .

3.5.2 Computing a Minimum Cost Hitting Set

The hitting set problem is encoded as an integer linear program (ILP) and the MIP solver

cplex (version 12.2) is invoked to solve it. The minimum cost hitting set problem is

the same as the minimum cost set cover problem and standard ILP encodings exist, e.g.,

(Vazirani, 2001). The encoding used in this thesis introduces a 0/1 variable xi for each

clause Ci appearing in a core; for each core there is the constraint that the sum over

the xi variables of the clauses it contains is greater or equal to 1; and the objective is to

minimize the sum of wt(Ci)× xi.

minimize:
m∑
i=1

wt(Ci) · xi

where:
∑
Ci∈κ

xi ≥ 1 for κ ∈ K

xi ∈ {0, 1} for 1 ≤ i ≤ m

3.6 Core Diversi�cation

The number of iterations performed by maxhs depends on the particular set of cores

found. In this section we describe the two main techniques we employ to �nd a better

Chapter 3. Solving maxsat with Hitting Sets 52

set of cores. Both techniques are inspired by the observation that the smallest possible

number of iterations is achieved when all of the discovered cores are disjoint, i.e., no

clause appears in more than one core. Of course, it is usually impossible to solve the

entire maxsat problem with disjoint cores alone. Yet it is still desirable to �nd cores

that intersect as little as possible.

3.6.1 Minimal Cores

The cores returned by the SAT solver are not necessarily minimal, in the sense that the

cores may include extra clauses that do not contribute to the contradiction.

De�nition 15 (Minimal Core). A core κ of a maxsat instance F is minimal if every

proper subset of κ is not a core of F .

If a non-minimal core is added to the MCHS instance, the MCHS solver may choose

to put one of the super�uous clauses in the hitting set. Relaxing such clauses can not �x

the contradiction, so another core will be required to rule out this hitting set, increasing

the number of iterations required. Therefore, in order to reduce the number of iterations

we can minimize the cores returned by the SAT solver. We use a simple destructive

MUS (Minimal Unsatis�able Subset) algorithm, as described in (Silva and Lynce, 2011),

to generate minimal cores. The MUS algorithm works as follows. Given a core κ, it

iterates through the clauses in κ. For each clause C ∈ κ, it asks the SAT solver if

{κ \ {C}} ∪ hard(F) is satis�able, which determines if the core is still a core if C is

removed. If the SAT solver reports UNSAT, clause C is removed from κ before moving

on to check the next clause in the core. Since this minimization routine runs a SAT check

for each clause in the core, we may expect that minimizing cores will be time consuming.3

However, in Section 3.7 we verify that minimizing the cores does pay o� in practise.

3The problem of �nding a minimal core is DP -complete (Papadimitriou and Wolfe, 1988). The class
DP contains the languages that are equal to the intersection of a language in NP and one in co-NP.

Chapter 3. Solving maxsat with Hitting Sets 53

3.6.2 Re-refuting Cores

We consider an alternative to minimal cores, that may still reduce the size of the cores

but is faster to compute. The re-refutation method tries to reduce the size of a core

returned by the SAT solver by asking the SAT solver to refute the core again. In some

cases the SAT solver will be able to �nd a di�erent refutation of the core that uses a

smaller subset of its clauses. We recurse on this smaller core, asking the SAT solver to

refute it again. We continue in this way until the size of the core no longer gets smaller.

The amount that the core will be minimized using re-refutation depends on the behaviour

of the SAT solver, and there is no guarantee that the resulting core will be minimal. This

method of reducing the size of cores was used previously (Davies and Bacchus, 2011), but

we discover in Section 3.7.2 that �nding minimal cores gives much better performance.

3.6.3 Disjoint Cores

When a core is discovered that is disjoint from all previously found cores, the cost of

the current MCHS is guaranteed to increase. Furthermore, solving the MCHS problem

is trivial for disjoint cores. These observations motivate �nding as many disjoint cores

as possible in a preliminary phase before Algorithm 5 begins. This disjoint core phase

is shown in Algorithm 6. Experiments in Section 3.7 demonstrate that the disjoint core

phase is very bene�cial. It quickly increases the known lower bound, which may be an

important factor for some applications. Changing the order in which cores are found

also means that the overall time spent solving MCHS instances is reduced, since it allows

trivial MCHS instances to be identi�ed. The disjoint core phase can also decrease the

total number of cores required. In some rare cases, the maxsat instance is even solved

based on the initial set of disjoint cores alone.

Chapter 3. Solving maxsat with Hitting Sets 54

Algorithm 6: The disjoint core phase.

/* F is a maxsat instance. */
/* Returns a set of disjoint cores of F and a minimum cost hitting set for them.*/

DisjointCores
(
F
)

1

K = {}2

hs = {}3

while true do4

(sat?,κ) = SatSolver(F)5

if sat? then6

break7

else8

K = K
⋃

minimize(κ)9

cmin = argminc∈κ{wt(c)}10

hs = hs
⋃
{cmin}11

F = F \ κ12

return (K, hs)13

3.6.4 Other Methods

In addition to minimizing the cores and performing a preliminary disjoint core phase,

a few other simple techniques can be used that may increase the diversity of cores. As

mentioned in Section 3.5, the state of minisat persists from one SAT solving episode to

the next during the execution of maxhs. However, this may adversely a�ect the diversity

of cores that the SAT solver produces. In order to combat this e�ect we experimented

with deleting the learnt clauses between iterations, and modifying the variable ordering

heuristic by either increasing the frequency of random decisions or inverting the variables'

activities so that variables with high activity from the previous SAT episode are given

low activity and vice versa. The e�ectiveness of these techniques in practise is reported

in Section 3.7.

A possible direction for future work is to adapt existing methods that �nd minimal

cores with speci�c properties (Ryvchin and Strichman, 2011) to �nd cores that are likely

to increase the cost of the MCHS.

Chapter 3. Solving maxsat with Hitting Sets 55

3.7 Experimental Evaluation

3.7.1 Experimental Setup

In this section we describe the set of maxsat instances that were used to evaluate solver

performance, the computing environment in which all experiments were conducted, and

the resource limits we imposed on the solvers.

Choice of maxsat Instances The performance of maxhs was evaluated on all in-

stances appearing in the 2006-2012 maxsat Evaluations except those in the Random

category. This is the �rst experimental study that evaluates state-of-the-art maxsat

solvers on such a large and comprehensive collection of non-random instances. The

Evaluation instances have played an important role in the development of all existing

state-of-the-art maxsat solvers. However, it is conventional in the literature to use a

much smaller subset of these instances to evaluation new maxsat solvers. The di�erent

subsets used vary greatly by both size and their restriction to particular sub-categories,

even though almost all maxsat algorithms are meant to be robust and general-purpose.

Therefore, the best existing comparison of maxsat solvers can be found in the maxsat

Evaluations, where all solvers are tested on the same set of instances. However, in the

most recent two maxsat Evaluations (2011 and 2012), the memory limit for the solvers

was less than 0.5GB (Argelich et al., 2007�2012). Given that some of the maxsat in-

stances themselves are close to this size, the tight memory limit probably a�ected the

fair comparison of di�erent solvers. Furthermore, the state-of-the-art solver bincd did

not participate in the maxsat Evaluations. Our experimental study goes a step farther,

by including all instances used in any year of the maxsat Evaluations, using a more

modern computing environment, and including solvers that were never entered in the

Evaluations.

The Evaluation instances represent the largest and most diverse set of maxsat in-

stances that is currently publicly available. However, the Evaluation instances are also

Chapter 3. Solving maxsat with Hitting Sets 56

inevitably biased because they are only a small �nite set, accumulated under speci�c

circumstances. The natural bias is to include instances that are solvable by existing

maxsat solvers under reasonable resource limits. Almost by de�nition, if a potential

maxsat application is too di�cult for current maxsat solvers, then it is not a maxsat

application. In future work, we would like to investigate new applications for maxsat.

We believe that our maxhs approach will be able to adapt to a variety of future appli-

cations because of its �exibility and power as a hybrid approach. However, for now, it is

important that we have included as many existing publicly available maxsat instances

as possible.

Many maxsat instances were used in more than one year of the 2006-2012 maxsat

Evaluations. In most cases, it is easy to identify such duplicated instances by hand, ac-

cording to their �lenames or other clues. If an instance appeared in more than one year

of the Evaluations, only its �rst occurrence was kept. After the duplicates were removed,

a set of 4502 instances remained.

Computing Environment All experiments reported in this thesis were conducted us-

ing the facilities of SHARCNET (the Shared Hierarchical Academic Research Computing

Network), a High Performance Computing Consortium within Compute Canada (SHAR-

CNET, 2013). Experiments with the sat4j solver were run on the �guppy� cluster, on

Intel Xeon 2.8GHz processors and the CentOS 5.5 operating system. All other experi-

ments were conducted on the �red�n� cluster, on AMD Opteron 6172 2.1GHz processors

and the CentOS 6.3 operating system.4

Resource Limits The time limit for each test was 1200 seconds. The memory limit was

set to 2.5GB, and this amount of memory was explicitly reserved for each process.

4We discovered after running a large number of experiments on the �red�n� cluster that sat4j could
not be run on the �red�n� cluster for technical reasons.

Chapter 3. Solving maxsat with Hitting Sets 57

Competing SolversWe ran all experiments with the following maxsat solvers: wpm1

(with the latest 2012 improvements (Ansótegui et al., 2012)), wpm2 (versions 1 and

2 (Ansótegui et al., 2010)), bincd (msuncore-2011606-linux64 with the option �-r bin-

core-dis� (Heras et al., 2011)), wbo (Manquinho et al., 2009), minimaxsat (Heras et al.,

2008), sat4j (version 2.3.0 (Berre and Parrain, 2010)), and akmaxsat_ls (version

1.1 (Kügel, 2010)).

All of these solvers are able to solve maxsat in its most general form, i.e., weighted

partial maxsat, and thus have the widest range of applicability. This set of solvers

includes recently developed solvers utilizing the sequence of sat approach (bincd,wpm1,

wpm2), some older ones (sat4j and wbo), and two prominent Branch and Bound based

solvers (akmaxsat_ls and minimaxsat).

Several other maxsat solvers were entered in the recent maxsat Evaluations. These

include qmaxsat (Koshimura et al., 2012) and pm2 (Ansótegui et al., 2009),5 which use

the sequence of sat approach but are restricted to instances with uniform weight soft

clauses (i.e. partial maxsat). We omit these solvers from our experimental evaluation

because they are specialized to a small subset of the instances we are interested in solving.

We did not experiment with pwbo (Martins, Manquinho, and Lynce, 2012a) because it

is a parallel maxsat solver, while all other solvers use serial algorithms.

For the case of Branch and Bound solvers, we limited our experiments to two solvers

(minimaxsat and akmaxsat_ls) to save time in running the experimental study.

The other Branch and Bound solvers (i.e. iut_rr (Ramezani and Mousavi, 2012),

wmaxsatz-2009 (Li et al., 2009), incmaxsatz (Lin et al., 2008) and wmaxsatz+ (Li

et al., 2007, 2010)) use lower bound techniques that are quite similar to akmaxsat_ls,6

but akmaxsat_ls solved more problems in the Random and Crafted categories of the

2012 maxsat Evaluation so we chose it as a representative. We included minimaxsat

in our experiments even though it did not participate in the recent maxsat Evaluations

5See Section 2.5.2 for a description of these solvers.
6See the discussion in Section 2.5.1.

Chapter 3. Solving maxsat with Hitting Sets 58

because it uses a distinct lower bound technique. Our experimental results show that the

performance of minimaxsat is still comparable to the state-of-the-art.

We also solved the maxsat instances with the MIP solver cplex (version 12.2) after

applying the following simple encoding of maxsat to MIP.7. First, the clauses of the b-

variable relaxation F b are encoded as linear inequalities, using the standard method where

a clause c is converted to the linear inequality
∑

j:pj∈c pj +
∑

i:¬pi∈c(1−pi) ≥ 1. Note that

a negative literal p is encoded as (1− var(p)) and a positive literal is encoded as var(p).

For example, the clause (x, y,¬z, b1) becomes the linear inequality x+y+(1−z)+b1 ≥ 1.

Second, the objective function becomes minimizing
∑

i wt(ci) × bi. The MIP thus tries

to �nd a setting for the propositional variables that satis�es all of the clauses and has

minimum bcost .

Versions of maxhs We compare eight versions of maxhs. All of these versions build

on the �basic� version of the original algorithm as shown in Algorithm 5, with zero or

more of the techniques described in Section 3.5 added. The eight versions are speci�ed

in Table 3.1.

maxhs Minimal Disjoint Invert Delete Re-refute
Version Cores Phase Activity Learnts Cores
maxhs

maxhs-min X
maxhs-disj X
maxhs-min-disj X X
maxhs-min-disj-inv X X X
maxhs-min-disj-del X X X
maxhs-min-disj-inv-del X X X X
maxhs-reref-disj-inv-del X X X X

Table 3.1: The eight versions of maxhs that we evaluate in this chapter.

7The origins of this encoding are not clear. However, it is already known to most people in the �eld.

Chapter 3. Solving maxsat with Hitting Sets 59

3.7.2 Experimental Results

We �rst evaluate the performance of the di�erent versions of maxhs and the compet-

ing solvers in terms of the number of problems they are able to solve within the time

limit. Then, we focus on understanding the practical behaviour of maxhs in terms of

the trade-o� between the time taken by the SAT solver and cplex.

Overall Performance of maxhs

The overall performance of the di�erent versions of maxhs and the competing solvers

is shown in a cactus plot in Figure 3.1. We observe that each of the techniques we

proposed in Section 3.5 improves the total number of problems solved by the maxhs

approach. The greatest gains in overall performance are due to the disjoint core phase

and especially minimal cores. The tweaks to minisat of inverting the activities and

deleting learnt clauses, when used together, lead to signi�cant gains as well. This can

be seen by comparing maxhs-min-disj and maxhs-min-disj-inv-del which solve 2891 and

2996 instances respectively. Finally, minimal cores are much superior to reducing cores

through re-refutation only (see maxhs-reref-disj-inv-del vs. maxhs-min-disj-inv-del).

Figure 3.1 also shows how maxhs compares to existing maxsat solvers. The basic

version of maxhs is not competitive with existing state-of-the-art solvers. However, the

improvements we proposed are very e�ective and the resulting version, maxhs-min-disj-

inv-del, is well ahead of sophisticated maxsat solvers including akmaxsat_ls, wbo

and wpm2. Three competing maxsat solvers, wpm1, bincd and minimaxsat still

outperform our solver. However, all maxsat solvers are outperformed by cplex.

The good performance of cplex in comparison to maxsat solvers on maxsat in-

stances is surprising since maxsat solvers are specialized to this domain. This observa-

tion motivates us to �nd ways to further exploit cplex within the maxhs approach.

Tables 3.2 and 3.3 show the overall results broken down by benchmark family. The

tables divide the instances according to whether they appear in the Crafted or Industrial

Chapter 3. Solving maxsat with Hitting Sets 60

1500 2000 2500 3000 3500

0
20

0
40

0
60

0
80

0
10

00
12

00

Instances Solved

T
im

e
(s

)

sat4j 2381

MaxHS 2495

MaxHS−disj 2558

akmaxsat 2560

wbo 2587

wpm2v1 2655

MaxHS−reref−disj−inv−del 2682

wpm2v2 2751

MaxHS−min 2792

MaxHS−min−disj−inv 2871

MaxHS−min−disj 2891

MaxHS−min−disj−del 2988

MaxHS−min−disj−inv−del 2996

wpm1 3097

bincd 3106

minimaxsat 3130

cplex 3249

Figure 3.1: Runtime results for the competing solvers and eight versions of maxhs.
Shows how many problems were solved within each time limit. The total number of
instances solved is given in the legend after the solver's name.

categories of the maxsat Evaluations. An important observation is that cplex does very

well on the Crafted instances, but is not among the top solvers on Industrial instances.

However, our maxhs approach is very competitive on the Industrial instances, where

it is the second-best solver overall. This suggests that we should be able to take better

advantage of cplex in order to improve the performance of maxhs on Crafted instances,

resulting in a very robust solver for maxsat.

Trade-o�s in maxhs

Next, we focus on understanding the practical behaviour of maxhs and the techniques

from Section 3.5. Section 3.4 described how the maxhs approach is a�ected by three

Chapter 3. Solving maxsat with Hitting Sets 61

main factors: how hard it is to �nd the cores, how di�cult it is to solve the hitting set

problems, and how many cores are required in total. Which of these factors is responsible

for limiting the performance of maxhs in practise? How are these factors a�ected by the

various techniques like core minimization?

To answer these questions, we collected some statistics from each run of our maxhs

solver. We can think of cplex and minisat as two subroutines invoked by our algorithm,

and ask how much time is spent in each of these subroutines.8 For every run of maxhs

we recorded the number of calls to cplex, the total time spent in cplex's solve routine,

and the total time spent in minisat.

We begin by examining the percentage of the total runtime that was spent in SAT

solving and in calls to cplex for the basic version of maxhs. Figures 3.2a and 3.2b show

histograms for the percentage of total runtime spent in SAT solving. In Figure 3.2a,

only the instances that the basic version of maxhs solved within the resource limits

are included. All instances that maxhs failed to solve are included in Figure 3.2b.

Figures 3.2c and 3.2d show the corresponding histograms for the percentage of total

runtime spent in calls to cplex. We observe that on most instances (solved or unsolved),

the SAT solving time is a small percentage of the total runtime, while the time spent in

cplex calls is a very high percentage of total runtime. This explains why using more

SAT calls in order to minimize the cores pays o�. These observations motivate us to

focus on reducing the time spent in solving the MIP subproblems, even if it increases the

work done by the SAT solver.

8Note that the cplex and minisat times do not add up to the total runtime of maxhs, which also
includes the time to parse the input and communicate between cplex and minisat.

Chapter 3. Solving maxsat with Hitting Sets 62

% Time Spent in SAT Solving

F
re

qu
en

cy
Extends to 1400

0
50

10
0

15
0

20
0

25
0

0 20 40 60 80 100

(a) Solved Instances

% Time Spent in SAT Solving

F
re

qu
en

cy

Extends to 1987

0
10

20
30

40
50

0 20 40 60 80 100

(b) Unsolved Instances

% Time Spent in CPLEX Solving

F
re

qu
en

cy
0

20
0

40
0

60
0

80
0

0 20 40 60 80 100

(c) Solved Instances

% Time Spent in CPLEX Solving

F
re

qu
en

cy
Extends to 1922

0
50

10
0

15
0

20
0

0 20 40 60 80 100

(d) Unsolved Instances

Figure 3.2: Histograms for the percentage of runtime spent in SAT solving and in calls
to cplex, for the basic version of maxhs.

The third property of maxhs mentioned in Section 3.4, is the total number of cores

it requires to �nd the maxsat solution. The number of cores given to cplex is shown

in the histograms of Figure 3.3 for the basic version of maxhs, on solved and unsolved

instances. We observe that on instances that maxhs is able to solve, usually the number

of cores is smaller. Many instances (621, see Figure 3.3b) can be solved without any cores

at all. This can occur, for example, if the maxsat instance is in fact satis�able, or if the

Chapter 3. Solving maxsat with Hitting Sets 63

hard constraints imply via unit propagation that some set of soft clauses is falsi�ed which

is costly enough to exceed the upper bound. However, there are many instances that �nd

hundreds or thousands of cores and are still solvable, as can be seen in Figure 3.3c. Yet

only very few solved instances required more than 5000 cores.

On the instances that maxhs failed to solve within the timeout, the number of cores

found before timeout tends to be large, as can be seen in Figure 3.3d.9 This suggests

that the number of iterations performed by maxhs is the reason the algorithm failed to

solve these instances, rather than the di�culty of SAT solving or of solving the MCHS

problems. Some of these instance might be solvable if maxhs can �nd a di�erent, smaller,

set of cores that is su�cient to prove the maxsat solution. However, we know from the

examples in Section 3.4 that some maxsat instances do not have such a small set of

cores. In such cases it is important to reduce the overhead of SAT solving and calls to

cplex in order to allow as many cores as possible to be found.

9The unsolved instances for which the number of cores is zero are cases where the SAT solver consumed
all of the memory or time limit during the initial refutation of the maxsat instance.

Chapter 3. Solving maxsat with Hitting Sets 64

Total Number of Cores Given to CPLEX

F
re

qu
en

cy

0 5000 10000 15000

0
50

0
15

00

(a) Solved Instances

F
re

qu
en

cy

Extends to 621

0 10 20 30 40 50

0
20

40
60

80

Total Number of Cores Given to CPLEX
 (for values of at most 50)

(b) Solved Instances

F
re

qu
en

cy

Total Number of Cores Given to CPLEX
 (for values of at least 1000)

1000 5000 10000 15000

0
5

10
15

20
25

(c) Solved Instances

F
re

qu
en

cy

0 2000 6000 10000

0
50

10
0

15
0

20
0

Total Number of Cores Given to CPLEX

(d) Unsolved Instances

Figure 3.3: These histograms report the number of cores given to cplex by the basic
version of maxhs.

We also compare the behaviour of di�erent versions of maxhs, to investigate why the

various proposed techniques pay o�. The �nal value of the lower bound (i.e. the cost of

the last computed MCHS) indicates how much progress maxhs has made towards the

solution, even if the time limit is reached before the maxsat solution is found. So we can

measure the progress made by each cplex call, by dividing the �nal LB by the number

Chapter 3. Solving maxsat with Hitting Sets 65

of cplex calls, to get the average increment to the LB per cplex call. The average time

spent by a call to cplex is obtained by dividing the total cplex time by the number of

calls to cplex. And by dividing the total SAT time by the number of calls to cplex,

we get an idea of how much time is spent �nding cores for each call to cplex.

The following set of graphs (Figures 3.4-3.7) compares versions of maxhs according

to four dimensions: the total runtime of the solver, the LB increment per cplex call,

the SAT time per cplex call, and the cplex time per cplex call. All 4502 instances

appear in each of these graphs. Note that since the data points often overlap each other

it sometimes appears that fewer instances are included in a graph (e.g. see Figure 3.4c).

In each graph, the less sophisticated version of maxhs is on the horizontal axis, and the

more sophisticated version of maxhs is on the vertical axis.

We �rst investigate the e�ect of using minimal cores by comparing the basic version

of maxhs with maxhs-min in Figure 3.4. Recall from Figure 3.1 that the overall perfor-

mance of maxhs-min is signi�cantly better than maxhs. It is clear from Figure 3.4a that

minimal cores often improves the runtime by orders of magnitude. This improvement in

performance is explained by Figures 3.4b and 3.4d. Using minimal cores has a consistent

e�ect of increasing the increment in the lower bound per cplex call. Moreover, the

time required by cplex to solve each hitting set problem generally decreases. Thus, by

spending more time in the SAT solver to minimize the cores, we are able to give better

cores to cplex, which both reduce the di�culty of the hitting set instances and increase

the progress made by each cplex call.

However, one some instances the runtime is instead increased by using minimal cores.

This can be partly explained by the fact that the time spent in SAT solving sometimes

increases exponentially, as shown in Figure 3.4c. In the basic version of maxhs, the SAT

time per cplex call is always close to zero. In a small number of cases, minimizing the

cores takes a very long time, consuming all of the 1200 second time limit.

The e�ect of the disjoint cores phase is shown in Figure 3.5. The bene�t of the

Chapter 3. Solving maxsat with Hitting Sets 66

disjoint core phase is that it greatly increases the amount the lower bound is incremented

per cplex call. This is exactly as we expect, since during the disjoint core phase the

lower bound is always increased without requiring calls to cplex. The total runtime

is decreased because fewer calls to cplex are required. The disjoint core phase does

not signi�cantly e�ect the time spent in SAT solving, except in a very small number

of cases where it can make the cores more di�cult to �nd. The disjoint cores phase

generally reduces the cplex time per cplex call. maxhs uses the incremental nature

of cplex, meaning that cplex uses information from previous solving episodes to solve

the current hitting set problem. So a possible explanation for the reduction in cplex

time per call is that cplex bene�ts from being initialized with the set of disjoint cores.

From Figure 3.6, we see that none of these statistics provides a convincing explanation

for the bene�t of using the two tweaks to minisat (inverting the activities and deleting

learnt clauses). Finally, we compare the basic version of maxhs with the best performing

version, maxhs-min-disj-inv-del. By comparing the graphs in Figure 3.7 to the previously

discussed graphs, we can see that the behaviour of maxhs-min-disj-inv-del appears to

be a superposition of the behaviour of each of the techniques. In particular, by spending

more time in the SAT solver to minimize the cores and �nd as many disjoint cores as

possible, the e�ectiveness of the information provided to cplex is generally improved.

The net e�ect is a signi�cant improvement in total runtime.

Chapter 3. Solving maxsat with Hitting Sets 67

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS: Time

M
ax

H
S

−
m

in
: T

im
e

(a) Runtime

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

MaxHS: LB Incr per CPLEX Call

M
ax

H
S

−
m

in
: L

B
 In

cr
 p

er
 C

P
LE

X
 C

al
l

(b) LB Increment per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS: SAT Time per CPLEX Call

M
ax

H
S

−
m

in
: S

AT
 T

im
e

pe
r

C
P

LE
X

 C
al

l

(c) SAT Time per CPLEX Call

0 2 4 6 8 10

0
2

4
6

8
10

MaxHS: CPLEX Time per Call

M
ax

H
S

−
m

in
: C

P
LE

X
 T

im
e

pe
r

C
al

l

(d) CPLEX Time per CPLEX Call

Figure 3.4: MaxHS vs. MaxHS-min

Chapter 3. Solving maxsat with Hitting Sets 68

0 200 400 600 800 1000 1200 1400

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

MaxHS: Time

M
ax

H
S

−
di

sj
: T

im
e

(a) Runtime

0 500000 1000000 1500000 2000000 2500000 3000000

0
50

00
00

10
00

00
0

20
00

00
0

30
00

00
0

MaxHS: LB Incr per CPLEX Call

M
ax

H
S

−
di

sj
: L

B
 In

cr
 p

er
 C

P
LE

X
 C

al
l

(b) LB Increment per CPLEX Call

0 100 200 300 400

0
10

0
20

0
30

0
40

0

MaxHS: SAT Time per CPLEX Call

M
ax

H
S

−
di

sj
: S

AT
 T

im
e

pe
r

C
P

LE
X

 C
al

l

(c) SAT Time per CPLEX Call

0 2 4 6 8

0
2

4
6

8

MaxHS: CPLEX Time per Call

M
ax

H
S

−
di

sj
: C

P
LE

X
 T

im
e

pe
r

C
al

l

(d) CPLEX Time per CPLEX Call

Figure 3.5: MaxHS vs. MaxHS-disj

Chapter 3. Solving maxsat with Hitting Sets 69

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj: Time

M
ax

H
S

−
m

in
−

di
sj

−
in

v−
de

l:
T

im
e

(a) Runtime

0 500000 1000000 1500000 2000000 2500000 3000000

0
50

00
00

15
00

00
0

25
00

00
0

MaxHS−min−disj: LB Incr per CPLEX Call

M
ax

H
S

−
m

in
−

di
sj

−
in

v−
de

l:
LB

 In
cr

 p
er

 C
P

LE
X

 C
al

l

(b) LB Increment per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj: SAT Time per CPLEX Call

M
ax

H
S

−
m

in
−

di
sj

−
in

v−
de

l:
S

AT
 T

im
e

pe
r

C
P

LE
X

 C
al

l

(c) SAT Time per CPLEX Call

0 2 4 6 8

0
2

4
6

8

MaxHS−min−disj: CPLEX Time per Call

M
ax

H
S

−
m

in
−

di
sj

−
in

v−
de

l:
C

P
LE

X
 T

im
e

pe
r

C
al

l

(d) CPLEX Time per CPLEX Call

Figure 3.6: MaxHS-min-disj vs. MaxHS-min-disj-inv-del

Chapter 3. Solving maxsat with Hitting Sets 70

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS: Time

M
ax

H
S

−
m

in
−

di
sj

−
in

v−
de

l:
T

im
e

(a) Runtime

0 500000 1000000 1500000 2000000 2500000 3000000

0
50

00
00

15
00

00
0

25
00

00
0

MaxHS: LB Incr per CPLEX Call

M
ax

H
S

−
m

in
−

di
sj

−
in

v−
de

l:
LB

 In
cr

 p
er

 C
P

LE
X

 C
al

l

(b) LB Increment per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS: SAT Time per CPLEX Call

M
ax

H
S

−
m

in
−

di
sj

−
in

v−
de

l:
S

AT
 T

im
e

pe
r

C
P

LE
X

 C
al

l

(c) SAT Time per CPLEX Call

0 2 4 6 8

0
2

4
6

8

MaxHS: CPLEX Time per Call

M
ax

H
S

−
m

in
−

di
sj

−
in

v−
de

l:
C

P
LE

X
 T

im
e

pe
r

C
al

l

(d) CPLEX Time per CPLEX Call

Figure 3.7: MaxHS vs. MaxHS-min-disj-inv-del

Chapter 3. Solving maxsat with Hitting Sets 71

3.8 Related Work

In existing maxsat solvers that pose a series of decision problems, the di�culty of

solving the decision problems is the main factor that limits performance. This is the

case whether the decision problems are translated to CNF so that they can be solved

by a SAT solver, or a Pseudo-boolean solver is used to solve them natively. In contrast,

the maxhs approach involves posing a sequence of decision problems that are no more

di�cult than refuting the original maxsat formula. maxhs does not add any cardinality

constraints to the SAT instance, and weighted clauses never get duplicated as in wpm1

and wbo. Instead, the arithmetic constraints specifying that at least one clause from

every core needs to be falsi�ed are dealt with directly by the minimum hitting set solver.

The maxhs approach is closely related to the Implicit Hitting Set (IHS) problem

as described in (Karp, 2010; Chandrasekaran, Karp, Moreno-Centeno, and Vempala,

2011a). In IHS problems one is trying to compute a minimum cost hitting set without

knowing ahead of time the collection of sets that need to be hit. Instead, one is pro-

vided with an oracle that when given the current candidate hitting set, either declares

the candidate to be a correct hitting set or returns a new un-hit set from the implicit

collection. In the maxhs algorithm, the cores of F form the collection of sets to be hit,

cplex computes candidate hitting sets, and the sat assumption test acts as the oracle

deciding if the current candidate hitting set is correct, returning a new un-hit core if it

is not. However, the sat assumption test may take exponential time, while the oracle in

IHS is assumed to run in polynomial time.

It would be interesting to encode IHS problems as maxsat instances and try solving

them with the MaxHS solver. One advantage to the MaxHS approach is that it does

not require a special-purpose polynomial time oracle to be created for each application.

Rather, the task would be to devise a maxsat encoding of the application, which is

conceptually simpler.

The fact that a MCHS of a set of cores is a lower bound on the maxsat solution

Chapter 3. Solving maxsat with Hitting Sets 72

follows from the well-known duality between minimal unsatis�able sets (MUSes) and

maximal correction sets (MCSes) (Bailey and Stuckey, 2005).

3.9 Conclusion

This chapter introduced the maxhs approach for solving maxsat. The maxhs algorithm

decouples the satisfaction and optimization components of solving maxsat, by using a

SAT solver to �nd cores and a MIP solver like cplex to solve minimum cost hitting set

problems over those cores. The maxhs approach allows the di�ering strengths of these

two types of solvers to be e�ectively exploited. The result is a maxsat solver, maxhs-

min-disj-inv-del, that is comparable in performance to existing state-of-the-art maxsat

solvers.

Additionally, we were surprised to discover that the MIP solver cplex is a very e�ec-

tive maxsat solver, especially on Crafted instances. Therefore, in the following chapters

we investigate two approaches to improving maxhs based on adding more information

to the cplex problems.

Chapter 3. Solving maxsat with Hitting Sets 73

F
a
m
il
y

#
w
p
m
2

w
b
o

sa
t4
j
w
p
m
2

b
in
cd

w
p
m
1

a
k

cp
le
x

m
in
i

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

v
1

v
2

d
is
j

re
re
f

m
in

m
in

m
in

m
in

m
in

d
is
j

d
is
j

d
is
j

d
is
j

d
is
j

in
v

in
v

d
el

in
v

d
el

d
el

m
s/
sp
in
g
la
ss
/

2
0

1
3

0
1

0
0

2
0

1
9

2
0

0
0

0
0

0
0

0
0

w
m
s/
k
ex
u
/
fr
b
-w
cn
f/

3
5

1
0

5
3

5
9

5
1
5

2
0

1
5

1
0

1
1

1
0

1
0

1
0

1
0

1
0

1
0

p
m
s/
cs
p
/
sp
a
rs
el
o
o
se

2
0

2
0

1
9

1
7

2
0

2
0

2
0

2
0

2
0

2
0

9
9

1
9

9
1
1

1
1

2
0

2
0

w
p
m
s/
p
b
/
fa
ct
o
r/

1
8
6

1
8
6

1
7
2

1
7
4

1
8
6

1
8
6

1
6
8

1
8
6

1
8
6

1
8
6

1
8
6

1
8
6

1
8
6

1
8
6

1
8
6

1
8
6

1
8
6

1
8
6

p
m
s/
cs
p
/
d
en
se
lo
o
se

2
0

1
9

5
7

1
8

2
0

1
6

2
0

2
0

2
0

0
0

5
0

0
1

5
1
0

K
n
o
tP
ip
a
ts
ri
sa
w
a
t

3
5
0

0
1
7
3

5
0

0
1
6
1

1
1
9

2
4
5

1
1
7

1
2

1
2

5
7

1
9

1
1

4
0

6
1

p
m
s/
q
u
ee
n
s

7
7

5
6

7
7

7
7

7
7

2
2

2
3

3
4

5
5

w
p
m
s/
a
u
cr
eg
io
n
s

8
4

0
0

3
3
7

6
0

8
4

8
4

8
4

3
4

3
9

3
4

3
9

3
3

3
5

3
4

3
5

m
s/
cu
t/
sp
in
g
la
ss

5
1

2
0

1
1

1
3

3
3

0
0

0
0

0
0

0
1

p
m
s/
jo
b
sh
o
p

4
0

2
3

4
4

3
0

0
2

4
4

4
4

4
4

4
4

w
p
m
s/
p
la
n
n
in
g

7
1

4
8

4
7

6
7

5
3

6
5

6
4

5
2

7
0

7
1

5
0

4
9

4
6

6
8

6
8

6
9

6
9

6
9

p
m
s/
m
a
x
o
n
e/
st
ru
c

6
0

2
5

1
5
7

3
9

5
9

3
0

1
3

5
2

6
0

1
6

1
2

5
4
6

4
5

4
5

4
5

4
6

m
s/
ra
m
se
y

4
8

3
4

3
4

3
2

3
4

3
4

3
4

3
5

3
4

3
5

3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

p
m
s/
cl
iq
u
e/
ra
n
d

9
6

6
2

0
5
8

6
4

6
7

0
9
6

9
6

9
6

4
4

4
4

4
4

4
4

w
m
s/
cu
t/
sp
in
g
la
ss

5
0

0
0

0
0

0
4

4
4

0
0

0
0

0
0

1
1

w
p
m
s/
p
b
/
m
ip
li
b

1
6

6
2

8
6

7
6

4
6

5
5

5
6

7
7

7
7

7

w
m
s/
ra
m
se
y

4
8

3
5

3
4

2
9

3
5

3
6

3
4

3
7

3
6

3
7

3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

m
s/
cu
t/
d
im

a
cs

6
2

4
4

2
4

6
5

5
2

2
0

4
8

3
3

4
3

4
3

4
4

w
p
m
s/
a
u
cs
ch
ed

8
4

3
0

5
6

8
4

6
6

8
4

7
7

8
4

8
4

8
2

8
3

8
2

8
3

8
2

8
2

8
2

8
1

m
s/
b
ip
-c
u
t-
1
4
0
-6
3
0

1
0
0

0
0

0
0

0
0

1
0
0

0
8
3

0
0

0
0

0
0

0
0

w
p
m
s/
m
in
-e
n
c/
w
a
re
h
o
u
se
s

1
8

0
4

2
1

1
1
4

2
1
8

2
1

1
1

1
1

1
1

1

p
m
s/
m
in
-e
n
c/
k
b
tr
ee

5
4

0
1
2

1
2

1
4

1
5

1
4

1
8

5
4

2
2

8
1
0

1
1

1
1

1
1

1
1

1
1

1
2

w
p
m
s/
a
u
cp
a
th
s

8
8

0
0

3
6

0
5
2

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

p
m
s/
cs
p
/
sp
a
rs
et
ig
h
t

2
0

2
1
4

0
3

2
0

2
0

2
0

2
0

2
0

0
0

0
0

0
0

0
0

w
p
m
s/
sp
o
t5
lo
g

2
1

8
6

2
9

1
1

1
2

4
6

4
6

6
6

6
6

6
6

6

p
m
s/
m
a
x
o
n
e/
3
sa
t

8
0

3
4

3
3

5
1

3
4

8
0

7
1

8
0

8
0

8
0

2
0

1
9

2
0

2
4

2
5

2
5

2
5

2
5

w
m
s/
cu
t/
ra
n
d

4
0

0
0

0
0

0
0

4
0

1
2

4
0

0
0

0
0

0
0

0
0

w
p
m
s/
Q
C
P

2
5

2
5

2
5

1
6

2
5

2
5

2
5

2
0

2
5

2
0

2
5

2
5

2
5

2
5

2
5

2
5

2
5

2
5

p
m
s/
cl
iq
u
e/
st
ru
c

6
2

1
9

1
0

1
3

1
7

1
8

8
3
6

3
2

3
6

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

w
m
s/
cu
t/
d
im

a
cs

6
2

3
4

1
3

4
5

6
0

2
2

5
5

3
3

3
3

3
3

3
3

m
s/
cu
t/
ra
n
d

4
0

0
0

0
0

0
0

4
0

4
4
0

0
0

0
0

0
0

0
0

w
p
m
s/
m
in
-e
n
c/
p
la
n
n
in
g

5
6

7
3
0

5
1

4
3

5
3

5
2

3
5

5
1

5
6

3
9

3
7

3
1

5
4

5
4

5
4

5
4

5
4

p
m
s/
fr
b

2
5

6
0

0
5

0
0

5
9

5
0

0
0

0
0

0
0

0

w
p
m
s/
sp
o
t5
d
ir

2
1

9
5

1
9

1
1

1
0

4
1
7

3
6

6
6

6
6

6
6

6

p
m
s/
cs
p
/
d
en
se
ti
g
h
t

2
0

0
1
3

0
1

1
9

1
9

2
0

2
0

2
0

0
0

0
0

0
0

0
0

p
m
s/
p
b
/
g
a
rd
en

7
5

5
4

5
5

5
5

6
5

5
5

5
5

5
5

5
5

T
o
ta
l
1
9
6
0

5
7
9

6
6
9

6
8
3

7
7
3

8
5
5

9
4
5

1
4
2
1

1
4
7
0

1
4
9
3

6
9
6

6
9
7

7
3
8

7
6
4

7
6
8

7
7
4

8
1
8

8
4
7

T
ab
le
3.
2:

C
ra
ft
ed

in
st
an
ce
s:

fo
r
ea
ch

of
th
e
co
m
p
et
in
g
so
lv
er
s
an
d
ei
gh
t
ve
rs
io
n
s
of
m
a
x
h
s
,
th
is
ta
b
le
sh
ow

s
th
e
n
u
m
b
er

of
in
st
an
ce
s
so
lv
ed

in
ea
ch

b
en
ch
m
ar
k
fa
m
il
y.

F
or

ea
ch

fa
m
il
y,
th
e
n
u
m
b
er

of
in
st
an
ce
s
in

th
e
fa
m
il
y
is
sh
ow

n
in

co
lu
m
n
`#

'.
T
h
e

n
am

e
of

th
e
fa
m
il
y
b
eg
in
s
w
it
h
ei
th
er

`m
s'
,
`p
m
s'
,
`w
m
s'
or

`w
p
m
s'
w
h
ic
h
in
d
ic
at
es

w
h
et
h
er

or
n
ot

th
e
in
st
an
ce
s
co
n
ta
in

h
ar
d

cl
au
se
s
(`
p
')
an
d
w
h
et
h
er

or
n
ot

th
ei
r
so
ft
cl
au
se
s
h
av
e
n
on
-u
n
if
or
m

w
ei
gh
ts
(`
w
')
.
T
h
e
so
lv
er
s
ar
e
or
d
er
ed

b
y
th
e
to
ta
l
n
u
m
b
er

of
p
ro
b
le
m
s
th
ey

so
lv
e.

Chapter 3. Solving maxsat with Hitting Sets 74

F
a
m
il
y

#
a
k

m
in
i
sa
t4
j
cp
le
x

w
b
o

w
p
m
2

w
p
m
2

w
p
m
1

b
in
cd

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

M
a
x
H
S

v
2

v
1

d
is
j

re
re
f

m
in

m
in

m
in

m
in

m
in

d
is
j

d
is
j

d
is
j

d
is
j

d
is
j

in
v

in
v

in
v

d
el

d
el

d
el

h
a
p
lo
-p
ed

1
0
0

0
0

1
5

9
7
3

2
1

4
5

9
1

2
3

2
0

2
1

2
7

3
8

4
6

5
5

4
6

5
4

p
b
-n
en
cd
r

1
2
8

0
6
4

7
8

2
3

6
3

7
4

5
9

6
9

1
1
6

3
1

3
1

4
8

7
2

9
8

9
7

1
0
9

1
1
1

p
m
s/
b
cp
-m

tg
2
1
5

1
4
9

2
0
8

1
8
3

1
9
3

1
7
2

2
1
5

2
1
5

2
1
5

2
1
5

1
3
8

1
5
7

1
5
0

1
8
6

1
9
6

1
9
8

2
1
4

2
1
4

w
p
m
s/
u
p
-u
9
8

8
0

0
0

6
7

8
0

8
0

6
4

8
0

8
0

7
9

8
0

8
0

8
0

8
0

8
0

8
0

8
0

8
0

m
s/
S
a
fa
r

1
1
2

4
3

6
1
9

6
9

5
7

7
5

8
8

7
1

7
2

7
7

7
5

3
5

3
4

3
4

3
4

3
5

p
m
s/
p
b
/
p
ri
m
es

8
6

7
1

7
6

6
0

7
8

2
3

6
7

6
3

4
6

7
6

6
1

6
5

5
9

7
3

7
4

7
4

7
4

7
4

p
m
s/
b
cp
-s
y
n

7
4

3
1

2
7

1
2

7
1

3
2

3
3

3
4

4
0

4
5

6
0

6
3

6
5

6
7

6
7

6
7

6
7

6
7

p
m
s/
ci
rc
tr
a
ce
co
m
p

4
0

1
0

0
0

4
3

3
4

0
0

0
0

0
0

0
0

p
m
s/
h
a
p
-a
sm

b
ly

6
0

0
0

2
5

5
5

4
0

2
5

5
5

5
5

5
5

p
b
-n
lo
g
en
cd
r

1
2
8

1
1
0
3

7
0

2
4

6
7

1
0
1

6
7

8
8

1
2
8

3
4

3
7

7
8

8
1

9
9

9
9

1
1
8

1
1
8

p
m
s/
b
cp
-�
r

5
9

1
2

1
3

1
0

5
8

4
1

4
9

4
8

5
3

5
5

1
3

1
5

1
6

1
7

1
8

1
8

1
8

1
8

p
m
s/
p
b
o
-r
o
u
t

1
5

0
1
4

1
4

1
4

1
5

1
5

1
5

1
5

1
5

0
9

1
0

7
1
5

1
5

1
5

1
5

p
m
s/
p
se
u
d
o
/
ro
u
t

1
5

0
1
4

1
5

1
5

1
5

1
5

1
5

1
5

1
5

0
7

7
7

1
5

1
5

1
5

1
5

a
es

7
1

1
0

2
0

0
0

0
1

1
1

1
1

1
1

1
1

ti
m
et
a
b
li
n
g

3
2

0
0

1
0

9
1
3

1
4

1
3

1
2

1
0

9
9

1
1

6
1
0

6
1
2

p
m
s/
b
cp
-h
ip
p

1
1
8
3

7
7
2

9
8
2

1
0
8
0

9
6
2

1
1
1
4

1
1
5
5

1
1
5
3

1
1
5
4

1
1
6
4

1
0
8
5

1
0
9
0

1
1
2
5

1
1
4
4

1
1
4
3

1
1
4
3

1
1
4
0

1
1
4
4

p
m
s/
p
b
/
lo
g
ic
-s
y
n

1
7

2
2

1
1
6

5
5

5
7

7
1
4

1
4

1
6

1
6

1
6

1
6

1
6

1
6

m
s/
ci
rc
d
eb
u
g

9
0

0
0

1
7

5
8

9
7

9
8

9
4

4
4

4
4

u
p
g
ra
d
e

1
0
0

0
0

3
1
0
0

1
0
0

0
9
9

1
0
0

9
7

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

p
m
s/
p
ro
te
in
-i
n
s

1
2

2
1
1

3
1

1
2

3
1

2
1

1
1

1
2

2
2

2

w
p
m
s/
p
ro
te
in
-i
n
s

1
2

2
1
0

3
1

1
2

3
1

2
1

1
1

1
1

1
2

2

p
m
s/
b
cp
-m

sp
1
4
8

9
2

1
0
8

7
7

1
1
0

2
6

7
6

6
7

6
0

1
1
7

6
6

7
1

6
2

8
2

8
3

8
3

8
3

8
3

T
o
ta
l
2
5
4
2

1
1
3
9

1
6
3
7

1
6
9
8

1
7
7
9

1
9
1
8

1
9
7
8

2
0
7
6

2
1
5
2

2
2
5
1

1
7
9
8

1
8
6
2

1
9
4
4

2
0
2
8

2
1
0
3

2
1
1
7

2
1
4
9

2
1
7
0

T
ab
le
3.
3:

In
d
u
st
ri
al
in
st
an
ce
s:

fo
r
ea
ch

of
th
e
co
m
p
et
in
g
so
lv
er
s
an
d
ei
gh
t
ve
rs
io
n
s
of
m
a
x
h
s
,
th
is
ta
b
le
sh
ow

s
th
e
n
u
m
b
er

of
in
st
an
ce
s
so
lv
ed

in
ea
ch

b
en
ch
m
ar
k
fa
m
il
y.

F
or

ea
ch

fa
m
il
y,
th
e
n
u
m
b
er

of
in
st
an
ce
s
in

th
e
fa
m
il
y
is
sh
ow

n
in

co
lu
m
n
`#

'.
T
h
e

n
am

e
of

th
e
fa
m
il
y
b
eg
in
s
w
it
h
ei
th
er

`m
s'
,
`p
m
s'
,
`w
m
s'
or

`w
p
m
s'
w
h
ic
h
in
d
ic
at
es

w
h
et
h
er

or
n
ot

th
e
in
st
an
ce
s
co
n
ta
in

h
ar
d

cl
au
se
s
(`
p
')
an
d
w
h
et
h
er

or
n
ot

th
ei
r
so
ft
cl
au
se
s
h
av
e
n
on
-u
n
if
or
m

w
ei
gh
ts
(`
w
')
.
T
h
e
so
lv
er
s
ar
e
or
d
er
ed

b
y
th
e
to
ta
l
n
u
m
b
er

of
p
ro
b
le
m
s
th
ey

so
lv
e.

Chapter 4

Constraining the Hitting Sets

Chapter 3 introduced the maxhs algorithm, which decomposes the maxsat problem into

a series of sat problems and hitting set problems. The hitting set problems are solved

by expressing them as integer programs and applying a general MIP solver. Neither

the sat solver nor the hitting set problem alone has enough information to solve the

entire maxsat problem. The sat solver does not have any information about the clause

weights, and the MIP solver knows nothing about the original variables and clauses. In

this chapter we consider two ways of strengthening the information available to the MIP

solver. The main observation is that there are additional constraints that the hitting

sets must satisfy in order to really correspond to the maxsat solution. By enforcing

these additional constraints on the hitting set, many minimal hitting sets can be ruled

out without requiring the SAT solver to �nd cores to rule them out. It is hoped that

constraining the hitting set problems will both make the MCHS problems easier to solve,

and reduce the total number of iterations.

In Section 4.1, we de�ne a realizability condition that the hitting sets must satisfy.

However, the MIP solver is ill-suited to enforcing the realizability condition. Then, in

Section 4.2, we show how the b-variable relaxation can be extended with equivalences so

as to allow the SAT solver to produce general clausal constraints, rather than just cores,

75

Chapter 4. Constraining the Hitting Sets 76

over the b-variables. We �nd that this is a more promising approach to constraining the

hitting set problems, because it takes better advantage of the MIP solver.

4.1 Realizable Hitting Sets

Any complete truth assignment partitions the soft clauses of a maxsat instance into two

sets: those that it falsi�es and those that it satis�es. The goal of solving the maxsat

instance is to �nd the truth assignment that minimizes one side of this partition: the

set of falsi�ed soft clauses. The hitting sets returned by the MIP solver can be thought

of as proposing candidate partitions: the clauses in the hitting set should be falsi�ed,

and the rest should be satis�ed. However, the MIP solver is working with incomplete

information, so the partition it proposes may not be achievable by any truth assignment.

For example, if two clauses in the hitting set hs turn out to contain con�icting literals,

no truth assignment will be able to falsify every clause in hs , and therefore this hitting

set can not correspond to a maxsat solution. However, the MIP solver in Algorithm 5

(page 41) does not know about the literals contained in each clause, so it can return

hitting sets with this �aw.

This section shows how more information can be added to the hitting set problem,

in order to prevent hitting sets being generated and obviously can't correspond to a

maxsat solution. This allows some hitting sets to be ruled out without requiring a core

to be produced to rule them out. Experiments show that this can greatly reduce the

total number of cores needed to solve the maxsat instance, and also signi�cantly reduce

the total runtime of the maxsat solver.

The hitting set that causes maxhs to terminate will have the property that it is

possible to falsify every clause in it, while also satisfying all of the hard clauses. A

hitting set that meets these two requirements is called realizable.

De�nition 16 (Realizable). A hitting set hs is realizable in a maxsat problem F if

Chapter 4. Constraining the Hitting Sets 77

Algorithm 7: An algorithm for solving maxsat using constrained hitting sets.

maxhs-realizable
(
F
)

1

Identical to Algorithm 5 except replace2

hs = FindMinCostHittingSet(K)3

by4

hs = FindMinCostRealizableHittingSet(K)5

there exists a truth assignment τ such that (a) for each clause c ∈ hs, τ 6|= c, and (b)

τ |= hard(F). Otherwise hs is said to be unrealizable.

An example of an unrealizable hitting set is one that contains clauses c1, c2 with a

variable x ∈ c1 and ¬x ∈ c2, since all truth assignments satisfy either c1 or c2.

Any time the MCHS solver returns an unrealizable hitting set, at least one more

iteration will be required before maxhs terminates, as shown by the following corollary.

Corollary 1 (Of Theorem 3 on page 40). Let K be a set of cores of F and hs be a

minimum cost hitting set of K. If hs is unrealizable, then F \ hs is unsatis�able.

Proof. For contradiction, suppose π |= F \ hs . Then π |= hard(F) and since hs is

unrealizable, π satis�es some clause in hs . So Fπ the set of clauses falsi�ed by π (a) is

a strict subset of hs and (b) is a hitting set of K. But then cost(Fπ) < cost(hs) which

contradicts the fact that hs is a minimum cost hitting set of K.

Therefore the maxhs algorithm does not gain anything by encountering such unre-

alizable hitting sets. We can modify Algorithm 5 (page 41) to only use minimum cost

realizable hitting sets, as shown in Algorithm 7. Theorem 3, upon which the correctness

of maxhs is based, still holds if minimum cost realizable hitting sets are computed rather

than unconstrained minimum cost hitting sets.

Theorem 4. If K is a set of cores for the maxsat problem F , hs is a realizable hitting

set of K that has minimum cost among all realizable hitting sets of K, and π is a truth

assignment satisfying F \ hs then mincost(F) = cost(π) = cost(hs).

Chapter 4. Constraining the Hitting Sets 78

Proof. mincost(F) ≤ cost(π) ≤ cost(hs) by exactly the same argument as for Theo-

rem 3 on page 40. Furthermore mincost(F) ≥ cost(hs). Suppose for contradiction that

mincost(F) < cost(hs) and let π be a solution to F . Let Fπ be the set of clauses falsi�ed

by π. Then Fπ must be a hitting set of K and since there is a truth assignment π that

falsi�es every clause in Fπ while also satisfying hard(F), Fπ is a realizable hitting set.

But cost(Fπ) = mincost(F) < cost(hs). This is a contradiction since hs is the realizable

hitting set of minimum cost.

Observation 2. Algorithm 7 correctly returns a solution to the inputted maxsat problem

F .

Proof. The proof that Algorithm 5 is correct applies using Theorem 4 in place of Theo-

rem 3.

Realizability and Disjoint Cores Like in our basic maxhs solver, we use a disjoint

core phase before applying Algorithm 7. However, we do not enforce the realizability

condition during the disjoint phase, because it is nontrivial to compute a minimal cost

realizable hitting set even if the cores are disjoint. To see this, note that the realizability

condition involves a SAT test over the hard clauses of the maxsat formula.

4.1.1 Implementing Realizability

In order to implement Algorithm 7, the realizability condition must be enforced by the

hitting set solver. However, the realizability condition involves performing a SAT test to

see if there is a truth assignment that falsi�es all clauses in the hitting set and satis�es

the hard clauses. We believe that a SAT solver is likely to outperform a MIP solver

on this kind of problem, since it involves many logical constraints. We considered three

possible approaches to implementing a search for realizable hitting sets. First, we could

write our own realizable hitting set solver, based on Branch and Bound and incorporating

SAT techniques. Second, we could augment the MIP model of the hitting set problem,

Chapter 4. Constraining the Hitting Sets 79

by introducing the original literals and clauses and relating them to the variables of the

MIP model. Third, we could investigate using the callback interface of cplex so that the

MIP model of the hitting set problem would remain unchanged, but as cplex progressed

we could receive callbacks and verify the realizability condition using SAT techniques.

The second approach involves making the following changes to the cplex model to

enforce the realizability condition. A new 0-1 variable is added to the MIP model for each

of the original variables of F (assume they have the same names as in F). Let xi be the 0-

1 variable of the MIP model that represents soft clause Ci ∈ F , as de�ned in Section 3.5.

We add to the MIP model the clauses {(¬xi ∨ ¬`ij) : `ij ∈ Ci}, translated to linear

constraints as speci�ed before. Together, these constraints say that if xi is set to one,

then the clause Ci is falsi�ed. Finally, we translate all hard clauses to linear constraints

and add them to the MIP model. A solution to the resulting MIP will be a minimum cost

realizable hitting set. However, we point out a potential disadvantage of this approach,

which is that it involves adding all of the original hard clauses of the maxsat instance to

the cplex model. We observed in Section 3.7.2 that cplex has di�culty solving many

maxsat instances especially in the Industrial category, so we believe that adding these

logical constraints to cplex will degrade the overall performance of maxhs.

Of the three possible approaches to enforce the realizability condition, we begin by

trying the �rst option, which is to implement a special-purpose Branch and Bound search.

We do not investigate either of the other two proposed methods. However, as we will

see in the following sections, in addition to realizability we pursue an alternative idea to

constrain the hitting sets. This alternative approach leads to a very robust version of

maxhs. Therefore, we believe that returning to the question of how realizability should

best be implemented is unlikely to be an interesting direction for future work.

We implemented a special-purpose Branch and Bound solver for the �FindMinCostRe-

alizableHittingSet� function in Algorithm 7. The Branch and Bound solver searches for

a minimum cost realizable hitting set by branching on whether or not a clause appears

Chapter 4. Constraining the Hitting Sets 80

in the hitting set. Each node corresponds to a partial hitting set. The cost of the best

realizable hitting set found so far is maintained as the upper bound. At each node, some

reasoning is performed to determine whether a better cost realizable hitting set can exist

below the current node or if instead it is possible to backtrack. The realizability condition

is checked whenever a leaf node is visited, and if the hitting set is realizable it becomes

the new incumbent solution.

Dancing Links The Branch and Bound solver represents the current set of cores K

using the dancing links data structure, which Knuth introduced to solve the Exact Cover

problem1 (Knuth, 2000). As the Branch and Bound search progresses (e.g. adding clauses

to hitting set, hitting cores, and banning other clauses from the hitting set), the dancing

links structure is easily updated and backtracked to represent the current subproblem.

The main advantage of dancing links is that the e�ective size of the data structure changes

in concert with the size of the current subproblem, so that near the leaves the hitting set

representation is much smaller than it is at the root of the search tree. This means that

any reasoning that needs to be performed on the current hitting set problem becomes

cheaper as the search descends deeper, which can signi�cantly reduce the total runtime

since the deepest nodes are also the most numerous.

Subsumptions There are two well known simpli�cation rules for the MCHS problem,

that reduce the size of the problem while preserving at least one of the solutions (Weihe,

1998). The �rst rule removes a set κ if it supersets another set κ′, since hitting κ′ will

also necessarily hit κ. The second rule says that an element c can be removed if there is

another element c′ such that wt(c) ≥ wt(c′) and every set containing c also contains c′.

The �rst rule is still sound for the problem of �nding the minimum cost realizable hitting

set, and so we apply this rule at every node of the Branch and Bound search in order to

simplify the remaining problem. However, it is not sound to apply the second rule when

enforcing the realizability condition, since it is no longer possible to know whether clause

1The Exact Cover problem is equivalent to the MCHS problem, except that each set can only be hit
once.

Chapter 4. Constraining the Hitting Sets 81

c′ is just as good as clause c, since realizability depends on the literals occurring in the

clauses.

Lower Bound Branch and Bound search uses a lower bound calculation to perform

lookahead and possibly prune the subtree below the current node. We use cplex to

calculate the cost of a linear relaxation of the hitting set problem, ignoring the realizability

condition. The linear relaxation is usually e�cient to compute, and provides a good

quality bound. This method provides a sound lower bound on cost of any minimum cost

realizable hitting set extending the current partial hitting set. To see this, �rst recall

that the cost of the linear relaxation of a MIP minimization problem is a lower bound

on the cost of the optimum. We can ignore the realizability condition because the cost

of a MCHS is always less than or equal to the minimum cost realizable hitting set.

SAT Checks As the Branch and Bound solver searches over partial hitting sets, it

interacts with a SAT solver to check if the realizability condition is violated by the

current hitting set. The SAT solver is initialized with just the hard clauses of the original

maxsat formula, hard(F), before Branch and Bound begins. When Branch and Bound

adds a clause to the current hitting set, the negations of its literals are assigned in the

SAT theory. Thus as Branch and Bound adds clauses to the partial hitting set, a partial

assignment π is built up in the SAT solver. This is accomplished by enqueuing the literals

at decision level zero in the SAT solver. Note that if the clauses in the hitting set can

not all be falsi�ed at the same time, then this will be caught immediately since it must

be the case that some literal x has been assigned as well as its negation ¬x.

At each node of Branch and Bound, we use the following procedure to allow early

detection that the hitting set is unrealizable. We ask the SAT solver to perform unit

propagation, which will �nd some consequences of the partial assignment π that are

implied by hard(F). If unit propagation generates a con�ict, it means that there is

no realizable hitting set extending the current partial hitting set. Therefore, if unit

propagation fails the Branch and Bound search can backtrack.

Chapter 4. Constraining the Hitting Sets 82

If the Branch and Bound search reaches a leaf node, all cores have been hit. We know

that the clauses in the hitting set can all be falsi�ed because of the unit propagation

checks that have been performed at each node along the current path. However, we are

not sure that the current assignment π can be extended to a solution of hard(F), since

only unit propagation has been applied and not a full SAT check. So at each leaf node,

we ask the SAT solver to solve the hard clauses, by extending the partial assignment π. If

the SAT solver �nds a solution, it shows that the hitting set is realizable, and otherwise

the hitting set is unrealizable.

Future Work There are still a number of possible improvements to the Branch and

Bound search that could be implemented, such as OR-Decomposition (Kitching and

Bacchus, 2008), caching, and alternate lower bounding techniques like Lagrangian relax-

ation (Wolsey, 1998).

4.1.2 Experiments with Realizability

Our Branch and Bound hitting set solver is much slower than cplex. However, on some

problems the ability to enforce the realizability condition makes up for the ine�ciency

of our implementation. We report interesting results obtained from some experiments

on instances from the 2009 maxsat Evaluation. We found four benchmark families for

which enforcing the realizability condition paid o�. In particular, Algorithm 7 solves

44 instances that Algorithm 5 can not solve. These instances are shown in Table 4.1,

which lists the number of instances solved by Algorithm 7 (column `#'), the average

cost of their optima (column `Avg OPT'), the average number of iterations Algorithm 5

performed before the timeout of 1200 seconds, and the number of iterations and runtime

for Algorithm 7. Observe that the number of iterations that Algorithm 7 requires to

solve the problem is usually signi�cantly fewer than Algorithm 5 performs, even though

Algorithm 5 fails to solve these instances. This demonstrates that constraining the hitting

sets to be realizable can sometimes reduce the number of iterations enough to signi�cantly

Chapter 4. Constraining the Hitting Sets 83

Avg Alg. 5 Alg. 7
Family # OPT Iter Iter Time

ms/Sean 4 1 13 67 434

pms/bcp-msp 26 99 460 121 204

pms/bcp-mtg 13 8 2198 757 258

pms/bcp-syn 1 6 80 53 295

Table 4.1: Results on instances Algorithm 7 can solve within 1200 s but Algorithm 5
cannot.

improve the total runtime required to solve the problem.

In Table 4.2, more detailed results are presented on 13 instances from the Industrial

partial maxsat family bcp-syn. These maxsat instances share a common structure: all

of their hard clauses contain only positive literals, and all of their soft clauses are unit

clauses containing negative literals. Thus, the original maxsat instances themselves

represent MCHS problems. These problems have reasonably large optima, requiring

between 17 and 287 clauses to be relaxed. None of the existing maxsat solvers we

experimented with (i.e., the set used in Section 3.7) could solve these problems within

the timeout, and furthermore these instances were not solved by any solver in the 2009

and 2010 maxsat Evaluations. However, cplex is able to solve each of these problems

quite quickly, as shown in column �cplex Time�. The table also shows the results of

using maxhs with and without the realizability condition. Algorithm 7 as described in

Section 4.1.1 is shown in columns �Alg. 7 - B&B�, and Algorithm 5 with cplex for the

hitting set solver is shown in columns �Alg. 5 - cplex�. We also experimented with a

version of our Branch and Bound solver that does not enforce the realizability condition,

and the results are shown in columns �Alg. 5 - B&B�. For each version of the algorithms,

and each instance, the number of iterations, the average time to solve the hitting set

problems (columns `HS'), and the total runtimes are given in the table. The table also

shows some information about the size of the hitting set problems encountered. Column

`|Core|' reports the average number of clauses in the cores. Column `MxN' reports the

average dimensions of the hitting set problem given to cplex after the subsumption

Chapter 4. Constraining the Hitting Sets 84

rules (de�ned in Section 4.1.1) have been applied. The value `M' is the average number

of cores in the hitting set problems, and `N' is the average size of the cores in the hitting

set problems. The `Nodes' columns give the average number of nodes searched by B&B

while solving the hitting set problems. The time the SAT solver takes to generate each

core is always less than 0.02 seconds, so this time is not included in the table.

We can observe that the maxhs approach is better suited to the structure of the

MCHS problem than any existing maxsat solvers. The cores of a MCHS problem cor-

respond to the sets to hit. That is, every set to hit κ is speci�ed by a hard clause in the

maxsat instance. So if the maxsat instance contains a hard clause (x, y, z) representing

set κ, then the soft clauses {(¬x), (¬y), (¬z)} are a minimal core corresponding to κ. The

SAT solver will discover these cores one at a time and pass them to cplex. Eventually,

the cplex model will grow to encompass the entire original MCHS problem, at which

point the hitting set returned by cplex will correspond to the maxsat solution. The

number of cores that must be passed to cplex should be no more than the number of

sets to hit in the original MCHS problem, i.e. the number of hard clauses. So the number

of iterations of maxhs should only be linear, and each iteration will be e�cient if cplex

performs well on the original hitting set problem. We can see from Table 4.2 that the

number of cores required by maxhs is always less than the number of hard clauses in

each instance (column �# Hard�), as expected.2

However, the realizability condition does not have any a�ect on these maxsat prob-

lems that encode MCHS. This is because every hitting set is realizable: falsifying the

clauses in the hitting set only sets variables to true, and such an assignment can always

be extended to a solution to the hard clauses since the hard clauses only contain positive

literals. This explains why Algorithm 7 does the worst of the three maxhs algorithms on

the set of instances in Table 4.2; there is no compensation for the overhead of checking

2Note that in an instance of the MCHS problem, it may be possible to remove some of the sets to hit
without changing the solution to the MCHS instance. This explains why the number of cores required
by maxhs can be signi�cantly less than the number of hard clauses in the maxsat instance.

Chapter 4. Constraining the Hitting Sets 85

cplex Alg. 5 - cplex Alg. 5 - B&B Alg. 7 - B&B
Instance # Hard OPT Time Iter |Core| MxN HS Time Iter Nodes HS Time Iter Nodes HS Time

saucier.r 116 6 219 80 2885 40x2167 15 - 3 1195 - 53 5 5 295

300_10_20 100 17 4 96 14 48x147 1 148 94 14 1 142 97 17 1 152

300_10_14 100 19 0 93 11 46x130 0 35 89 12 0 46 88 16 0 37

300_10_15 100 19 4 99 12 49x144 0 62 95 13 1 106 96 17 1 134

300_10_10 100 21 0 95 9 47x119 0 13 95 14 0 47 95 18 0 42

ex5.r 690 37 3 285 28 132x294 0 116 281 24 4 1187 260 46 5 -

ex5.pi 718 65 3 304 25 137x267 0 72 301 23 3 924 271 50 2 511

test1.r 305 110 0 278 6 119x176 0 3 277 9 0 17 271 85 0 67

bench1.pi 364 121 0 330 8 149x290 0 25 331 28 1 298 328 113 1 264

max1024.r 964 245 2 747 5 323x377 0 153 734 28 1 1016 635 179 2 -

max1024.pi 978 259 3 724 5 310x358 0 200 720 25 2 - 663 187 2 -

prom2.r 1610 278 0 935 6 385x498 0 61 968 21 0 717 733 225 2 -

prom2.pi 1619 287 0 914 6 372x484 0 40 966 26 1 846 747 249 2 -

Table 4.2: Detailed results on 13 instances from the industrial PMS bcp-syn family. `-'
in the Time columns indicates timeout after 1200 seconds.

the realizability condition.

4.2 Non-Core Constraints

In this section we propose an alternative paradigm for constraining the hitting sets used

by maxhs. In the previous section we observed that the logical structure of the soft

and hard clauses of the original maxsat formula impose many constraints on how the

soft clauses can be falsi�ed. Section 4.1 introduced the realizability condition to express

such constraints. However, we will show that the realizability condition does not capture

all of the possible constraints on the hitting sets. In this section we show how more of

these constraints can be learned by the SAT solver, and enforced by the MIP solver. In

contrast to the realizability condition, the constraints we introduce in this section are

e�ciently handled by cplex. Unlike the constraints discovered by the SAT solver in

Chapter 3, these constraints do not correspond to cores; hence we will call the additional

constraints non-core constraints. It can be noted that core constraints always contain

only positive b-variables, indicating that at least one of the corresponding soft clauses

Chapter 4. Constraining the Hitting Sets 86

must be falsi�ed. In contrast, non-core constraints will be clauses over the b-variables

that contain at least one negative b-variable.

Recall that maxhs uses b-variables with the assumption mechanism of the SAT solver

to generate cores, and the b-variables are also used by the MIP model to represent the

hitting set problem. The technique we propose relies on strengthening the relationship

between the b-variables and the original clauses they relax, to capture the full meaning

of the b-variables: setting one to true is equivalent to falsifying its corresponding clause.

By augmenting the b-variable relaxation with these equivalences, the SAT solver can

be utilized to learn more general conditions on how the soft clauses can be falsi�ed,

conditions that are not expressible using core constraints or realizability alone.

4.2.1 b-variable Equivalences

Many sound constraints exist over the b-variables that do not take the form of core

constraints, as illustrated by the following example.

Example 5. Let F = {(x), (¬x), (x, y), (¬y), (¬x, z), (¬z, y)} where each clause has

weight 1. F b is therefore the set of clauses {(b1, x), (b2,¬x), (b3, x, y), (b4,¬y), (b5,¬x, z),

(b6,¬z, y)}. Suppose that the three cores κ1 = {(x), (¬x)}, κ2 = {(¬x), (x, y), (¬y)},

and κ3 = {(x, y), (¬y), (¬x, z), (¬z, y)} have been found. These cores correspond to the

core constraints K = {(b1, b2), (b2, b3, b4), (b3, b4, b5, b6)}. We see that to satisfy these core

constraints at least two b-variables must be set to true, and at least two soft clauses will

be falsi�ed by the maxsat solution. When cplex searches for a MCHS of K, as soon

as b1 is assigned, ¬b2 could be inferred because it is impossible to falsify both (x) and

(¬x) at the same time. Similarly, whenever ¬b2 is assigned we could obtain ¬x and b1

by unit propagation in F b ∪ K. However, we do not detect that ¬b5 must hold as well

since its soft clause is now satis�ed. These two examples demonstrate that in addition

to the core constraints K, F b also implies the constraints (¬b1,¬b2) and (b2,¬b5). If

these constraints could be discovered automatically, then the search for a MCHS could be

Chapter 4. Constraining the Hitting Sets 87

further constrained and potentially made more e�cient.

This example shows that the realizability condition does not capture all sound con-

straints over the b-variables. Although the realizability condition would enforce the �rst

non-core constraint in Example 5, (¬b1,¬b2), it would not capture the second, (b2,¬b5).

Therefore, we must look beyond the realizability condition for techniques to discover

non-core constraints that the b-variables must satisfy.

Example 5 indicates that although the b-variables of F b are intended to represent

the soft clauses of F this correspondence is not strictly enforced by F b. That is, F b

admits models (satisfying truth assignments) that unnecessarily set b-variables to true

even when the corresponding soft clause is satis�ed. Proposition 7 shows, however, that

minimum cost models of F b do obey a stricter correspondence of equivalence between

the b-variable settings and the soft clauses satis�ed. Since maxsat solving involves

searching for minimum cost models, a natural and simple modi�cation to F b is to force

the b-variables to be equivalent to the negation of their corresponding soft clauses.

De�nition 17 (F beq). Let F be a maxsat formula. Then

F beq = F b ∪
⋃

ci∈soft(F)

{(¬bi,¬`) : ` ∈ ci}

is the relaxed SAT instance of F with b-variable equivalences.

It is possible to de�ne a correspondence between the truth assignments for F and the

truth assignments for F beq.

De�nition 18 (πb). If π is a truth assignment to the variables of F , πb is the truth

assignment to the variables of F beq, where

πb = π ∪ {¬bi : π |= ci, ci ∈ soft(F)} ∪ {bi : π 6|= ci, ci ∈ soft(F)}.

If πb is a truth assignment to the variables of F beq, then π denotes the truth assignment

Chapter 4. Constraining the Hitting Sets 88

to the variables of F that is πb restricted to the variables of F .

In this de�nition πb is constructed so that it assigns each b-variable a truth value

equivalent to the negation of the truth value π assigns to the corresponding soft clause.

Thus πb models the b-variable equivalences. Under this mapping there is a 1-1 correspon-

dence between the models of F beq and the models of hard(F).

Proposition 9. Let π be a truth assignment to the variables of F . Then π |= hard(F)

if and only if πb |= F beq.

Proof. Suppose π |= hard(F). Consider a clause in F beq, we show that it is satis�ed by

πb. There are two cases depending on whether the clause also appears in F b or if it is

one of b-variable equivalence clauses. If the clause also appears in F b, and it does not

contain a b-variable, then it is an original hard clause and is therefore satis�ed by π and

by πb. Otherwise, the clause is of the form Ci∪{bi} and either it is satis�ed by πb because

π |= Ci, or if π 2 Ci, then it is satis�ed by πb because by the de�nition of πb if π 2 Ci

then πb assigns bi to true. In the second case, the clause in F beq is of the form {¬bi,¬`}

for some original literal ` ∈ Ci. Suppose that {¬bi,¬`} is falsi�ed by πb. Then πb assigns

bi to true, and by the de�nition of πb it must be the case that π 2 Ci. But then π |= ¬`

which satis�es the clause and thus we have reached a contradiction. So in every case, we

have shown that πb satis�es the clause of F beq. Therefore πb |= F beq.

On the other hand, if πb |= F beq then we immediately have that π |= hard(F) since

hard(F) ⊆ F beq. So we have proven that π |= hard(F) if and only if πb |= F beq.

Proposition 10. Let π and πb be two truth assignments de�ned according to De�ni-

tion 18. If πb |= F beq then cost(π) = bcost(πb).

Proof. The sum of the weights of the clauses corresponding to the b-variables set to true

in πb make up bcost(πb). Since πb |= F beq, by Proposition 9 we know that π |= hard(F)

and therefore cost(π) is equal to the sum of the weights of the soft clauses of F falsi�ed

Chapter 4. Constraining the Hitting Sets 89

by π. By De�nition 18, the b-variables set to true by πb are exactly those that correspond

to the soft clauses of F falsi�ed by π. Therefore, cost(π) = bcost(πb).

Proposition 11. π is a solution for the maxsat formula F if and only if πb achieves

minimum bcost over all satisfying truth assignments for F beq.

Proof. This follows immediately from Proposition 10. Every satisfying assignment for

F beq gives an assignment for F that has equal cost. Thus the maxsat solution has cost at

most the cost of the minimal bcost assignment for F beq. On the other hand, the maxsat

solution can not have strictly smaller cost than this, since if it did then the maxsat

solution could be extended to a satisfying assignment of F beq with equal bcost .

Proposition 11 shows that the maxsat instance F can be solved by searching for a

bcost minimal satisfying assignment to F beq.

4.2.2 maxhs with Non-Core Constraints

The extension of Algorithm 5 (page 41) to utilize non-core constraints is conceptually

simple. The encoding F beq is simply substituted for the weaker encoding F b. Now since

in F beq the b-variables are no longer pure, the SAT solver can return both core and non-

core constraints. Each constraint is passed to the MIP solver which operates as before.

(A copy of the learnt constraint is also kept by the SAT solver because it should help

the SAT solver to prune the search space in future invocations). The resulting modi�ed

version of Algorithm 5 is shown in Algorithm 8.

Initially, the set of b-variable constraints (clauses), K, is empty (line 2). The objective

function is de�ned on line 3 as the sum of the clause weights for b-variables that are

assigned true. On line 5, an assignment to the b-variables, A, is calculated that satis�es

the current constraints K and minimizes the value of the objective function obj . This

setting of the b-variables is passed as the set of assumptions to the SAT solver on line 6,

along with the SAT instance F beq. If the SAT solver returns unsat, κ will be a clause

Chapter 4. Constraining the Hitting Sets 90

Algorithm 8: A maxsat algorithm that exploits non-core constraints.

maxsat-solver
(
F
)

1

K = ∅2

obj = wt(ci) ∗ bi + . . .+ wt(ck) ∗ bk3

while true do4

A = Optimize(K,obj)5

(sat?,κ) = AssumptionSatSolver(F beq,A)6

; // If sat, κ contains the satisfying truth assignment.
; // If unsat, κ contains a clause over b-variables.
if sat? then7

break ; // Finished, κ is a maxsat solution.8

// Add new constraint to the optimization problem
K = K ∪ {κ}9

// And to the SAT formula for better performance
F beq = F beq ∪ {κ}10

return
(
κ, bcost(κ)

)
11

over negated literals from A. This constraint is added to K on line 9 and the process

iterates until the SAT solver reports a solution.

Theorem 5. Algorithm 8 returns a solution to the inputted maxsat problem F .

Proof. First, observe that if the κ returned by the SAT solver at line 6 is a clause then

F beq |= κ. Furthermore, if κ is a satisfying assignment then bcost(κ) is equal to the

sum of the costs of the true b-variables in A, the solution returned by the optimizer at

line 5. This follows from the fact that κ extends A which has already set all of the

b-variables. Let κ be the satisfying truth assignment causing the algorithm to terminate.

All satisfying assignment of F beq satisfy the constraints in K as each of these is entailed

by F beq. Furthermore, bcost(κ) is equal to the cost of an optimal solution to these con-

straints, thus κ achieves minimal bcost over all satisfying truth assignments for F beq, and

by Proposition 11 κ restricted to the variables of F is a maxsat solution for F .

Second, observe that each iteration except the �nal one adds a constraint to K that

eliminates at least one more setting of the b-variables. Since there are only a �nite number

of di�erent settings, the algorithm must eventually terminate.

Chapter 4. Constraining the Hitting Sets 91

The key di�erence with Algorithm 5 is that the optimizer no longer deals with pure hit-

ting set problems as the constraints can now contain negative b-variables. This means that

non-core constraints change the paradigm of maxhs from an implicit hitting set problem.

It now becomes more like a logic based Benders decomposition approach (Hooker, 2007).

In particular, the optimization problem is being solved only over the b-variables while the

SAT solver is being used to add additional constraints to the optimization model until

the solution also satis�es the feasibility conditions. Although cplex is no longer solving

a hitting set problem, it remains very e�ective in the presence of non-core constraints.

4.2.3 Seeding cplex with Constraints

Each call to cplex's solve routine incurs some overhead so it is desirable to reduce the

number of calls to cplex. One way to accomplish this is by �seeding� the MIP model with

a number of initially computed b-variable constraints. In this way each candidate solution

(setting of the b-variables) returned by cplex is more informed about the constraints of

the problem and thus more likely to be a true solution. We perform seeding after the

disjoint core phase, but before the iterations of Algorithm 8 begin. Below, we describe

several techniques to cheaply identify such additional b-variable constraints.

Equivalence Seeding: In F beq, literals that appear in soft unit clauses of F are actually

logically equivalent to their b-variables. To see this, recall that if ci = (x) ∈ soft(F) is

a soft unit clause, then F beq will contain clauses (x, bi) and (¬bi,¬x). These two clauses

together imply that bi ≡ ¬x. For a clause c of F b, if each variable in c has an equivalent b-

variable (or is itself a b-variable), then we can derive a new constraint from c by replacing

every original variable by its equivalent b-variable. This constraint is a clause over the

b-variables that can be added to cplex.

Example 6. In Example 5, b1 ≡ ¬x due to the soft unit clause (x) and its relaxation by

b1. Similarly, b4 ≡ y. Therefore, from the relaxed clause (b3, x, y) ∈ F b we can obtain the

Chapter 4. Constraining the Hitting Sets 92

b-variable constraint (b3,¬b1, b4) by simply substituting the equivalent b-variable literals

for the original literals.

Implication Seeding: In F beq, each of the b-literals may imply other b-literals. We

perform a trial unit propagation on each b-literal bi in order to collect a set of implied

b-literals imp(bi) = {b1i , ..., bki }. This represents a conjunction of k binary clauses bi → bji

(1 ≤ j ≤ k) over the b-variables. Although these k clauses could be individually added

to cplex we can in fact encode their conjunction in a single linear constraint that can

be given to cplex:

−k × bi + b1i + · · ·+ bki ≥ 0

Note that these are b-literals, so as is standard a negative literal b is encoded as (1−var(b))

and a positive literal is encoded as var(b) (Section 3.7). To understand this constraint

note that if bi is true (equal to 1) then all of the bji literals must be 1 to make the sum

non-negative.

Implication+Reverse Seeding: During the trial unit propagation of each b-literal

bi, we can also keep track of every original literal that is found to be implied by bi in

order to obtain sets of reverse implications: rev(x) ⊆ {bi : F beq ∧ bi |= x}. Then, for each

clause ci ∈ F b, we check if each of its original literals x ∈ ci has a non-empty rev(¬x).

If so, a b-literal b¬x ∈ rev(¬x) is chosen for each x and its negation ¬b¬x is substituted

for x in ci. The result is a new clause containing only b-variables that can be added to

cplex. It is easy to see that this clause is sound by considering the following example.

Example 7. Suppose that (x, y, b1) ∈ F beq where x, y are original variables and b1 is a

relaxation variable. Suppose that b¬x ∈ rev(¬x) and b¬y ∈ rev(¬y). This means that

clauses (¬b¬x,¬x) and (¬b¬y,¬y) are implied by F beq. Therefore (¬b¬x,¬b¬y, b1), which

can be obtained in two resolution steps, is also implied by F beq and can be added to cplex.

Since the b-literal implications imp(bi) are also available, we can add the Imp-Seeding

Chapter 4. Constraining the Hitting Sets 93

constraints as well if we are computing the Rev-Seeding constraints. Note that if b ≡ x,

as in Eq-Seeding, we obtain at least as many seeded constraints as would be obtained

by Eq-Seeding. If rev(¬x) contains more than one b-literal, we could choose any one of

them to form the new clause. We simply use an equivalent b-literal if one exists, and

otherwise we choose the �rst b-literal that was found to imply ¬x. In future work we

could investigate di�erent ways of choosing the member of rev(¬x), or methods for using

them all.

4.2.4 Implementation

The implementation of Algorithm 8 is based on the implementation of Algorithm 5. Here,

in the initial disjoint core phase (see Section 3.5), the SAT solver considers only F b and

can ignore the b-variable equivalences. After the disjoint core phase, the b-variable equiv-

alences are added to the SAT instance to obtain F beq. After the b-variable equivalences

are added to the SAT formula, cplex is seeded with any b-variable constraints obtained

from the input clauses (Section 4.2.3).

4.2.5 Experimental Results

In this section we examine the empirical behaviour of Algorithm 8 and the various kinds of

seeding described in Section 4.2.3. The experimental setup is the same as in Section 3.7.

All of the techniques introduced in this chapter were implemented on top of the best

version of maxhs from the previous chapter, maxhs-min-disj-inv-del. Therefore, we will

omit the designations �min-disj-inv-del� when naming the versions of maxhs that include

techniques from the current chapter. We report results with �ve versions of maxhs that

use Algorithm 8 and di�erent types of seeding described in Section 4.2.3. The �ve versions

are listed in Table 4.3.

Overall Performance

We compare the overall performance of the di�erent solvers in terms of the number of

Chapter 4. Constraining the Hitting Sets 94

maxhs Min Disjoint Invert Delete Non-Cores Equiv Implication Reverse
Version Cores Phase Activity Learnts (Alg. 8) Seeding Seeding Seeding

maxhs-noncore X X X X X
maxhs-noncore-eq X X X X X X
maxhs-noncore-imp X X X X X X
maxhs-noncore-rev X X X X X X
maxhs-noncore-imp-rev X X X X X X X X

Table 4.3: The �ve versions of maxhs that we evaluate in this chapter.

problems they solve within the time limit. The overall results are shown in two cactus

plots. The �rst plot, Figure 4.1, compares the competing solvers and the best version

of maxhs from the previous chapter with the best version of maxhs from this chapter,

maxhs-noncore-eq. The second plot, Figure 4.2 shows the results for each of the �ve

new versions of maxhs, and the best version of maxhs from the previous chapter for

reference.

We observe that seeding cplex with constraints is very bene�cial to the performance

of maxhs. Indeed, the best version, maxhs-noncore-eq, outperforms cplex and all other

maxsat solvers, as shown in Figure 4.1. The techniques introduced in this chapter move

the overall performance of the maxhs approach from behind the top three maxsat

solvers to well in front of them. These results con�rm that giving more information

to cplex allows maxhs to bene�t from the excellent performance of cplex on some

maxsat instances that was observed in Section 3.7.2.

The results in Figure 4.2 show the overall performance of the various seeding poli-

cies. It appears that Algorithm 8 is actually slightly less robust than Algorithm 5 from

Chapter 3. The boost in performance only occurs when some type of seeding is also em-

ployed. Among the four di�erent types of seeding, we see that in general the policies that

identify more constraints to seed cplex with work better. That is, maxhs-noncore-imp-

rev solves more problems than maxhs-noncore-rev or maxhs-noncore-imp. However,

maxhs-noncore-eq is even a bit better than maxhs-noncore-imp-rev, even though the

seeding performed by maxhs-noncore-imp-rev should subsume that done by maxhs-

noncore-eq as explained in Section 4.2.3.

Chapter 4. Constraining the Hitting Sets 95

1500 2000 2500 3000 3500

0
20

0
40

0
60

0
80

0
10

00
12

00

Instances Solved

T
im

e
(s

)

sat4j 2381

akmaxsat 2560

wbo 2587

wpm2v1 2655

wpm2v2 2751

MaxHS−min−disj−inv−del 2996

wpm1 3097

bincd 3106

minimaxsat 3130

cplex 3249

MaxHS−noncore−eq 3257

Figure 4.1: Runtime results for the competing solvers, the overall best version of maxhs
from Chapter 3 (maxhs-min-disj-inv-del) and the overall best version of maxhs with
non-cores and seeding (maxhs-noncore-eq). Shows how many problems were solved
within each time limit. The total number of instances solved is given in the legend after
the solver's name.

Chapter 4. Constraining the Hitting Sets 96

1500 2000 2500 3000 3500

0
20

0
40

0
60

0
80

0
10

00
12

00

Instances Solved

T
im

e
(s

)

MaxHS−noncore 2966

MaxHS−min−disj−inv−del 2996

MaxHS−noncore−imp 3145

MaxHS−noncore−rev 3204

MaxHS−noncore−imp−rev 3240

MaxHS−noncore−eq 3257

Figure 4.2: Runtime results for the overall best version of maxhs from Chapter 3
(maxhs-min-disj-inv-del) and �ve versions of maxhs with non-cores and seeding. Shows
how many problems were solved within each time limit. The total number of instances
solved is given in the legend after the solver's name.

Tables 4.4 and 4.5 show the number of problems solved broken down by benchmark

family and Crafted vs. Industrial categories. We observe that seeding helps on both

Crafted and Industrial instances, and that the maxhs approach is usually able to solve

a good number of instances in every benchmark family. Thus the maxhs approach with

non-core constraints and seeding appears to work well on many di�erent types of prob-

lems. These results also show that the best method of seeding varies considerably for

di�erent problems. This suggests that it is possible to develop even better techniques to

determine which constraints to seed cplex with, and how many.

Chapter 4. Constraining the Hitting Sets 97

Trade-o�s in maxhs

Next, we focus on the behaviour of maxhs when the techniques of non-core con-

straints and seeding are employed. As described in Section 3.7.2, we collected statistics

from the runs of each version of our solver on each instance, including the number of calls

to cplex's solve routine, the total time spent by cplex in calls to its solve routine, the

total time spent in minisat, and the cost of the last lower bound. In Figures 4.3-4.8,

we compare versions of maxhs along four dimensions: the runtime on each instance, the

cplex time per cplex call, the SAT time per cplex call, and the increment in the cost

of the lower bound per cplex call. All 4502 instances appear in each of these graphs,

although the number of data points sometimes appears to be fewer because they overlap.

The main observation from these graphs is that the e�ect of seeding is to signi�cantly

increase the increment in the lower bound per call to cplex. We see in Figures 4.4- 4.6(b)

that the lower bound increment per cplex call is always above the 45◦ line. This means

that the constraints we seed cplex with are actually very informative, as we hoped. The

seeded constraints help to immediately rule out many lower cost assignments that cplex

would otherwise return. However, the size of the cplex models is also signi�cantly larger

due to the initial seeding, and as might be expected, this does increase the time to solve

each cplex problem (see Figures 4.4-4.8(d)). Yet the amount of time spent in SAT

solving is not signi�cantly a�ected either by using non-core constraints, or by seeding

(Figures 4.3-4.8(c)).

Overall, these results show that our method of seeding cplex with constraints allows

very informative constraints to be added to the cplex problem, without requiring ad-

ditional calls to the SAT solver. Even though the cplex problems get harder to solve,

fewer calls to cplex are necessary because the seeded constraints rule out many low-cost

assignments immediately. These results also show that seeding tends to make the cplex

Chapter 4. Constraining the Hitting Sets 98

models harder to solve, and sometimes a previously solvable instance becomes impossi-

ble to solve within the time limit (although the opposite occurs more frequently). This

explains in part why the weakest type of seeding (Equivalence seeding, implemented in

maxhs-noncore-eq) ends up solving slightly more problems overall than the most exten-

sive form of seeding (Implication+Reverse seeding, implemented in maxhs-noncore-imp-

rev). Clearly, in future work better methods for deciding which level of seeding to apply

on an instance speci�c basis could result in considerable performance gains.

4.3 Conclusions

In this chapter we were motivated by observing that the maxsat problem imposes many

additional constraints on the solutions to the hitting set problems. These constraints

no longer take the form of cores, so we showed how maxhs can learn such non-core

constraints via a natural modi�cation to the SAT formulas. By adding more of these

constraints to the cplex model, many low-cost assignments that cplex would otherwise

return are eliminated.

Furthermore, we showed how to use the logical relationship between the relaxation

variables and the original clauses in order to quickly identify many non-core constraints

that we can use to seed the cplex model. This technique leads to dramatic performance

improvements. The resulting version of our solver, maxhs-noncore-eq, solves more prob-

lems than any other maxsat solver including cplex itself. The robustness of the maxhs

approach is also signi�cantly improved.

The ideas proposed in this chapter raise one main open question. The use of b-

variable equivalences and more general clausal constraints over them sets the stage for

an investigation into how the two solvers (MIP and SAT) should best be combined. For

example, in the current algorithm, the two solvers communicate over a restricted shared

language consisting of only the b-variables, but we could consider expanding this language

Chapter 4. Constraining the Hitting Sets 99

to include some or all of the original variables. Another example is that in the current

algorithms, the cplex model contains mostly clausal constraints (except if seeding is

used). Investigating ways to further exploit the ability of the MIP solver to handle

general linear constraints could lead to a more powerful hybrid optimization solver.

In addition, non-core constraints with b-variable equivalences bring the maxhs solver

much closer to a Benders Decomposition approach. This gives rise to a number of ques-

tions about exactly where the division of labour should lie between the optimization

solver and the feasibility solver. Future work may investigate other ways of dividing the

work between these two solvers with the aim of improving overall performance.

Chapter 4. Constraining the Hitting Sets 100

Family # mini maxhs maxhs maxhs maxhs maxhs maxhs

ch3 noncore noncore noncore noncore noncore

imp eq rev imp

rev

ms/spinglass/ 20 20 0 0 0 0 0 0

wms/kexu/frb-wcnf/ 35 15 10 10 10 20 20 18

pms/csp/sparseloose 20 20 20 11 10 11 10 10

wpms/pb/factor/ 186 186 186 186 186 186 186 186

pms/csp/denseloose 20 20 10 0 0 0 0 0

KnotPipatsrisawat 350 117 61 53 69 52 41 64

pms/queens 7 7 5 3 3 3 3 3

wpms/aucregions 84 84 35 35 84 84 84 84

ms/cut/spinglass 5 3 1 1 1 1 1 1

pms/jobshop 4 2 4 4 4 3 4 4

wpms/planning 71 71 69 71 71 71 71 71

pms/maxone/struc 60 60 46 55 55 60 58 60

ms/ramsey 48 35 34 34 33 34 34 33

pms/clique/rand 96 96 4 4 96 96 96 96

wms/cut/spinglass 5 4 1 1 1 1 1 1

wpms/pb/miplib 16 5 7 7 7 7 7 7

wms/ramsey 48 37 34 35 34 35 35 34

ms/cut/dimacs 62 48 4 4 4 4 4 4

wpms/aucsched 84 84 81 82 84 84 84 84

ms/bip-cut-140-630 100 83 0 0 0 0 0 0

wpms/min-enc/warehouses 18 2 1 2 18 18 18 18

pms/min-enc/kbtree 54 22 12 11 11 15 16 15

wpms/aucpaths 88 88 88 88 88 88 88 88

pms/csp/sparsetight 20 20 0 0 0 0 0 0

wpms/spot5log 21 4 6 6 6 6 6 6

pms/maxone/3sat 80 80 25 35 34 80 80 80

wms/cut/rand 40 40 0 0 0 0 0 0

wpms/QCP 25 20 25 25 25 25 25 25

pms/clique/struc 62 36 10 10 33 29 33 32

wms/cut/dimacs 62 55 3 3 3 3 3 3

ms/cut/rand 40 40 0 0 0 0 0 0

wpms/min-enc/planning 56 56 54 56 56 56 56 56

pms/frb 25 5 0 0 5 8 9 10

wpms/spot5dir 21 3 6 6 6 6 6 6

pms/csp/densetight 20 20 0 0 0 0 0 0

pms/pb/garden 7 5 5 5 5 6 6 6

Total 1960 1493 847 843 1042 1092 1085 1105

Table 4.4: Crafted instances: results for the best competing solver on Crafted instances
(minisat), the overall best version of maxhs from Chapter 3 (maxhs-ch3 which is
maxhs-min-disj-inv-del), and �ve versions of maxhs with non-core constraints and seed-
ing. The table shows the number of instances solved in each benchmark family. For each
family, the number of instances in the family is shown in column `#'. The name of
the family begins with either `ms', `pms', `wms' or `wpms' which indicates whether or
not the instances contain hard clauses (`p') and whether or not their soft clauses have
non-uniform weights (`w'). The solvers are ordered by the total number of problems they
solve.

Chapter 4. Constraining the Hitting Sets 101

Family # bincd maxhs maxhs maxhs maxhs maxhs maxhs

ch3 noncore noncore noncore noncore noncore

imp rev imp eq

rev

haplo-ped 100 23 46 29 29 28 29 28

pb-nencdr 128 116 109 106 106 103 106 104

pms/bcp-mtg 215 215 214 212 212 212 212 212

wpms/up-u98 80 79 80 80 80 80 80 80

ms/Safar 112 71 34 14 0 34 13 33

pms/pb/primes 86 76 74 76 79 76 80 80

pms/bcp-syn 74 45 67 65 71 66 71 71

pms/circtracecomp 4 4 0 0 0 0 0 0

pms/hap-asmbly 6 0 5 5 5 5 5 5

pb-nlogencdr 128 128 118 111 109 111 109 111

pms/bcp-�r 59 55 18 18 18 18 18 18

pms/pbo-rout 15 15 15 13 13 13 13 13

pms/pseudo/rout 15 15 15 15 15 15 15 15

aes 7 1 1 1 2 1 2 2

timetabling 32 12 6 7 8 8 7 8

pms/bcp-hipp 1183 1164 1140 1142 1141 1142 1141 1142

pms/pb/logic-syn 17 7 16 16 16 16 16 16

ms/circdebug 9 7 4 1 1 4 1 3

upgrade 100 97 100 100 100 100 100 100

pms/protein-ins 12 2 2 1 1 1 1 1

wpms/protein-ins 12 2 2 2 2 2 2 2

pms/bcp-msp 148 117 83 89 111 88 114 121

Total 2542 2251 2149 2103 2119 2123 2135 2165

Table 4.5: Industrial instances: results for the best competing solver on Industrial
instances (bincd), the overall best version of maxhs from Chapter 3 (maxhs-ch3 which
is maxhs-min-disj-inv-del), and �ve versions of maxhs with non-core constraints and
seeding. The table shows the number of instances solved in each benchmark family. For
each family, the number of instances in the family is shown in column `#'. The name
of the family begins with either `ms', `pms', `wms' or `wpms' which indicates whether or
not the instances contain hard clauses (`p') and whether or not their soft clauses have
non-uniform weights (`w'). The solvers are ordered by the total number of problems they
solve.

Chapter 4. Constraining the Hitting Sets 102

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj−inv−del: Time

M
ax

H
S

−
no

nc
or

e:
 T

im
e

(a) Runtime

0 500000 1000000 1500000 2000000 2500000 3000000

0
50

00
00

15
00

00
0

25
00

00
0

MaxHS−min−disj−inv−del: LB Incr per CPLEX Call

M
ax

H
S

−
no

nc
or

e:
 L

B
 In

cr
 p

er
 C

P
LE

X
 C

al
l

(b) LB Increment per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj−inv−del: SAT Time per CPLEX Call

M
ax

H
S

−
no

nc
or

e:
 S

AT
 T

im
e

pe
r

C
P

LE
X

 C
al

l

(c) SAT Time per CPLEX Call

0 2 4 6 8

0
2

4
6

8

MaxHS−min−disj−inv−del: CPLEX Time per Call

M
ax

H
S

−
no

nc
or

e:
 C

P
LE

X
 T

im
e

pe
r

C
al

l

(d) CPLEX Time per CPLEX Call

Figure 4.3: maxhs-min-disj-inv-del vs. maxhs-noncore

Chapter 4. Constraining the Hitting Sets 103

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−noncore: Time

M
ax

H
S

−
no

nc
or

e−
eq

: T
im

e

(a) Runtime

0.0e+00 5.0e+06 1.0e+07 1.5e+07

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

MaxHS−noncore: LB Incr per CPLEX Call

M
ax

H
S

−
no

nc
or

e−
eq

: L
B

 In
cr

 p
er

 C
P

LE
X

 C
al

l

(b) LB Increment per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−noncore: SAT Time per CPLEX Call

M
ax

H
S

−
no

nc
or

e−
eq

: S
AT

 T
im

e
pe

r
C

P
LE

X
 C

al
l

(c) SAT Time per CPLEX Call

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

MaxHS−noncore: CPLEX Time per Call

M
ax

H
S

−
no

nc
or

e−
eq

: C
P

LE
X

 T
im

e
pe

r
C

al
l

(d) CPLEX Time per CPLEX Call

Figure 4.4: maxhs-noncore vs. maxhs-noncore-eq

Chapter 4. Constraining the Hitting Sets 104

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−noncore: Time

M
ax

H
S

−
no

nc
or

e−
im

p:
 T

im
e

(a) Runtime

0e+00 1e+08 2e+08 3e+08 4e+08

0e
+

00
1e

+
08

2e
+

08
3e

+
08

4e
+

08

MaxHS−noncore: LB Incr per CPLEX Call

M
ax

H
S

−
no

nc
or

e−
im

p:
 L

B
 In

cr
 p

er
 C

P
LE

X
 C

al
l

(b) LB Increment per CPLEX Call

0 200 400 600

0
20

0
40

0
60

0

MaxHS−noncore: SAT Time per CPLEX Call

M
ax

H
S

−
no

nc
or

e−
im

p:
 S

AT
 T

im
e

pe
r

C
P

LE
X

 C
al

l

(c) SAT Time per CPLEX Call

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

MaxHS−noncore: CPLEX Time per Call

M
ax

H
S

−
no

nc
or

e−
im

p:
 C

P
LE

X
 T

im
e

pe
r

C
al

l

(d) CPLEX Time per CPLEX Call

Figure 4.5: maxhs-noncore vs. maxhs-noncore-imp

Chapter 4. Constraining the Hitting Sets 105

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−noncore: Time

M
ax

H
S

−
no

nc
or

e−
re

v:
 T

im
e

(a) Runtime

0.0e+00 5.0e+06 1.0e+07 1.5e+07

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

MaxHS−noncore: LB Incr per CPLEX Call

M
ax

H
S

−
no

nc
or

e−
re

v:
 L

B
 In

cr
 p

er
 C

P
LE

X
 C

al
l

(b) LB Increment per CPLEX Call

0 200 400 600

0
20

0
40

0
60

0

MaxHS−noncore: SAT Time per CPLEX Call

M
ax

H
S

−
no

nc
or

e−
re

v:
 S

AT
 T

im
e

pe
r

C
P

LE
X

 C
al

l

(c) SAT Time per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−noncore: CPLEX Time per Call

M
ax

H
S

−
no

nc
or

e−
re

v:
 C

P
LE

X
 T

im
e

pe
r

C
al

l

(d) CPLEX Time per CPLEX Call

Figure 4.6: maxhs-noncore vs. maxhs-noncore-rev

Chapter 4. Constraining the Hitting Sets 106

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−noncore−imp: Time

M
ax

H
S

−
no

nc
or

e−
im

p−
re

v:
 T

im
e

(a) Runtime

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0e
+

00
2e

+
08

4e
+

08
6e

+
08

8e
+

08
1e

+
09

MaxHS−noncore−imp: LB Incr per CPLEX Call

M
ax

H
S

−
no

nc
or

e−
im

p−
re

v:
 L

B
 In

cr
 p

er
 C

P
LE

X
 C

al
l

(b) LB Increment per CPLEX Call

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

MaxHS−noncore−imp: SAT Time per CPLEX Call

M
ax

H
S

−
no

nc
or

e−
im

p−
re

v:
 S

AT
 T

im
e

pe
r

C
P

LE
X

 C
al

l

(c) SAT Time per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−noncore−imp: CPLEX Time per Call

M
ax

H
S

−
no

nc
or

e−
im

p−
re

v:
 C

P
LE

X
 T

im
e

pe
r

C
al

l

(d) CPLEX Time per CPLEX Call

Figure 4.7: maxhs-noncore-imp vs. maxhs-noncore-imp-rev

Chapter 4. Constraining the Hitting Sets 107

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj−inv−del: Time

M
ax

H
S

−
no

nc
or

e−
im

p−
re

v:
 T

im
e

(a) Runtime

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0e
+

00
2e

+
08

4e
+

08
6e

+
08

8e
+

08
1e

+
09

MaxHS−min−disj−inv−del: LB Incr per CPLEX Call

M
ax

H
S

−
no

nc
or

e−
im

p−
re

v:
 L

B
 In

cr
 p

er
 C

P
LE

X
 C

al
l

(b) LB Increment per CPLEX Call

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

MaxHS−min−disj−inv−del: SAT Time per CPLEX Call

M
ax

H
S

−
no

nc
or

e−
im

p−
re

v:
 S

AT
 T

im
e

pe
r

C
P

LE
X

 C
al

l

(c) SAT Time per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj−inv−del: CPLEX Time per Call

M
ax

H
S

−
no

nc
or

e−
im

p−
re

v:
 C

P
LE

X
 T

im
e

pe
r

C
al

l

(d) CPLEX Time per CPLEX Call

Figure 4.8: maxhs-min-disj-inv-del vs. maxhs-noncore-imp-rev

Chapter 5

Non-Optimal Hitting Sets

5.1 Introduction

The maxhs approach introduced in Chapter 3 involves solving many minimum cost

hitting set problems, one after every new core is found. As the number of cores increases,

the hitting set problems become larger and harder to solve. The minimum cost hitting

set problem is itself an NP-hard optimization problem, so a natural question is whether

or not performance can be improved by sometimes using non-optimal hitting sets that

are cheaper to compute.

In this chapter, inspired by ideas originally proposed in the context of solving the

Implicit Hitting set problem (Chandrasekaran, Karp, Moreno-Centeno, and Vempala,

2011b), we show how non-optimal hitting sets can be used in the maxhs algorithm. The

advantage of using non-optimal hitting sets is not only a reduction in the total time

spent solving the hitting set problems. We see that non-optimal hitting sets also have

a signi�cant e�ect on which cores the SAT solver �nds. Removing a set of clauses (i.e.

the hitting set) from the maxsat formula means that the SAT solver is forced to �nd a

refutation that does not use them. Using non-optimal hitting sets gives us more �exibility

to control which and how many clauses are removed, and thus which cores are generated.

108

Chapter 5. Non-Optimal Hitting Sets 109

The goal is to improve the quality of the cores, in the sense that fewer cores are needed

to �nd the maxsat solution.

5.2 maxhs with Non-Optimal Hitting Sets

It is simple to modify the maxhs algorithm to sometimes use non-optimal hitting sets,

because the correctness of maxhs relies mainly on two properties that are easily main-

tained. The �rst property is that maxhs never generates the same core twice, since the

next core is guaranteed to be un-hit by a hitting set of the previous cores. This property

does not rely on the minimality of the hitting set. The second property is that at termi-

nation, the hitting set whose removal leaves a satis�able formula must be minimal. Only

the second property relies on the optimality of the hitting set. Therefore, we have a lot

of �exibility to choose when non-optimal hitting sets should be used inside the maxhs

algorithm, as long as eventually the hitting set problem is solved to optimality to allow

termination.

We �rst investigate how to use non-optimal hitting sets as much as possible in maxhs,

since solving the hitting set problems to optimality is quite expensive. That is, we propose

that while the SAT solver is able to refute the remaining formula, we use non-optimal

hitting sets. At some point, the SAT solver will no longer be able to �nd a refutation,

because the non-optimal hitting set is large enough that it breaks all refutations. This

is the point at which we solve the hitting set problem to optimality. Since the optimal

hitting set is likely to be smaller, it may leave some cores un-hit. If so, we go back to

generating cores using non-optimal hitting sets. Otherwise, the optimal hitting set hits

all cores and the SAT solver will return the maxsat solution.

This new algorithm for maxsat is shown in Algorithm 9. We �rst describe its be-

haviour at a high level, relating it to the original maxhs algorithm. Then, we describe

the details and prove that it is correct.

Chapter 5. Non-Optimal Hitting Sets 110

Algorithm 9: An algorithm for solving maxsat that uses non-optimal hitting sets.

maxsat-solver-nonOPT
(
F
)

1

(K, hs) = DisjointCores(F) /* hs is an optimal hitting set of K */2

LB = cost(hs)3

UB = ∞4

πUB = ∅ /* πUB is the assignment that generated the current upper bound */5

while true do6

// On return, hs hits all cores of F and F \ hs is satis�ed by assignment π.
(corefound?, π) = GenerateCores(F , hs ,K)7

if cost(π) < UB then8

UB = cost(π) /* Update the upper bound */9

πUB = π10

if corefound? then11

hs = FindMinCostHittingSet(K) /* Solve to optimality */12

LB = cost(hs) /* Optimal hitting set gives a lower bound */13

if LB == UB or not corefound? then14

return (πUB, cost(πUB))15

Every time through the main loop, non-optimal hitting sets are used to drive the

discovery of cores (inside the function GenerateCores, see Algorithm 10). When no more

cores can be found, GenerateCores returns and the algorithm will resort to calculating

an optimal hitting set (line 12). The algorithm terminates when either the lower and

upper bounds coincide, or no more cores can be found when the SAT solver is given an

optimal hitting set (lines 14-15). In the latter case, correctness is by the same argument

as for the original maxhs algorithm. We show that the algorithm is correct in the former

case as well, below.

We now describe the behaviour of Algorithm 9 in more detail. It maintains a collection

of known cores K, initialized with a set of disjoint cores and an optimal hitting set hs

for them (line 2). Each iteration of the while loop on line 6 is called one epoch. In each

epoch, the function GenerateCores is called with the current collection of cores K and

a hitting set of K. Note that every time GenerateCores is called, hs will be an optimal

hitting set of K, since the �rst time it is called the hitting set is optimal (by line 2) and

every subsequent call only occurs if corefound? is true, in which case hs is optimal by

Chapter 5. Non-Optimal Hitting Sets 111

Algorithm 10: A function to generate cores using non-optimal hitting sets.

// Precondition: hs is a hitting set of the set of cores K.
// Postcondition: Returns core?=true i� a new core was added to K. F \ hs is

satis�ed by κ.

GenerateCores
(
F , hs ,K

)
1

core? = false2

while true do3

(sat?,κ) = SatSolver(F \ hs)4

; // If SAT, κ contains the satisfying truth assignment.
; // If UNSAT, κ contains a core.
if sat? then5

break ; // Exit while loop6

core? = true7

// Add new core to set of cores
K = K ∪ {κ}8

hs = FindNonOptimalHittingSet(K, κ, hs)9

return (core?, κ)10

line 12.

The function GenerateCores checks whether F \ hs is satis�able by invoking a SAT

solver (line 4), and if it is unsat, the SAT solver returns a new core κ that is added to

K on line 8. We will consider various methods to calculate the hitting set for the current

set of cores on line 9. GenerateCores continues to �nd and hit cores until hs is a hitting

set of all cores of F , at which point F \hs is satis�able so no new core can be found. The

truth assignment satisfying F \hs is then returned on line 10, along with the information

whether or not any new core was added to K. Note that if hs is not a minimum cost

hitting set of K, a satisfying assignment to F \ hs is not necessarily a maxsat solution.

When GenerateCores returns, if it has added another core toK, the optimal hitting set

is calculated (line 12 of Algorithm 9) and the lower bound is updated (line 13). Otherwise,

GenerateCores has failed to �nd a new core, when passed an optimal hitting set, and the

assignment last returned by the SAT solver is the maxsat solution by Theorem 3 on

page 40. The maxsat solution has also been found if the best cost assignment returned

by the SAT solver has cost equal to the lower bound. In this case, the proof that πUB is

Chapter 5. Non-Optimal Hitting Sets 112

optimal is that the lower bound has equal cost.

We prove that Algorithm 9 is correct. We begin by proving that if a call to Gener-

ateCores satis�es the preconditions then the postconditions will hold.

Proposition 12. If hs is a hitting set of a set K of cores of maxsat instance F , then

Algorithm 10 invoked with input (F , hs ,K) terminates. Upon return, K, hs, and the two

returned values (core?, κ) ful�ll the following properties.

1. K is a possibly larger set of cores, containing all cores passed to Algorithm 10 as

input.

2. core? is true if and only if Algorithm 10 added a new core of F to K.

3. hs is a hitting set of K.

4. κ is a truth assignment that satis�es F \ hs.

Proof. It is clear that at termination, K will contain all cores that were inputted to

Algorithm 10, since K is only modi�ed on line 8 by adding another core. Furthermore,

K only contains cores of F , since K is only augmented by κ's that have been returned by

calls to SatSolver on line 4. It is also clear that core? will be true if and only if at least

one core is added to K, since whenever a core is added to K on line 8, the previously

executed line set core? to true, and once it is set to true it can never be changed. If no

cores are added to K, then line 7 must never have been executed so core? will remain

false as it was initialized on line 2.

Next, we show that hs is always a hitting set of K. This is clear from lines 8 and 9,

since every time K is augmented with a new core, the value of hs is immediately updated

to be a hitting set of K. These are the only lines that modify K and hs .

If the algorithm GenerateCores terminates, it must be the case that the last call to

SatSolver returned sat? = true. In this case, the SAT solver also returns κ equal to a

truth assignment satisfying F \ hs , and this value of κ is returned on line 10 as desired.

Chapter 5. Non-Optimal Hitting Sets 113

Finally, we show that the algorithm terminates. Algorithm 10 terminates if the call

to SatSolver on line 4 returns sat? = true, that is, if F \ hs is satis�able. We argue that

this must eventually be the case, by showing that every call to SatSolver that returns

sat? = false generates a distinct core. Thus, since there are a �nite number of di�erent

cores of F , eventually SatSolver must be unable to �nd another core. To see that every

call to SatSolver must generate a distinct new core, note that if κ is a core returned by

SatSolver, κ ⊆ F \ hs . However, we have already shown that hs is a hitting set of all

previously found cores. So since κ is not hit by hs , κ can not be the same as any core in

K.

Proposition 13. Algorithm 9 correctly returns a solution to the inputted maxsat prob-

lem F . That is, it returns a truth assignment π for F that achieves mincost(F).

Proof. The algorithm only terminates on line 15, and there are two cases depending on

how the condition on line 14 was satis�ed.

The �rst case is when line 15 is executed because the condition LB == UB was

satis�ed. However, line 15 can only be reached if GenerateCores has been called at least

once. We argue that the preconditions of GenerateCores hold every time it is called.

The �rst time GenerateCores is called, K and hs were produced by DisjointCores (see

Algorithm 6 on page 54) so they satisfy the preconditions. On subsequent calls to Gen-

erateCores, lines 12-13 must have been executed right before GenerateCores was called,

and therefore hs is a MCHS of K by the correctness of function FindMinCostHittingSet.

Therefore, by the correctness of GenerateCores (Proposition 12), πUB must have been

assigned on line 10 to a truth assignment with �nite cost equal to UB.1 Furthermore, the

value of LB is always a correct lower bound on mincost(F), since it is only updated on

lines 3 and 13 where by Proposition 3 on page 39 it is a valid lower bound. Therefore,

1The truth assignment π returned by GenerateCores will always have �nite cost, because it satis�es
F \hs where hs ⊆ soft(F) and therefore hard(F) ⊆ F \hs so every clause with in�nite weight is satis�ed
by π.

Chapter 5. Non-Optimal Hitting Sets 114

when πUB is returned on line 15 it is a maxsat solution.

The second case is when line 15 is executed because corefound? was false. In this

case, GenerateCores did not �nd an un-hit core in F \ hs . Every time GenerateCores is

called, hs is a MCHS of K so if F \ hs is satis�able, by Theorem 3 on page 40, the truth

assignment π returned by the last call to GenerateCores is a maxsat solution. There is

no smaller cost truth assignment, so cost(πUB) ≥ cost(π). Therefore, line 15 returns a

maxsat solution in this case as well.

Finally, we must argue that line 15 is eventually executed. It will be executed if

corefound? is false, so suppose corefound? is always true. Therefore, every call to Gen-

erateCores �nds a core. This core must be distinct from every previously found core in

K, since it is a subset of F \ hs (line 4 of GenerateCores) so it is not hit by hs , a hitting

set of K (by the precondition and line 9 of GenerateCores). But there are only a �nite

number of cores of F , so this is a contradiction. Therefore, eventually corefound? will be

false and the program will terminate.

5.2.1 Methods to Compute Non-Optimal Hitting Sets

It remains to specify how the non-optimal hitting sets are calculated (function Find-

NonOptimalHittingSet). The least computationally expensive method is to augment

the current hitting set, which is passed as the second argument to FindNonOptimalHit-

tingSet. The existing hitting set can be augmented by, e.g., adding any clause chosen

randomly from the newest core κ. Or, rather than choosing a clause at random, we can

take a clause that appears in the maximum number of cores in K. We found this heuristic

improved performance on a small test set of instances. A possible explanation for the

good behaviour of this heuristic is that clauses that the SAT solver prefers to use in its

refutations are quickly added to the hitting set. Therefore, these clauses are no longer

available to the SAT solver, and they will not appear in any more cores found during

the current epoch. This encourages the SAT solver to refute the remaining theory in a

Chapter 5. Non-Optimal Hitting Sets 115

di�erent way than before. It is also possible to add more than one clause to the hitting

set at a time. The best performing heuristic, found by trial and error, is to take the top

10% of the newest core's clauses (sorted by their occurrences in K) and add them to the

non-optimal hitting set.

We also consider re-computing a non-optimal hitting set from scratch when Find-

NonOptimalHittingSet is called. In this case, FindNonOptimalHittingSet ignores the

current hitting set passed to it, and instead applies a well-known greedy algorithm for

the MCHS problem (Johnson, 1973). The greedy algorithm simply builds a hitting set by

choosing the remaining clause that hits the largest number of cores for the smallest cost,

i.e. the clause c that minimizes |{κ∈K:c∈κ}|
wt(c)

. As clauses are added to the greedy hitting

set hs , the working problem K is simpli�ed by removing all cores that are hit.

5.3 Combining Seeding and Non-Optimal Hitting Sets

In Chapter 4 we saw that the technique of seeding the MIP solver with constraints is

very e�ective in improving the robustness of maxhs. In this section we show that the

maxhs algorithm that uses non-optimal hitting sets, Algorithm 9, can be enhanced by

also using seeding.

Several di�erent methods of identifying constraints with which to seed the MIP solver

were discussed in Section 4.2.3 on page 91. The overall most e�ective method of seeding

was observed to be Equivalence seeding. This type of seeding is also the most easily

combined with Algorithm 9, because it only requires access to F b and not F beq. This is

because Equivalence seeding only needs to know which b-variables relax soft unit clauses

of F .

In order to combine Equivalence seeding with Algorithm 9, we only need to modify

two lines of Algorithm 9. First, we perform Equivalence seeding after the disjoint core

phase. Second, on line 12, instead of �nding a minimal cost hitting set of the known

Chapter 5. Non-Optimal Hitting Sets 116

cores, we �nd a minimal cost hitting set of the known cores that satis�es these extra

seeded constraints.

It is easy to see that with these changes Algorithm 9 is still correct, by observing

that any clause added to the MIP model by Equivalence seeding is implied by F b (as

well as F beq) and then applying an argument similar to the proof of Theorem 4 for the

Realizability condition.

5.4 Experimental Evaluation

In this section we examine the empirical behaviour of Algorithm 9 and the various meth-

ods of generating non-optimal hitting sets described in Section 5.2.1, as well as the

combination of Equivalence seeding and non-optimal hitting sets from Section 5.3. The

experimental setup is the same as in Section 3.7. All of the techniques introduced in this

chapter were implemented on top of the best version of maxhs from Chapter 3, maxhs-

min-disj-inv-del. Therefore, we will omit the designations �min-disj-inv-del� when naming

the versions of maxhs that include techniques from the current chapter. We report re-

sults with four versions of maxhs that use Algorithm 9, listed in Table 5.1.

maxhs Equivalence Non-Opt HS maxoccur 10percent greedy
Version Seeding (Alg. 9) HS HS HS

maxhs-nonopt-maxoccur X X
maxhs-nonopt-10percent X X
maxhs-nonopt-greedy X X
maxhs-nonopt-10percent-eqseed X X X

Table 5.1: The four versions of maxhs that we evaluate in this chapter.

Overall Performance

We �rst present the overall performance of maxhs using non-optimal hitting sets using

the two cactus plots in Figures 5.1 and 5.2. The performance of the best version, maxhs-

nonopt-10percent-eqseed, surpasses the performance of the best maxhs solvers from the

previous two chapters and is clearly the most robust solver for maxsat. We observe that

Chapter 5. Non-Optimal Hitting Sets 117

the particular method of building the non-optimal hitting sets does not have a signi�cant

e�ect on overall performance, as shown in Figure 5.2.

1000 1500 2000 2500 3000 3500

0
20

0
40

0
60

0
80

0
10

00

Instances Solved

T
im

e
(s

)

sat4j 2381
akmaxsat 2560
wbo 2587
wpm2v1 2655
wpm2v2 2751
MaxHS−min−disj−inv−del 2996
wpm1 3097
bincd 3106
minimaxsat 3130
cplex 3249
MaxHS−noncore−eq 3257
MaxHS−nonopt−greedy 3297
MaxHS−nonopt−10percent−eqseed 3598

Figure 5.1: Runtime results for the competing solvers, the overall best version of
maxhs from Chapter 3 (maxhs-min-disj-inv-del) and Chapter 4 (maxhs-noncore-eq),
the overall best version of maxhs with non-optimal hitting sets (maxhs-nonopt-greedy)
and maxhs with Equivalence seeding and non-optimal hitting sets (maxhs-nonopt-
10percent-eqseed). Shows how many problems were solved within each time limit. The
total number of instances solved is given in the legend after the solver's name.

Tables 5.2 and 5.3 show the number of problems each version solved, broken down

by benchmark family and divided into Crafted and Industrial instances according to

the maxsat Evaluation categorization. We observe that using non-optimal hitting sets

bene�ts both kinds of instances, Crafted and Industrial. This is interesting because three

of these versions of maxhs do not seed cplex with constraints. So this demonstrates

that two very di�erent techniques (non-optimal hitting sets and seeding cplex) can

Chapter 5. Non-Optimal Hitting Sets 118

both achieve the desired result of a solver that is robust on both Crafted and Industrial

problems.

2400 2600 2800 3000 3200 3400 3600

0
20

0
40

0
60

0
80

0
10

00

Instances Solved

T
im

e
(s

)

MaxHS−nonopt−maxoccur 3288
MaxHS−nonopt−10percent 3292
MaxHS−nonopt−greedy 3297
MaxHS−nonopt−10percent−eqseed 3598

Figure 5.2: Runtime results for four versions of maxhs with non-optimal hitting sets.
Shows how many problems were solved within each time limit. The total number of
instances solved is given in the legend after the solver's name.

Trade-o�s in maxhs

Next, we study the behaviour of maxhs with non-optimal hitting sets in greater depth.

As described in Section 3.7.2, we collected statistics from the runs of each version of our

solver on each instance, and in Figures 5.3-5.5, we compare versions of maxhs along

four dimensions: the runtime on each instance, the cplex time per cplex call, the SAT

time per cplex call, and the increment in the cost of the lower bound per cplex call.

Chapter 5. Non-Optimal Hitting Sets 119

All 4502 instances appear in each of these graphs, although the number of data points

sometimes appears to be fewer because they overlap.

We observe that using non-optimal hitting sets tends to increase the time spent in

the SAT solver, per call to cplex. This makes sense since between every call to cplex,

many cores are generated by the SAT solver, in a process that is guided by the non-

optimal hitting sets. We also see that the increment in the lower bound per cplex call is

much higher when using non-optimal hitting sets (see Figures 5.3-5.5(b)). This e�ect is

similar to what we observed in the case of seeding cplex with non-core constraints and

also the disjoint cores phase (compare the graphs in this section to those in Sections 3.7.2

and 4.2.5). The main bene�t of using non-optimal hitting sets is that by using more SAT

solving time to �nd cores, we are able to supply cplex with more information. This

rules out many low-cost assignments that cplex would otherwise return, thus reducing

the total number of calls to cplex required. And again, we see that although the extra

constraints increase the size of the problems cplex has to solve, any increase in time per

cplex call is usually o�set by a reduction in the total number of cplex calls.

5.5 Related Work

Chandrasekaran et al. proposed an algorithm to solve the Implicit Hitting Set problem

(de�ned in Section 3.8) that is closely related to Algorithm 9 (Chandrasekaran et al.,

2011b). They �rst considered using an approach like our Algorithm 5, but they were

able to obtain much better performance by using non-optimal hitting sets to build up

the collection of known sets to hit. Their experience with solving the IHS problem

motivated us to try non-optimal hitting sets in maxhs.

Chapter 5. Non-Optimal Hitting Sets 120

5.6 Conclusion

In this chapter we proposed to use non-optimal hitting sets in the maxhs approach

introduced in Chapter 3. The non-optimal hitting sets require much less time to compute

than cplex takes to solve the problems optimally, however, in order to achieve a complete

algorithm we must eventually solve a hitting set problem to optimality. We observed that

the e�ect of using non-optimal hitting sets is that a larger number of cores is collected

between each expensive call to cplex. Thus, like non-core constraints and seeding in

Chapter 4, by providing more information to cplex we can reduce the total number of

MCHS problems solved. The resulting solver, maxhs-nonopt-10percent-eqseed, is robust

across Crafted and Industrial instances and solves many more problems overall than any

other version of maxhs, cplex itself, and the competing solvers including minimaxsat

and bincd.

Chapter 5. Non-Optimal Hitting Sets 121

Family # mini maxhs maxhs maxhs maxhs maxhs maxhs

ch3 ch4 nonopt nonopt nonopt nonopt

10percent maxoccur greedy 10percent

eqseed

ms/spinglass 20 20 0 0 0 1 4 1

wms/kexu/frb-wcnf 35 15 10 20 16 16 15 20

pms/csp/sparseloose 20 20 20 11 20 20 20 20

wpms/pb/factor/ 186 186 186 186 186 186 186 186

pms/csp/denseloose 20 20 10 0 13 15 15 14

KnotPipatsrisawat 350 117 61 52 286 290 260 284

pms/queens 7 7 5 3 5 5 4 5

wpms/aucregions 84 84 35 84 4 4 13 84

ms/cut/spinglass 5 3 1 1 1 1 2 1

pms/jobshop 4 2 4 3 4 4 4 4

wpms/planning 71 71 69 71 71 71 71 71

pms/maxone/struc 60 60 46 60 55 54 57 60

ms/ramsey 48 35 34 34 34 34 34 34

pms/clique/rand 96 96 4 96 4 4 44 96

wms/cut/spinglass 5 4 1 1 1 1 2 1

wpms/pb/miplib 16 5 7 7 7 7 7 7

wms/ramsey 48 37 34 35 34 34 34 34

ms/cut/dimacs 62 48 4 4 4 4 4 4

wpms/aucsched 84 84 81 84 76 76 77 84

ms/bip-cut-140-630 100 83 0 0 0 0 0 0

wpms/min-enc/warehouses 18 2 1 18 8 9 1 18

pms/min-enc/kbtree 54 22 12 15 13 12 12 19

wpms/aucpaths 88 88 88 88 88 88 88 88

pms/csp/sparsetight 20 20 0 0 12 15 12 11

wpms/spot5log 21 4 6 6 6 6 6 6

pms/maxone/3sat 80 80 25 80 45 45 44 80

wms/cut/rand 40 40 0 0 0 0 0 0

wpms/QCP 25 20 25 25 25 25 25 25

pms/clique/struc 62 36 10 29 12 12 17 34

wms/cut/dimacs 62 55 3 3 4 4 5 4

ms/cut/rand 40 40 0 0 0 0 0 0

wpms/min-enc/planning 56 56 54 56 56 56 56 56

pms/frb 25 5 0 8 5 5 0 9

wpms/spot5dir 21 3 6 6 6 6 6 6

pms/csp/densetight 20 20 0 0 1 3 6 2

pms/pb/garden 7 5 5 6 5 5 6 6

Total 1960 1493 847 1092 1107 1118 1137 1374

Table 5.2: Crafted instances: results for the best competing solver on Crafted instances
(minimaxsat), the overall best versions of maxhs from Chapter 3 (maxhs-ch3 which
is maxhs-min-disj-inv-del) and Chapter 4 (maxhs-ch4 which is a re-naming of maxhs-
noncore-eq), and four versions of maxhs with non-optimal hitting sets.The table shows
the number of instances solved in each benchmark family. For each family, the number
of instances in the family is shown in column `#'. The name of the family begins with
either `ms', `pms', `wms' or `wpms' which indicates whether or not the instances contain
hard clauses (`p') and whether or not their soft clauses have non-uniform weights (`w').
The solvers are ordered by the total number of problems they solve.

Chapter 5. Non-Optimal Hitting Sets 122

Family # bincd maxhs maxhs maxhs maxhs maxhs maxhs

ch3 ch4 nonopt nonopt nonopt nonopt

greedy maxoccur 10percent 10percent

eqseed

haplo-ped 100 23 46 28 33 26 31 32

pb-nencdr 128 116 109 104 128 118 116 117

pms/bcp-mtg 215 215 214 212 214 215 215 215

wpms/up-u98 80 79 80 80 80 80 80 80

ms/Safar 112 71 34 33 34 33 36 34

pms/pb/primes 86 76 74 80 74 77 77 80

pms/bcp-syn 74 45 67 71 69 69 69 71

pms/circtracecomp 4 4 0 0 1 0 0 0

pms/hap-asmbly 6 0 5 5 5 5 5 5

pb-nlogencdr 128 128 118 111 128 128 128 128

pms/bcp-�r 59 55 18 18 18 32 40 40

pms/pbo-rout 15 15 15 13 10 12 11 12

pms/pseudo/rout 15 15 15 15 11 11 11 13

aes 7 1 1 2 2 2 2 2

timetabling 32 12 6 8 7 7 7 7

pms/bcp-hipp 1183 1164 1140 1142 1138 1141 1143 1141

pms/pb/logic-syn 17 7 16 16 16 16 16 16

ms/circdebug 9 7 4 3 3 4 4 4

upgrade 100 97 100 100 100 100 100 100

pms/protein-ins 12 2 2 1 1 2 2 2

wpms/protein-ins 12 2 2 2 1 2 2 2

pms/bcp-msp 148 117 83 121 87 90 90 123

Total 2542 2251 2149 2165 2160 2170 2185 2224

Table 5.3: Industrial instances: results for the best competing solver on Industrial
instances (bincd), the overall best versions of maxhs from Chapter 3 (maxhs-ch3 which
is maxhs-min-disj-inv-del) and Chapter 4 (maxhs-ch4 which is a re-naming of maxhs-
noncore-eq), and four versions of maxhs with non-optimal hitting sets. The table shows
the number of instances solved in each benchmark family. For each family, the number
of instances in the family is shown in column `#'. The name of the family begins with
either `ms', `pms', `wms' or `wpms' which indicates whether or not the instances contain
hard clauses (`p') and whether or not their soft clauses have non-uniform weights (`w').
The solvers are ordered by the total number of problems they solve.

Chapter 5. Non-Optimal Hitting Sets 123

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj−inv−del: Time

M
ax

H
S

−
no

no
pt

−
m

ax
oc

cu
r:

 T
im

e

(a) Runtime

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

MaxHS−min−disj−inv−del: LB Incr per CPLEX Call

M
ax

H
S

−
no

no
pt

−
m

ax
oc

cu
r:

 L
B

 In
cr

 p
er

 C
P

LE
X

 C
al

l

(b) LB Increment per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj−inv−del: SAT Time per CPLEX Call

M
ax

H
S

−
no

no
pt

−
m

ax
oc

cu
r:

 S
AT

 T
im

e
pe

r
C

P
LE

X
 C

al
l

(c) SAT Time per CPLEX Call

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

25
0

30
0

35
0

MaxHS−min−disj−inv−del: CPLEX Time per Call

M
ax

H
S

−
no

no
pt

−
m

ax
oc

cu
r:

 C
P

LE
X

 T
im

e
pe

r
C

al
l

(d) CPLEX Time per CPLEX Call

Figure 5.3: maxhs-min-disj-inv-del vs. maxhs-nonopt-maxoccur

Chapter 5. Non-Optimal Hitting Sets 124

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj−inv−del: Time

M
ax

H
S

−
no

no
pt

−
10

pe
rc

en
t:

T
im

e

(a) Runtime

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

MaxHS−min−disj−inv−del: LB Incr per CPLEX Call

M
ax

H
S

−
no

no
pt

−
10

pe
rc

en
t:

LB
 In

cr
 p

er
 C

P
LE

X
 C

al
l

(b) LB Increment per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj−inv−del: SAT Time per CPLEX Call

M
ax

H
S

−
no

no
pt

−
10

pe
rc

en
t:

S
AT

 T
im

e
pe

r
C

P
LE

X
 C

al
l

(c) SAT Time per CPLEX Call

0 100 200 300

0
10

0
20

0
30

0

MaxHS−min−disj−inv−del: CPLEX Time per Call

M
ax

H
S

−
no

no
pt

−
10

pe
rc

en
t:

C
P

LE
X

 T
im

e
pe

r
C

al
l

(d) CPLEX Time per CPLEX Call

Figure 5.4: maxhs-min-disj-inv-del vs. maxhs-nonopt-10percent

Chapter 5. Non-Optimal Hitting Sets 125

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj−inv−del: Time

M
ax

H
S

−
no

no
pt

−
gr

ee
dy

: T
im

e

(a) Runtime

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08

0.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

2.
0e

+
08

2.
5e

+
08

MaxHS−min−disj−inv−del: LB Incr per CPLEX Call

M
ax

H
S

−
no

no
pt

−
gr

ee
dy

: L
B

 In
cr

 p
er

 C
P

LE
X

 C
al

l

(b) LB Increment per CPLEX Call

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

MaxHS−min−disj−inv−del: SAT Time per CPLEX Call

M
ax

H
S

−
no

no
pt

−
gr

ee
dy

: S
AT

 T
im

e
pe

r
C

P
LE

X
 C

al
l

(c) SAT Time per CPLEX Call

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

MaxHS−min−disj−inv−del: CPLEX Time per Call

M
ax

H
S

−
no

no
pt

−
gr

ee
dy

: C
P

LE
X

 T
im

e
pe

r
C

al
l

(d) CPLEX Time per CPLEX Call

Figure 5.5: maxhs-min-disj-inv-del vs. maxhs-nonopt-greedy

Chapter 6

Hitting Set Bounds in Branch and

Bound for maxsat

6.1 Introduction

In Chapter 2, we described the two main approaches for solving maxsat: exploiting

a SAT solver to solve a sequence of SAT problems, and Branch and Bound search. In

Chapters 3� 5, we proposed a new family of algorithms that are similar to the former class

because they also use a SAT solver to solve a sequence of SAT problems. In this chapter

we turn our attention to developing a new Branch and Bound algorithm for maxsat. We

�rst provide evidence that a Branch and Bound approach is better suited to particular

maxsat instances than maxhs or any other SAT-based maxsat solver. This motivates

us to consider how to apply the ideas introduced in the previous chapters in order to

create a robust Branch and Bound solver for maxsat.

We show how con�icts in the reduced maxsat formula can be learned at each node

of the Branch and Bound search. These con�icts can be thought of as context-dependent

cores. Thus we propose to use them in a MCHS approach, to generate lower bounds and

prune the search space. In contrast to existing Branch and Bound solvers for maxsat,

126

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 127

our algorithm performs learning in the same spirit as clause learning in DPLL. The

con�ict information we discover in one part of the search tree can be saved and used

again anywhere else it is relevant.

Additionally, since MCHS is itself an NP-hard problem, some tractable techniques for

computing lower bounds on the exact solution are introduced. Two new greedy heuristics

for hitting set are given, one of which improves on the heuristic in (Petit, Bessière, and

Régin, 2003). A third alternative is to formulate the minimal hitting set problem as an

integer program and use linear programming to provide a lower bound approximation.

6.2 Branch and Bound vs. Sequence of SAT

The maxhs algorithm works by �nding cores of the maxsat formula and solving a

MCHS problem over them. Thus, as explained in Section 3.4, the e�ciency of maxhs

is in�uenced by three main factors: the di�culty of refuting the maxsat formula to

�nd the cores, the total number of cores that must be found, and the structure of the

hitting set problems produced by the cores. Similarly, the behaviour of other sequence

of SAT algorithms also depends mostly on the di�culty of refuting the original maxsat

formula, and the properties of the cores such as their size and how much they overlap.1

On the other hand, sequence of SAT approaches, including maxhs, are highly suited to

instances whose cores are quite disjoint and much smaller in size relative to the size of

the maxsat instance. This kind of structure is often found in maxsat instances arising

from industrial applications.

In contrast, the performance of current Branch and Bound algorithms for maxsat

appears to be highly dependent on the size of the maxsat instance and the length of

its clauses. The key contributions in existing work are various techniques for computing

good lower bounds during search. Most of these techniques can be understood as applying

1For example, if the cores are large, then the number of relaxation variables will also be large, even if
they are only added to clauses that appear in found cores. If the cores also share many clauses, then the
technique of organizing the discovered cores into disjoint covers, as done by wpm2, will be ine�ective.

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 128

incomplete restrictions of maxres inference (Larrosa et al., 2008). Since maxres can

in�ate the size of the maxsat formula (see Section 2.4), previous work has concentrated

on �nding restricted cases where maxres inferences can be more e�ciently applied.

These cases usually apply only to clauses of length three or less; longer clauses do not

contribute to the lower bound. Therefore, instances with many long clauses will have very

deep search trees since the long clauses will not help to prune the search until almost all

of their literals have been falsi�ed. Furthermore, current Branch and Bound solvers look

for these restricted cases in the reduced maxsat theory. As a result, all of the inferences

must be undone on backtrack and recomputed from scratch along future branches of the

search tree. Since the search can not learn as it progresses, the strength of the pruning is

limited. This means that on large maxsat instances or ones with long clauses, Branch

and Bound becomes ine�ective. However, if the maxsat instance is not too large and

its clauses are short, a Branch and Bound solver may be able to solve it, even though all

SAT-based methods fail due to unfavourable core structure.

We therefore propose a new Branch and Bound algorithm that attempts to address

the current weaknesses mentioned above. We introduce a new lower bound that like

previous bounds, uses unit propagation to e�ciently identify con�icts. However, our

lower bound will be applicable to all such con�icts, regardless of the number of clauses

involved and their lengths. Furthermore, we save these identi�ed con�icts so they can

be used again in other regions of the search space, even after backtrack. This allows the

bounds to be strengthened by learning as the search progresses. The result is a much

stronger method of pruning the Branch and Bound search that can signi�cantly reduce

the total number of nodes searched. However, questions arise as to how to �nd the most

useful con�icts, when to save them, and how to use these con�icts to compute a lower

bound that is e�ective but cheap enough to apply at every node.

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 129

6.3 Hitting Set Bounds

At each node n of the Branch and Bound search, we wish to calculate a lower bound on

mincost(n), the cost of the minimal cost complete assignment below that node.

De�nition 19 (mincost(n) for a node n). Let n be a node in a Branch and Bound search

and let π be the assignments made at n. Then mincost(n) is the cost of the minimal cost

complete truth assignment extending π.

The remaining formula at a node of Branch and Bound is formally de�ned as the

reduction of the original formula by the assignments at that node.

De�nition 20 (Reduced maxsat Instance). If F is a maxsat instance, n is a node

of Branch and Bound search, and π is the partial truth assignment at n, let F|n be the

reduction of F by π, where every clause satis�ed by π has been removed, all literals falsi�ed

by π have been removed from the remaining clauses, and the clause weights remain the

same.

Proposition 14. The cost of a solution to the maxsat instance F|n is equal to mincost(n).

Proof. Observe that for every clause of F falsi�ed at n, F|n contains an empty clause of

equal weight.

A common approach in maxsat is to �nd ways to anticipate that some clauses of the

remaining formula will be falsi�ed. For example, if the remaining formula contains two

con�icting unit clauses (x) and (¬x), exactly one of these two clauses will be falsi�ed

at every leaf in the subtree. More generally, if we know that at least one out of a set

of clauses κ will be falsi�ed by every truth assignment extending the current node, then

this is evidence that at least the cost of the minimum cost clause in κ must be incurred.

Such a set of clauses as κ can be thought of as a core of the remaining formula. This

suggests that if we have more than one such set of clauses, their MCHS should provide a

lower bound on the cost of a solution to the remaining formula. This is an alternative to

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 130

the technique of dealing with overlapping con�icts by transformation, used by existing

maxsat solvers. The advantage of the MCHS bound is that it is suited to handling

arbitrary con�icts, while existing maxsat solvers only exploit simple con�icts so as to

avoid transformations that increase the size of the remaining formula.

However, our goal is not only to deal with overlapping con�icts e�ectively. We also

wish to learn information during search that can be used elsewhere in search. If we just

look for con�icts in the remaining formula at a node and combine overlapping con�icts

using a MCHS computation, we will lose all of this work when we backtrack. The key

insight is that identifying a core/con�ict in the remaining formula actually corresponds

to learning a clause (from the original maxsat formula) that is falsi�ed at the current

node.

The following observation says that any con�ict in the remaining formula corresponds

to a learnt clause falsi�ed at the current node.

Observation 3. Let π be a partial assignment to the variables of F and let κ be a core

of F|π. If κ′ ⊆ soft(F) is the set of clauses in F corresponding to the clauses in κ, then

there is a resolution derivation of a clause c from κ′ ∪ hard(F) such that π falsi�es c.

Proof. The steps performed in a refutation of the core κ can be copied starting with the

clauses in κ′ in order to derive the desired learnt clause c.

Thus, given a core of the remaining formula and its refutation, we can save the set

of original clauses κ′ ⊆ soft(F) and a learnt clause c that can be derived from them. If

c is falsi�ed by the current assignment at any node of the future search, it implies that

at least one of the clauses in κ′ will also be falsi�ed at every leaf node in the subtree.

So the falsi�cation of the learnt clause c indicates when the contextual core κ′ can be

used, and all contextual cores that are relevant at a node can be combined in a MCHS

computation to derive a lower bound.

Indeed, this method is complete in the sense that if we had access to all possible learnt

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 131

clauses that are falsi�ed at node n, then a MCHS computation would allow mincost(n)

itself to be computed.

De�nition 21 (Pall , ic). Let F be a maxsat instance and let n be a node of the Branch

and Bound search. Then Pall(F , n) is the set of all resolution proofs from F (ignoring

clause weights) that derive a clause falsi�ed by the assignments made at node n. Given

a proof φ ∈ Pall(F , n), let ic(φ) be the set of clauses of soft(F) used in φ.

Proposition 15. Let K = {ic(φ) : φ ∈ Pall(F , n)} and let hs be a MCHS of K. Then

mincost(n) = cost(hs).

Proof. The proof of this proposition is more complicated than the proof of Proposition 2

on page 39. By Proposition 14, mincost(F|n) = mincost(n). Proposition 2 then shows

that if we have all cores of F|n, and a MCHS H for them, cost(H) = mincost(F|n) =

mincost(n). Now all that remains to be done is to prove that cost(H) = cost(hs).

First, Observation 3 shows that all cores of F|n can be converted to equivalent proofs

in Pall(F , n) by adding back all of the falsi�ed literals to the clauses of the refutation.

Thus a MCHS for ic(Pall(F , n)) is at least as big as a MCHS of all cores of F|n, i.e.

cost(hs) ≥ cost(H).

The other direction is more complex, but the same argument as Proposition 2 can

be used to show that if cost(hs) > cost(H) then there must be a hitting set H ′ of the

cores of F|n which when converted to a set of clauses of F (by adding back the falsi�ed

literals) is not a hitting set of ic(Pall(F , n)).

Hence, there is a proof φ ∈ Pall(F , n) not covered by H ′. With a more complex

transformation, φ can then be converted into a refutation of F|n by removing all satis�ed

clauses and falsi�ed literals, and then �xing all of the now broken resolution steps. (For

example, the literal being resolved on might have been removed from one of the clauses,

or one of the clauses might have been satis�ed). The conversion of φ is a refutation of

F|n not hit by H ′, contradicting that H ′ exists.

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 132

We are unlikely to have access to all of the proofs in Pall(F , n), but any subset can

be used to produce a lower bound on mincost(n).

Corollary 2. Let K ⊆ {ic(φ) : φ ∈ Pall(F , n)} and let hs be a MCHS of K. Then

mincost(n) ≤ cost(hs).

In summary, at any node n of the search tree some set of clauses will be falsi�ed.

These could be either original clauses of F or learnt clauses. By keeping track of the

soft input clauses used to derive each falsi�ed learnt clause a hitting set problem can

be set up. By Corollary 2 the minimum cost hitting set provides a lower bound on the

minimum cost assignment that can be achieved below node n, mincost(n).

Our lower bound approach requires some additional information to be stored along

with the learnt clauses. Speci�cally, for each learnt clause the set of original soft clauses

or previously learnt clauses used in its derivation must be stored with it. However,

the overhead of saving and accessing this information is very low. We do not have to

remember the entire resolution proof of the learnt clause, just a list of pointers to the

original clauses of F and to other previously learnt clauses from which it was derived.

Furthermore, a watched literals scheme over the learnt clauses can be used so that the

additional information stored with a learnt clause is only accessed when the the learnt

becomes falsi�ed.

Two problems remain. First it may be time-consuming to compute a minimum cost

hitting set as this is an NP-hard problem in itself. The next section presents some ways

of computing lower bounds on the minimum cost hitting set, which in turn act as lower

bounds on mincost(n). Second, in Section 6.5 we develop techniques to generate learnt

clauses either in a preprocessing step, or dynamically during the search.

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 133

6.4 Lower Bounding the Minimum Cost Hitting Set

We use the two subsumption rules de�ned in Section 4.1.1 to simplify the hitting set

problems. These two rules de�ne a propagation scheme, since one application of a rule

can enable additional applications. Simpli�cation continues until neither of these rules

can be applied again. It is also possible to remove from the hitting set problem any

clauses that are satis�ed at the current node, and we do this �rst since it may enable

some more subsumptions. These simpli�cations often generate a collection of disjoint

hitting set problems. If so, we solve or approximate the disjoint problems independently

and then add the results.

6.4.1 Heuristic Lower Bounds

Two heuristics for lower bounding the minimum cost hitting set are considered.

H1(K)

1. LB = 0

2. while K 6= ∅

3. choose κ ∈ K

4. LB += minc∈κ wt(c)

5. S = {κ′ ∈ K|κ ∩ κ′ 6= ∅}

6. K = K − S

7. return LB

This heuristic �rst chooses some set to hit, κ, and adds the cost of its minimal cost

element to the lower bound. Then it removes κ and all other κ′ ∈ K that share an

element of κ. It repeats this loop until there are no more sets to hit.

The intuition behind this heuristic is simple: κ can be hit by selecting a min-cost

element. But any other element from κ could have been chosen instead to hit κ. Hence,

the most that could have been hit is all other sets that intersect κ. The heuristic conser-

vatively estimates that indeed all of these sets were hit with κ's min-cost element. Note

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 134

that the heuristic can yield di�erent values depending on which κ is chosen.

We use two di�erent selection policies to choose the next κ on line 3. For maxsat

with non-uniform weights on the soft clauses, κ is chosen to be the set whose min-cost

element is of maximal cost. If, on the other hand, all the soft clauses have weight 1, κ is

chosen to be a set that intersects with the fewest other sets (i.e. whose set S in line 5 is

of minimal cardinality). However, other natural policies do exist.

This heuristic inherently takes advantage of any disjoint subproblems. In particular,

if the hitting set problem has been broken up into k disjoint subproblems, H1 will return

a bound that is no worse than the sum of a minimal cost element from each subproblem.

For the second heuristic, for an element c let nbrs(c) = {κ : κ ∈ K ∧ c ∈ κ} be the

sets hit by c and let deg(c) = |nbrs(c)|.

H2(K)

1. LB = 0

2. n = |K|

3. while n > 0

4. c = c ∈ K that minimizes wt(c)/deg(c)

5. if deg(c) < n OR uniform weights

6. LB += wt(c)

7. else LB += n× wt(c)/ deg(c)

8. n -= deg(c)

9. remove c from κ for all κ ∈ K

10. return LB

This heuristic generalizes one given in (Petit et al., 2003). It operates by selecting an

element with lowest weight over degree. These elements hit the most sets on a minimal

cost per set basis. Sets are chosen in this way until the sum of their degrees equals or

exceeds the total number of sets to hit. However, in the case of weighted elements, only

part of the weight of the last element selected can be counted (line 7).

Proposition 16. (Davies et al., 2010) Both H1 and H2 return a lower bound on the cost

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 135

of the minimum cost hitting set.

These two heuristics are incomparable. That is, on some problems H1 provides a

better bound than H2 and vice versa on other problems.

For example, let K = {κ1, κ2, κ3}, where κ1 = {c1, c2}, κ2 = {c1, c3} and κ3 = {c2, c3}

and all elements have equal weight of 1. No matter which set κ ∈ K is �rst chosen by

H1, it will only perform a single iteration and produce a lower bound of 1. However, H2

can pick any two elements for a lower bound of 2.

On the other hand, let K = {κ1, ..., κ6} be a hitting set problem over a universe

of three equally weighted elements, where κ1 = κ2 = {c1}, κ3 = {c1, c2}, κ4 = {c2},

κ5 = {c2, c3} and κ6 = {c3}. Then nbrs(c1) = {κ1, κ2, κ3}, nbrs(c2) = {κ3, κ4, κ5}, and

nbrs(c3) = {κ5, κ6}. In this case, H1 can pick {κ1, κ4, κ6} for a lower bound of 3. However

H2 is forced to pick {c1, c2} for a lower bound of 2.

Unfortunately both heuristics can yield arbitrarily bad approximations.

Theorem 6. (Davies et al., 2010) For a MCHS instance K let the cost of its solution

be denoted mincost(K), and let H1(K) and H2(K) be the lower bounds computed by the

two heuristics. Then for any ε > 0, there exists K, K′ such that H1(K)/mincost(K) ≤ ε

and H2(K′)/mincost(K′) ≤ ε.

6.4.2 Linear Relaxation Lower Bound

The quality of the lower bound on the minimum hitting set dictates how soon the search

can backtrack from a non-optimal partial assignment. Furthermore, by recomputing the

lower bound at each node during backtrack,2 it also impacts how far the search can

backtrack (as long as LB ≥ UB). In light of this and Theorem 6, it may be desirable to

use more powerful techniques to compute the exact value of the minimum hitting set at

strategic points during search.

2Note that it may not be su�cient to simply reuse the lower bound that was computed the �rst time
the node was reached, as additional learnt clauses may have been added to the hitting set instance since
then.

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 136

One way to solve the MCHS problem to optimality is to encode it as an integer

program, and solve it using a MIP solver such as cplex. Or, we can use cplex to solve

the linear relaxation instead, since it is much cheaper to compute and also gives a valid

lower bound on the minimal cost hitting set.

To balance the trade o� between the quality of the bound and the computational cost

required, the following strategy is adopted: �rst heuristics H1 and H2 are computed and

their maximum used as initial lower bound LB. If LB < UB but LB/UB ≥ α, for some

tuned parameter α, then the linear relaxation is solved. Finally, if this is still insu�cient

to exceed UB and if the size of the hitting set problem is less than some other tuned

parameter β, the integer program is solved.

6.5 Learning Clauses

It remains to consider how to generate the learnt clauses that will be used in the hitting

set lower bound. The �rst method we investigated is to perform a preprocessing step to

learn clauses using relaxed DPLL search (Kroc, Sabharwal, and Selman, 2009). However,

we soon discarded this limited approach in favour of turning our attention to techniques

that can learn clauses during the Branch and Bound search itself.

6.5.1 Relaxed DPLL Preprocessing

In (Kroc et al., 2009), a relaxed DPLL search is used to produce a good upper bound

on the cost of a solution to an unweighted maxsat instance. Kroc et al. modify a SAT

solver to ignore the �rst k con�icts along a branch, and only learn and backtrack from

the next con�ict if one occurs. Such a procedure can be used as a preprocessing step to

generate learnt clauses. It is possible to extend their idea to the weighted case (and hard

clauses) by treating k as a bound on the total cost to ignore. Since the relaxed search

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 137

performs unit propagation over all clauses, both soft and hard, the clauses learned may

be derived from soft clauses of F . The set of soft clauses of F used to derive each learnt

can be obtained by modifying minisat's clause learning procedure (Gelder, 2009).

The number of learnt clauses produced by this process can vary signi�cantly. In

some cases, the maxsat instance is too easy to refute, and very few or no learnt clauses

will be produced. For example, if the maxsat instance contains soft unit clauses, the

relaxed DPLL search will immediately propagate them at the root. It is not unusual

that propagating the soft unit clauses of F falsi�es a hard clause. In this situation the

relaxed DPLL search will terminate at the root, since in�nite cost has been incurred

(exceeding any threshold k) and no backtracking is possible. In this case, we could

consider modifying the relaxed DPLL search to ignore the soft unit clauses of F . However,

this modi�cation would require additional techniques to prevent search from re-visiting

the same assignments, and was not investigated further for this reason.

In other cases, the number of learnt clauses generated by such preprocessing can be

too large. The number of learnt clauses can be limited simply by terminating the process

at any point, or by using the SAT solver's default criteria to prune the learnt clause

database whenever it grows too big. However, we propose a di�erent technique to prune

the learnt clause database, that is designed with our purpose in mind. Each learnt clause

is assigned a weight equal to the weight of the minimal weight soft clause of F used

to derive it. The score of a learnt clause is then equal to its normalized weight (the

clause weight divided by an upper bound on the cost of the maxsat solution) minus its

normalized length (the clause length divided by the number of variables in the maxsat

instance). The learnt clauses with highest scores, over all clauses learnt, are chosen to be

output. This selects the clauses that are short, and therefore have a chance to contribute

to the lower bound higher up in the search tree. Clauses derived from high weight clauses

are also favoured, in the hope that they will contribute signi�cantly to the hitting set

lower bound.

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 138

We implemented these techniques on top of minisat, to create a preprocessor that

given a maxsat instance outputs a collection of learnt clauses and the sets of soft clauses

used to derive them. We implemented a preliminary version of Branch and Bound search

for maxsat that reads in a collection of such learnt clauses and uses them to calculate our

hitting set bounds. However, our experiments suggested that the preprocessing approach

would not lead to a robust maxsat solver. Certainly, this approach does not allow the

main Branch and Bound search to learn from its own progress to better prune its future

search space.

6.5.2 Learning Clauses During Branch and Bound

The approach we take to learn clauses during Branch and Bound is based on performing

trial unit propagations at each node of search. These trial unit propagations (TUP) are

applied after all hard inferences have been performed. They allow soft unit clauses to be

propagated temporarily, in order to derive con�icts.

At every node n of our Branch and Bound search, unit propagation is applied over

the hard clauses.3 If a con�ict is found, a new hard clause is learnt and backtracking

is performed like in a regular SAT solver (see Appendix B). These techniques are well-

known and used by other state-of-the-art Branch and Bound solvers for maxsat (see

Section 2.5.1).

If hard inference does not cause the search to backtrack from n, then a phase of

trial unit propagation (TUP) begins. The TUP stack is initialized with all soft clauses

that are unit or falsi�ed in F |n, as is done in minimaxsat (Heras et al., 2008). TUP

involves unit propagating soft clauses as well as hard, so any literals set during the TUP

phase must be undone before continuing search with another decision. However, if a

clause is falsi�ed during TUP, this con�ict can be analyzed using standard techniques to

produce a learnt clause with the desirable property of being falsi�ed at n, before TUP.

3As the upper bound is re�ned, more clauses become hard.

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 139

Thus it may contribute to increasing the hitting set lower bound at the current node.

Therefore, the learnt clauses produced are immediately relevant to the search, in contrast

to those obtained from a preprocessing step. The learnt clause c, together with the set

of soft clauses of F used to derive it, is saved upon backtrack and can be used in future

search whenever c is falsi�ed, to contribute to the hitting set lower bound. The learnt

clauses also participate in future TUP phases, so that clauses can be learned from others,

contributing to the power of these clauses to prune the search.

TUP continues to propagate and learn clauses until no more new falsi�ed clauses are

found. Thus many learnt clauses can be produced at each node of the search. The lower

bound is updated once after TUP is �nished. In future work we intend to investigate

ways to limit or guide the TUP phase, in order to �nd a better trade-o� between the

strength of lower bound produced and the time spent in TUP.

Turning O� Clauses

TUP learning, if implemented as described above, can produce duplicate learnt clauses.4

In order to prevent duplicates from creating overhead, they are prevented from being

learned in the �rst place. This is achieved by �turning o�� for TUP, one of the clauses

used to derive each existing falsi�ed learnt clause c, for the duration of time c remains

falsi�ed. A turned-o� clause can't be used to derive any more learnt clauses, until it is

turned back on. Of course, this policy may reject new learnt clauses that aren't actually

duplicates of an existing one. This is undesirable since it may reduce the strength of the

lower bound. To limit the negative impact on heuristics H1 and H2, we always choose to

turn o� the clause of least weight or greatest degree. In future work we intend to try a

less cautious method of avoiding duplicate learnt clauses: we can turn o� clauses only

at decision levels greater than k, and rely on a general scheme of learnt clause database

4A learnt clause is only considered a duplicate of another if they were derived from the same set of
soft clauses of F , since otherwise each can contribute to the lower bound under di�erent circumstances
depending on the structure of the hitting set problem.

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 140

reduction to limit the total number of learnt clauses.

Similarly, when a soft clause c is falsi�ed by the current pre�x, all of the learnt

clauses it has derived are turned o�. This prevents clauses being learned that can't

currently contribute to the lower bound. To see this, note that any learnt clause c′ whose

derivation is blocked in this way, would also have been derived indirectly from c. While

c is falsi�ed, its cost is already counted and does not contribute to the hitting set lower

bounds. Therefore, adding c′ to the hitting set problem can not increase the lower bound

while c is false.

6.6 Related Work

If no clauses are turned o� for TUP, and the optimal MCHS is calculated for the lower

bound, our lower bound technique subsumes all existing unit propagation based bounds

in the maxsat literature (Li et al., 2007; Heras et al., 2008; Xing and Zhang, 2005). If

clauses are turned o� for TUP, the resulting lower bound will be at least as good as the

disjoint inconsistent subformulas bound (Li et al., 2007), since turning o� clauses in one

inconsistent subformula does not prevent disjoint subformulas from being refuted.

A related lower bound was used in a Branch and Bound solver for MaxCSP (Petit

et al., 2003). Their bound di�ers from our approach in several ways, such as how the

con�icts are detected and how the MCHS problems are rendered tractable. Their solver

also does not perform learning, as all of the con�icts are discarded upon backtrack.

6.7 Experimental Results

We modi�ed the SAT solver minisat (Eén and Sörensson, 2003) to perform a Branch

and Bound search for maxsat. We implemented the variable ordering heuristics used

by minimaxsat, and the clause learning procedure was strengthened with Failed Literal

Detection (Heras et al., 2008). The Dominating Unit Clause rule, which allows a literal

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 141

to be instantiated if the weight of its unit clauses is at least the weight of all clauses

containing its negation, is used to simplify the theory at each node (Zhang et al., 2003).

The resulting solver is called minimaxhs. In general, we found that minimaxhs can not

compete with state-of-the-art Branch and Bound maxsat solvers. Although our solver

is sometimes able to compute better lower bounds that result in smaller search trees,

the overhead of our techniques results in poor overall performance. However, we believe

that the implementation can be improved, e.g., by limiting the number of learnt clauses

generated at each node.

Since the overall performance of minimaxhs is not competitive with state-of-the-art

solvers, we report only preliminary experiments that show the potential of the mini-

maxhs solver.

We collected a set of 378 instances from the maxsat Evaluations (Argelich et al.,

2007�2012) by identifying benchmark families in which minimaxsat is unable to solve

some instances, and where our solverminimaxhs can outperformminimaxsat on at least

some problems. These benchmark families were chosen to illustrate the cases in which

our method can display interesting behaviour. The selected instances represent all weight

types (maxsat, partial maxsat etc.) and categories (Random, Crafted, Industrial). The

experiments were conducted on a dual-core 2GHz AMD Opteron processor with 3GB of

RAM, and all experiments were run with a 1200 second timeout. These experiments

were performed for the paper (Davies et al., 2010).

6.7.1 Comparing the Lower Bound Heuristics

The �rst set of experiments investigates the performance of the two hitting set heuristics,

H1 and H2, in the context of providing a lower bound during Branch and Bound search.

We ran the search by computing both heuristics at every node of the search, and taking

their maximum as the lower bound. The number of times each of the two heuristics

provided di�erent bounds was counted, and the relative amount by which the winner

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 142

was better was calculated. We discarded easy instances that were solved by all methods

in under 100 decisions, leaving 226 instances. The results are summarized in Table 6.1.

The �rst column speci�es the heuristic that was used, either H1 or H2 alone, or their

maximum. The second column shows the percentage of all lower bounds calculated for

which the one heuristic gave a larger bound than the other (averaged over all instances).

Whenever one heuristic gave a strictly larger bound than the other, the relative di�erence

(e.g. H1/H2 if H1 was the larger) was measured; the third column reports this averaged

over all instances. The average number of decisions and average runtime are shown in

columns four and �ve (these averages are taken over the subset of the 226 instances

that all three lower bound methods could solve, which included 112 instances). The

total number of instances solved (out of 226) using each method is included in the last

column. These results show that it is best to calculate both lower bounds and take their

maximum, since they are both cheap to calculate and can solve more problems when

combined.

LB Heuristic Freq Size Decisions Time (s) Num Solved
H1 50 1.15 36280 49 115
H2 6 1.09 40115 50 115

max(H1,H2) � � 36192 49 117

Figure 6.1: Comparison of the H1 and H2 lower bounds during search, on the 226
instances that required more than 100 decisions to solve. The `Freq' column refers to the
percentage of all lower bounds calculated for which the heuristic gave the larger bound,
averaged over all instances. The `Size' column gives the average factor by which the
bound was larger. The Decisions and Time (s) columns report the average number of
decisions and the average runtime, on the set of 112 instances that all three lower bound
techniques solved. The last column speci�es the number of instances solved out of the
226.

Next, we present results of experiments to investigate the trade-o� between using the

H1 heuristic, and solving the linear program for the hitting set problem using cplex.

The dynamic addition and removal of variables and constraints from the cplex model

can limit the e�ciency of this approach, and the results con�rm that the added strength

of the LP lower bound comes with the price of spending more time at each node. We ran

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 143

minimaxhs with the H1 lower bound alone, and then with only the LP lower bound. The

results are shown in Table 6.2 for the 97 instances that were solved by both methods. By

using the LP lower bound, on average 28% fewer decisions were made by minimaxhs.

The reduction in decisions did pay o� on 37 instances, for which the total runtime was

reduced by using the LP bound. However in the majority of cases, the LP bound increases

the runtime by an average of about 30%. In general, the extra computational cost does

not pay o�, since using the stronger LP bound solves 10 fewer problems. These results

demonstrate that a hybrid approach, using the stronger bounds at judicious points during

search to exceed the UB, is a well-justi�ed direction for future work.

LB Heuristic Decisions Time (s) Num Solved
CPLEX LP 25296 48 105

H1 35059 15 115

Figure 6.2: Comparison of the H1 and LP lower bounds during search. The average
number of decisions and runtime (over instances both methods solved), and the number
of instances solved is shown.

6.7.2 Solving Without Search

Finally, we highlight an interesting observation about the behaviour of minimaxhs on

some instances.

minimaxhs applies an initial phase of Failed Literal Detection (FLD) at the root of

the Branch and Bound search to �nd a collection of learnt clauses. We combine FLD

with TUP in the following procedure. Each literal in F is assigned in turn, and the

formula is reduced using unit propagation to identify hard inferences, followed by TUP.

If a clause is falsi�ed, a unit or empty clause is learned, before undoing all propagations

and moving on to probe the next literal. On some instances, the set of clauses learnt

during probing is informative enough that the lower bound computed by �nding their

MCHS will equal an upper bound provided by one run of ubcsat (Tompkins and Hoos,

2004), that is, these instances are solved without search by minimaxhs. This occurs on

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 144

at least 16 problems, presented in Table 6.3. Note that we only report instances where

the Branch and Bound solver minimaxsat required some branching to solve the problem.

Here, cplex is able to solve the initial MCHS problem exactly, because it is su�ciently

small. These results are not surprising given the success of maxhs that we've seen in

previous chapters. We also observe that the initial processing performed by minimaxhs

(FLD and a MCHS computation) can be quite expensive, even compared to exploring

a moderately large search tree with minimaxsat. However, the potential for saving a

signi�cant amount of search via our methods does exist, as illustrated by, e.g., the results

on instance norm-mps-v2-20-10-stein27.

Year Type Name Optimum minimaxsat Our minimaxsat Our
Decisions Decisions Time (s) Time (s)

2007 wpms 8.wcsp.log 2 1 0 0.05 0.05
2007 wpms norm-mps-v2-20-10-stein15 9 2191970 0 3.8 0.07
2007 wpms norm-mps-v2-20-10-stein27 18 � 0 >1200 0.59
2007 wpms norm-mps-v2-20-10-stein9 5 230 0 0.12 0.14
2008 pms norm-�r01_area_delay 5 14 0 0.14 0.12
2008 pms norm-�r02_area_partials 19 38 0 0.16 0.06
2008 pms norm-�r04_area_partials 30 13 0 0.12 0.6
2008 wms frb10-6-1 50 755 0 0.27 0.23
2008 wms frb10-6-2 50 678 0 0.13 0.26
2008 wms frb10-6-3 50 1302 0 0.13 0.23
2008 wms frb10-6-4 50 580 0 0.29 0.3
2008 wms frb15-9-1 120 387470 0 1.37 3.76
2008 wms frb15-9-2 120 206845 0 2.29 4.6
2008 wms frb15-9-4 120 199365 0 2.24 5.77
2008 wms frb15-9-5 120 271024 0 1.27 5.59
2009 wpms warehouse0.wcsp 328 46 0 0.11 0.12

Figure 6.3: Comparison of minimaxsat and minimaxhs on instances that minimaxhs
can solve without branching.

6.8 Conclusion

This chapter introduced an innovative approach for maxsat solving, with potential

for practical impact based on generating bounds from unrestricted clause learning for

maxsat. Although it may always be necessary to use a restricted version on real prob-

lems, it was argued that this framework provides new insight into how strong lower

bounds can be made practical, for example, by being smart about which soft clauses are

learnt, or by approximating the minimum hitting set well. In addition to these contri-

Chapter 6. Hitting Set Bounds in Branch and Bound for maxsat 145

butions, two heuristics for the weighted hitting set problem were presented, and shown

to be e�ective in a novel context. Based on a preliminary implementation, it is clear

that the primary challenge in bringing this technique to the state-of-the-art in practical

performance, will be to develop methods to learn the best clauses to prune the search

tree.

Chapter 7

Conclusion

This thesis presented practical algorithms to solve optimization problems expressed as

maxsat. maxsat uses propositional clauses with weights to express the constraints of

the optimization problem and the costs associated with violating these constraints. Pre-

viously, many algorithms to solve maxsat were proposed and implemented in maxsat

solvers. Many of these solvers were successfully applied to solve a variety of important

optimization problems in computer science and industry. These existing maxsat solvers

follow one of two paradigms: Branch and Bound search, or solving a sequence of decision

problems. Most of the existing maxsat solvers borrow techniques from SAT solving,

either to calculate bounds in Branch and Bound, or to solve the decision problems by

translating them to SAT and applying a SAT solver as a black-box.

However, in real-world applications, optimization problems are usually modelled and

solved as MIP, not maxsat. MIP uses arbitrary linear constraints and a linear objective

function to model optimization problems. In the introduction we pointed out that MIP

can be used to model and solve maxsat instances as well, and in Chapter 3 we found

that a MIP solver like cplex can sometimes outperform dedicated maxsat solvers. Yet

this approach is not able to solve Industrial maxsat instances, e.g. those arising from

Electronic Design Automation, as e�ciently as maxsat solvers that exploit a SAT solver

146

Chapter 7. Conclusion 147

to solve a sequence of decision problems, as we observed from Table 3.3.

Since maxsat combines aspects of both SAT and optimization, and mature technolo-

gies exist for each of these domains, in this thesis we investigated new methods to exploit

both SAT solvers and MIP solvers as black-boxes in order to solve maxsat robustly and

e�ciently. The proposed maxhs approach automatically and incrementally splits the

maxsat problem into two parts, given to the SAT and MIP solvers respectively, and fa-

cilitates communication between the two sub-solvers so that they work together to solve

the maxsat problem. We demonstrate through an extensive empirical evaluation that

our new maxsat solver based on the maxhs approach is more robust than any existing

maxsat solver. Furthermore, the hybrid maxhs solver performs signi�cantly better than

using a MIP solver alone to solve maxsat. Thus, we have achieved the desired goal of

combining the strengths of both SAT and MIP algorithms to better solve maxsat.

The thesis de�ned the basic maxhs algorithm in Chapter 3, where it was then es-

tablished that the behaviour of maxhs depends on three factors: the time taken by the

SAT solver, the time required by the MIP solver, and the number of iterations (i.e., calls

to the SAT and MIP solvers). We observed that in practise, the time taken by the SAT

solver is much less than the time taken by the MIP solver. So we investigated ways of

using the SAT solver to improve the information provided to the MIP model, and showed

empirically that this usually results in a decrease in the total runtime since each call to

the MIP solver is more e�ective.

In Chapter 4 we investigated several techniques to enrich the MIP model built by

maxhs, motivated by two observations. The �rst observation was from the experimental

results of Chapter 3, which showed that the MIP solver cplex can solve many maxsat

instances better than maxhs or any other maxsat solver. The second observation was

that the maxsat problem imposes many additional constraints on the MIP sub-problem.

Therefore, we proposed three techniques to enrich the information in the MIP model.

First, we identi�ed a so-called realizability condition on the solutions to the MIP model.

Chapter 7. Conclusion 148

Second, we developed a method that allows the SAT solver to discover more general

non-core constraints to give to the MIP model. And third, we proposed to seed the MIP

model with a collection of constraints derived from the original maxsat formula. The

last two ideas lead to a signi�cant improvement in the overall performance of maxhs,

and the resulting version of our solver is robust across Crafted and Industrial instances.

Chapter 5 considered an orthogonal method of increasing the information given to the

MIP model. We showed how maxhs can sometimes use approximate solutions to the MIP

sub-problem in order to reduce the number of expensive optimizations. The approximate

solutions are used to drive the SAT solver's discovery of more constraints, which allows a

large number of constraints to be generated very quickly. We found empirically that these

constraints greatly improve the e�ectiveness of the optimal MIP solving episodes, and

this trade-o� often results in a signi�cant reduction in total runtime. We also showed that

combining the use of non-optimal hitting sets with the seeding technique of the previous

chapter leads to even greater improvements. The resulting version of our maxhs solver

solves more problems overall than any other tested approach, and is robust for both

Crafted and Industrial categories.

Finally, in Chapter 6 we proposed to use some of the maxhs ideas in a Branch and

Bound solver for maxsat. Existing Branch and Bound solvers for maxsat su�er because

the most powerful technique from SAT solving, clause learning, is not sound for maxsat.

The techniques we introduced in this chapter are therefore important as they allow the

search to learn to improve its bounds as it progresses. We showed that the new lower

bound methods can greatly reduce the size of the search tree, but further experimentation

is needed to explore the trade-o� between the time spent to calculate the bounds and

their strength.

This thesis introduced the maxhs approach, which is a hybrid framework that o�ers

much �exibility to design di�erent algorithms for maxsat. The thesis proposed and

evaluated several ways to enhance the basic maxhs algorithm, and showed that it is pos-

Chapter 7. Conclusion 149

sible to develop a very e�ective, state-of-the-art maxsat solver based on this framework.

However, the maxhs approach de�nes a very rich design space, much of which is yet to

be explored. Indeed, there are many promising directions for future work.

It is likely that the robustness of the maxhs approach can be greatly improved by

tailoring the various techniques introduced by this thesis on an instance-speci�c ba-

sis, perhaps by employing an Instance Speci�c Algorithm Con�gurator like Hydra (Xu,

Hoos, and Leyton-Brown, 2010). The MIP solver o�ers a richer modelling language than

maxsat that could be further exploited to represent non-logical constraints, so methods

to identify such constraints in a maxsat instance could be developed.

In addition, it will be interesting to discover if there are new applications that can

be solved via the maxhs approach. By combining MIP and SAT models, maxhs is well

suited to applications where the original optimization problem contains di�erent aspects

that are naturally expressed as linear and logical constraints. Although optimization

problems with general constraints can be solved as MIP or Weighted Constraint Sat-

isfaction (WCSP), we believe that the power of MIP and SAT solvers, when e�ectively

combined by maxhs, provides a uniquely powerful approach to solve real-world problems.

Appendices

150

Appendix A

Basic Terminology

A propositional variable v can take on two values: true and false. A literal is a proposi-

tional variable v or its negation ¬v (¬¬v = v). A clause is a set of literals and a formula

in Conjunctive Normal Form (CNF) is a set of clauses. Unless otherwise noted, n and

m refer to the number of variables and clauses in a formula respectively.

If π is a set of literals such that no variable appears more than once in π, then π is a

truth assignment. If π is a truth assignment that mentions every variable in a formula,

then π is a complete truth assignment wrt that formula, and otherwise it is a partial

assignment. A clause C is satis�ed by a truth assignment π if π ∩ C 6= ∅. A clause is

falsi�ed by a truth assignment π if ¬` ∈ π for all ` ∈ C. A CNF formula Φ is satis�able

if there exists a complete truth assignment that satis�es all of its clauses. If no such

truth assignment exists, Φ is unsatis�able. An unsatis�able subset of the clauses of Φ is

called an UNSAT core. The SAT problem is to determine whether a given CNF formula

is satis�able or not. This decision problem is NP-complete (Cook, 1971).

If v and ¬v appear in the same clause, then the clause is a tautology (i.e. it is satis�ed

by every truth assignment). If a clause contains no literals, it is called an empty clause

and it is falsi�ed by every truth assignment. A unit is a clause containing only one literal,

and a binary clause is one that contains two literals. A clause C1 subsumes another clause

151

Appendix A. Basic Terminology 152

C2 if C1 ⊆ C2.

The clause:variable ratio (the number of clauses divided by the number of variables)

is an important property of a CNF formula. Formulas with higher clause:variable ratios

are considered to be more constrained, and are in general more likely to be unsatis�able.

Given a CNF formula Φ and a literal `, Φ|` is the formula that results from removing

every clause containing ` and removing ¬` from every clause where it appears. This

transformation is called reducing the formula by `, or instantiating `.

Starting with a CNF formula Φ, Unit Propagation (UP) is the process of repeatedly

selecting a unit clause and instantiating its literal until no more unit clauses are left in

the formula or an empty clause is generated. If UP produces an empty clause, then it said

that UP has found a con�ict. This implies that the original formula Φ is unsatis�able,

because UP is sound for SAT.

Resolution is an inference rule that preserves the satis�ability of a CNF theory, and

is therefore sound for SAT. The resolution rule can be applied to two clauses C1 and

C2 in a CNF Φ, if the clauses are clashing, i.e. there exists a literal ` ∈ C1 such that

¬` ∈ C2. In this case, resolution infers the resolvant clause C1∪C2\{`,¬`} which is added

to Φ. A resolution derivation of a clause C from a formula Φ is a sequence of clauses

C1, ..., Ck−1, Ck = C where each Ci is either a clause in Φ or is the resolvant of two clauses

appearing previously in the sequence. A resolution refutation is a resolution derivation of

the empty clause. Since resolution preserves satis�ability, if Φ has a refutation it implies

that Φ is unsatis�able. Resolution is a complete inference rule for SAT, meaning that

there is a resolution refutation for every unsatis�able CNF formula.

Appendix B

DPLL SAT Solvers

The most successful SAT solvers are based on the DPLL algorithm, shown in Algo-

rithm 11. The algorithm begins with the empty partial assignment, and extends it by

alternately making a decision (i.e. assigning some chosen literal), and performing unit

propagation, until a clause is falsi�ed or a solution is obtained. When the current partial

assignment falsi�es a clause, the search backtracks, which involves undoing one or more

of the most recent decisions before continuing the search. At this point, a new learnt

clause, entailed by the original theory, can be derived that may help to prune the future

search.

The algorithm uses a watched literals data structure, which for every literal ` has a

list of clauses whose �rst or second literal is `. During the search, the invariant that

the �rst two literals in every clause are unassigned or satis�ed must be maintained when

possible. The purpose of the watched literals is to allow clauses that are made unit or

falsi�ed by the current assignment to be identi�ed e�ciently.

DPLL begins on lines 3-7 of Algorithm 11 by initializing the watch lists, and assigning

the literals in any unit clauses of the input theory. The assign function takes a literal

` and a reason for its assignment (NULL or a clause that has become unit on `) as

arguments. Assigning a literal involves recording its variable's truth value, as well as the

153

Appendix B. DPLL SAT Solvers 154

decision level at which it was assigned, and its reason. These three pieces of information,

for each variable, are stored in global arrays value, level and reason, which are assumed

to be available to all subfunctions. The assign function is also responsible for pushing

the literal onto a global stack, UPstack, used to implement unit propagation.

At every step, the algorithm performs unit propagation (line 9), according to Algo-

rithm 12. If UP returns a falsi�ed clause C, it means UP has discovered a con�ict and

the current partial assignment can not be extended to a solution to Φ. In this situation,

clause learning is applied on line 13, to derive a new learnt clause L from the con�ict.

The learnt clause is falsi�ed by the current assignment, and entailed by the input theory

Φ. Many such clauses could be generated, but a popular choice is the 1-UIP clause,

which can be derived using the procedure in Algorithm 13.

After learning a new clause and installing it on the watch lists, the search backtracks

to the decision level at which the learnt clause is unit, assigns its remaining literal, and

continues the search (lines 15-16). This style of backtracking is called non-chronological

backtracking since more decisions than the last one may be deleted. The backtrack(d)

function on line 15 just resets the values of the literals whose decision levels are greater

than the parameter d and updates dlevel; backtracking is a very cheap procedure.

If no con�ict is discovered by UP at this step, and the current assignment is complete,

it means that the current assignment is a solution to Φ and the search is �nished (lines

18-19). Otherwise, the algorithm extends the current partial assignment, by choosing and

assigning another decision literal (lines 20-22). This marks the start of a new decision

level, so the decision level is incremented on line 21.

The DPLL algorithm actually creates a resolution refutation if the input formula

is UNSAT. Intuitively, if the algorithm returns UNSAT on line 12, it is because an

empty clause has been derived through a number of calls to Algorithm 13. Each call to

Algorithm 13 is clearly a resolution derivation of a new learnt clause from existing learnt

clauses and input clauses. If all these sub-derivations are saved, they can be put together

Appendix B. DPLL SAT Solvers 155

to reconstruct the derivation of the empty clause. So DPLL can be seen as a proof

system for SAT, that can produce refutations that are as compact as is possible through

Resolution (Hertel, Bacchus, Pitassi, and Gelder, 2008; Pipatsrisawat and Darwiche,

2009).

Algorithm 11: The DPLL algorithm for solving SAT.

SAT-DPLL
(
Φ)1

/* Initialize the current decision level and unit propagation stack */
dlevel = 0, UPstack = ∅2

/* Assign the unit clauses of Φ and initialize the watches */
foreach clause C ∈ Φ do3

if C is unit on ` then4

assign(`, C)5

else6

installWatches(C)7

while true do8

C = UP()9

/* Unit propagation generated a falsi�ed clause C */
if C 6= NULL then10

/* If there is a con�ict at decision level 0, Φ is UNSAT */
if dlevel == 0 then11

return UNSAT12

/* Perform clause learning */
L = analyze(C)13

installWatches(L)14

/* Non-chronological backtracking */
backtrack(level[L[1]])15

assign(L[0], L)16

else17

/* Solution found */
if there is no unassigned literal then18

return SAT19

/* New decision */
` = chooseLiteral()20

dlevel = dlevel + 121

assign(`, NULL)22

Appendix B. DPLL SAT Solvers 156

Algorithm 12: The function DPLL uses to perform unit propagation, that returns
a falsi�ed clause if one is found, and otherwise returns NULL.

UP
(
)1

while UPstack is not empty do2

u = UPstack.pop()3

foreach clause C ∈ watches[¬u] do4

if C is unit on ` then5

/* The assign function will also push ` onto UPstack */
assign(`, C)6

if C is falsi�ed then7

return C8

/* Replace the watch ¬u with an unassigned or satis�ed literal */
renewWatches(C)9

Algorithm 13: The function DPLL uses to learn a 1-UIP clause from a con�ict.
The input C is a falsi�ed clause. The function returns a learnt clause whose �rst
literal belongs to the current decision level and whose other literals are sorted by
decreasing decision level.

analyze
(
C)1

L = C2

while L contains two literals at level dlevel do3

` = a literal in L with maximum level4

/* Resolve L and the reason for ¬` */
L = L∪ reason[¬`] \{`,¬`}5

/* Sort the literals in L by decreasing decision level */
return sort(L)6

Bibliography

Teresa Alsinet, Felip Manyà, and Jordi Planes. Improved branch and bound algorithms

for Max-SAT. In Proceedings of Theory and Applications of Satis�ability Testing

(SAT), 2003.

Teresa Alsinet, Felip Manyà, and Jordi Planes. A Max-SAT solver with lazy data struc-

tures. In IBERAMIA, pages 334�342, 2004.

Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Integer programming for combi-

natorial auction winner determination. In Proceedings of the International Conference

on MultiAgent Systems (ICMAS), pages 39�46, 2000.

Carlos Ansótegui and Felip Manyà. Mapping problems with �nite-domain variables into

problems with boolean variables. In Proceedings of Theory and Applications of Satis-

�ability Testing (SAT), pages 1�15, 2004.

Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial

MaxSAT through satis�ability testing. In Proceedings of Theory and Applications

of Satis�ability Testing (SAT), pages 427�440, 2009.

Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. A new algorithm for weighted

partial MaxSAT. In Proceedings of the AAAI Conference on Arti�cial Intelligence

(AAAI), pages 3�8, 2010.

Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving SAT-based

157

BIBLIOGRAPHY 158

weighted MaxSAT solvers. In Principles and Practice of Constraint Programming

(CP), pages 86�101, 2012.

David L. Applegate, Robert E. Bixby, Vasek Chvátal, andWilliam J. Cook. The Traveling

Salesman Problem: A Computational Study. Princeton University Press, 2007.

Josep Argelich and Felip Manyà. Solving over-constrained problems with SAT technology.

In Proceedings of Theory and Applications of Satis�ability Testing (SAT), pages 60�67,

2005.

Josep Argelich and Felip Manyà. Partial Max-SAT solvers with clause learning. In

Proceedings of Theory and Applications of Satis�ability Testing (SAT), pages 28�40,

2007.

Josep Argelich, Chu Min Li, Felip Manyà, and Jordi Planes. The MaxSAT evaluations.

2007�2012. http://www.maxsat.udl.cat.

Josep Argelich, Daniel Le Berre, Inês Lynce, João Marques-Silva, and Pascal Rapicault.

Solving linux upgradeability problems using boolean optimization. In Proceedings of

the First International Workshop on Logics for Component Con�guration (LoCoCo),

pages 11�22, 2010.

James Bailey and Peter J. Stuckey. Discovery of minimal unsatis�able subsets of con-

straints using hitting set dualization. In Proceedings of the International Conference

on Practical Aspects of Declarative Languages (PADL), pages 174�186, 2005.

Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encodings of pseudo-boolean

constraints into CNF. In Proceedings of Theory and Applications of Satis�ability Test-

ing (SAT), pages 181�194, 2009.

E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation satellite management.

Constraints, 4:293�299, 1999.

BIBLIOGRAPHY 159

Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satis�ability,

Boolean Modeling and Computation, 7:59�64, 2010.

María Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-SAT. Arti�cial

Intelligence (AI), 171:606�618, 2007.

Karthekeyan Chandrasekaran, Richard Karp, Erick Moreno-Centeno, and Santosh Vem-

pala. Algorithms for implicit hitting set problems. In Proceedings of the Symposium

on Discrete Algorithms (SODA), pages 614�629, 2011a.

Karthekeyan Chandrasekaran, Richard Karp, Erick Moreno-Centeno, and Santosh Vem-

pala. Algorithms for implicit hitting set problems. CoRR, abs/1102.1472, 2011b.

Yibin Chen, Sean Safarpour, Andreas Veneris, and João Marques-Silva. Spatial and

temporal design debug using partial MaxSAT. In Proceedings of the ACM Great Lakes

Symposium on VLSI, pages 345�350, 2009.

Yibin Chen, Sean Safarpour, João Marques-Silva, and Andreas Veneris. Automated

design debugging with maximum satis�ability. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 29(11):1804�1817, 2010.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

Annual ACM Symposium on Theory of Computing, pages 151�158, 1971.

M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc

consistency revisited. Arti�cial Intelligence (AI), 174(7-8):449�478, 2010.

Sylvain Darras, Gilles Dequen, Laure Devendeville, and Chu Min Li. On inconsistent

clause-subsets for Max-SAT solving. In Principles and Practice of Constraint Program-

ming (CP), pages 225�240, 2007.

Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler

BIBLIOGRAPHY 160

SAT instances. In Principles and Practice of Constraint Programming (CP), pages

225�239, 2011.

Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP solvers in MAXSAT.

In Proceedings of Theory and Applications of Satis�ability Testing (SAT), 2013.

Jessica Davies, Jeremy Cho, and Fahiem Bacchus. Using learnt clauses in MAXSAT. In

Principles and Practice of Constraint Programming (CP), pages 176�190, 2010.

M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Journal of

the ACM, 7:201�215, 1960.

Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of Theory

and Applications of Satis�ability Testing (SAT), pages 502�518, 2003.

Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT.

Journal on Satis�ability, Boolean Modeling and Computation, 2:1�26, 2006.

Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proceedings

of Theory and Applications of Satis�ability Testing (SAT), pages 252�265, 2006.

Alan Van Gelder. Improved con�ict-clause minimization leads to improved propositional

proof traces. In Proceedings of Theory and Applications of Satis�ability Testing (SAT),

pages 141�146, 2009.

Ana Graça, João Marques-Silva, Inês Lynce, and Arlindo Oliveira. Haplotype inference

with pseudo-boolean optimization. Annals of Operations Research, 184:137�162, 2011.

Ana Graça, Inês Lynce, João Marques-Silva, and Arlindo L. Oliveira. E�cient and

accurate haplotype inference by combining parsimony and pedigree information. In

Proceedings of the International Conference on Algebraic and Numeric Biology (ANB),

pages 38�56, 2012.

BIBLIOGRAPHY 161

Federico Heras and David Bañeres. The impact of Max-SAT resolution-based preproces-

sors on local search solvers. Journal on Satis�ability, Boolean Modeling and Compu-

tation, 7(2-3):89�126, 2010.

Federico Heras and João Marques-Silva. Read-once resolution for unsatis�ability-based

Max-SAT algorithms. In Proceedings of the International Joint Conference on Arti�cial

Intelligence (IJCAI), pages 572�577, 2011.

Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSat: A new weighted Max-

SAT solver. In Proceedings of Theory and Applications of Satis�ability Testing (SAT),

pages 41�55, 2007.

Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSAT: An e�cient weighted

Max-SAT solver. Journal of Arti�cial Intelligence Research (JAIR), 31:1�32, 2008.

Federico Heras, António Morgado, and João Marques-Silva. Core-guided binary search

algorithms for maximum satis�ability. In Proceedings of the AAAI Conference on

Arti�cial Intelligence (AAAI), pages 36�41, 2011.

Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause learning

can e�ectively P-simulate general propositional resolution. In Proceedings of the AAAI

Conference on Arti�cial Intelligence (AAAI), pages 283�290, 2008.

John N. Hooker. Planning and scheduling by logic-based benders decomposition. Oper-

ations Research, 55(3):588�602, 2007.

Eric I. Hsu and Sheila A. McIlraith. Computing equivalent transformations for com-

binatorial optimization by branch-and-bound search. In Proceedings of the Annual

Symposium on Combinatorial Search (SOCS), pages 111�118, 2010.

David S. Johnson. Approximation algorithms for combinatorial problems. In Proceedings

of the Annual ACM Symposium on Theory of Computing, pages 38�49, 1973.

BIBLIOGRAPHY 162

Farah Juma, Eric I. Hsu, and Sheila A. McIlraith. Exploiting MaxSAT for preference-

based planning. In Proceedings of the ICAPS-11 Workshop on Constraint Satisfaction

Techniques for Planning and Scheduling Problems (COPLAS), 2011.

Richard M. Karp. Implicit hitting set problems and multi-genome alignment. In Proceed-

ings of the Annual Symposium on Combinatorial Pattern Matching, page 151, 2010.

Matthew Kitching and Fahiem Bacchus. Exploiting decomposition in constraint op-

timization problems. In Principles and Practice of Constraint Programming (CP),

pages 478�492, 2008.

Donald E. Knuth. Dancing links. In Proceedings of the 1999 Oxford-Microsoft Symposium

in Honour of Sir Tony Hoare, pages 187�214, 2000.

Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. Qmaxsat: a

partial Max-SAT solver. Journal on Satis�ability, Boolean Modeling and Computation,

8:95�100, 2012.

Lukas Kroc, Ashish Sabharwal, and Bart Selman. Relaxed DPLL search for MaxSAT. In

Proceedings of Theory and Applications of Satis�ability Testing (SAT), pages 447�452,

2009.

Adrian Kügel. Improved exact solver for the weighted Max-SAT problem. In Workshop

on the Pragmatics of SAT, 2010.

Javier Larrosa, Federico Heras, and Simon de Givry. A logical approach to e�cient

Max-SAT solving. Arti�cial Intelligence (AI), 172(2-3):204�233, 2008.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for

combinatorial auction algorithms. In Proceedings of the ACM Conference on Electronic

Commerce (EC), pages 66�76, 2000.

BIBLIOGRAPHY 163

Chu Min Li, Felip Manyà, and Jordi Planes. Exploiting unit propagation to compute

lower bounds in branch and bound Max-SAT solvers. In Principles and Practice of

Constraint Programming (CP), pages 403�414, 2005.

Chu Min Li, Felip Manyà, and Jordi Planes. Detecting disjoint inconsistent subformulas

for computing lower bounds for Max-SAT. In Proceedings of the AAAI Conference on

Arti�cial Intelligence (AAAI), 2006.

Chu Min Li, Felip Manyà, and Jordi Planes. New inference rules for Max-SAT. Journal

of Arti�cial Intelligence Research (JAIR), 30:321�359, 2007.

Chu Min Li, Felip Manyà, Nouredine Ould Mohamedou, and Jordi Planes. Exploiting

cycle structures in Max-SAT. In Proceedings of Theory and Applications of Satis�ability

Testing (SAT), pages 467�480, 2009.

Chu Min Li, Felip Manyà, Nouredine Ould Mohamedou, and Jordi Planes. Resolution-

based lower bounds in MaxSAT. Constraints, 15(4):456�484, 2010.

Han Lin, Kaile Su, and Chu Min Li. Within-problem learning for e�cient lower bound

computation in Max-SAT solving. In Proceedings of the AAAI Conference on Arti�cial

Intelligence (AAAI), pages 351�356, 2008.

Vasco Manquinho, João Marques-Silva, and Jordi Planes. Algorithms for weighted

boolean optimization. In Proceedings of Theory and Applications of Satis�ability Test-

ing (SAT), pages 495�508, 2009.

João Marques-Silva and Vasco M. Manquinho. Towards more e�ective unsatis�ability-

based maximum satis�ability algorithms. In Proceedings of Theory and Applications

of Satis�ability Testing (SAT), pages 225�230, 2008.

João Marques-Silva and Jordi Planes. On using unsatis�ability for solving maximum

satis�ability. CoRR, abs/0712.1097, 2007.

BIBLIOGRAPHY 164

João Marques-Silva and Jordi Planes. Algorithms for maximum satis�ability using un-

satis�able cores. In Proceedings of Design, Automation and Test in Europe (DATE),

pages 408�413, 2008.

Ruben Martins, Vasco Manquinho, and Inês Lynce. Clause sharing in parallel MaxSAT.

In Proceedings of the International Conference on Learning and Intelligent Optimiza-

tion (LION), pages 455�460, 2012a.

Ruben Martins, Vasco M. Manquinho, and Inês Lynce. On partitioning for maximum sat-

is�ability. In Proceedings of the European Conference on Arti�cial Intelligence (ECAI),

pages 913�914, 2012b.

Antonio Morgado, Federico Heras, and João Marques-Silva. Improvements to core-guided

binary search for MaxSAT. In Proceedings of Theory and Applications of Satis�ability

Testing (SAT), pages 284�297, Berlin, Heidelberg, 2012.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Cha�: engineering an e�cient SAT solver. In Proceedings of the Annual Design

Automation Conference (DAC), pages 530�535, 2001.

Christian Muise, Sheila A. McIlraith, and J. Christopher Beck. Optimization of partial-

order plans via MAXSAT. In Proceedings of the ICAPS-11 Workshop on Constraint

Satisfaction Techniques for Planning and Scheduling Problems (COPLAS), pages 31�

38, 2011.

Christos H. Papadimitriou and D. Wolfe. The complexity of facets resolved. Journal of

Computer and System Sciences, 37(1):2�13, 1988.

Christos M. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

James D. Park. Using weighted MAX-SAT engines to solve MPE. In Proceedings of the

National Conference on Arti�cial Intelligence (AAAI), pages 682�687, 2002.

BIBLIOGRAPHY 165

Thierry Petit, Christian Bessière, and Jean-Charles Régin. A general con�ict-set based

framework for partial constraint satisfaction. In Proceedings of the International Work-

shop on Soft Constraints, 2003.

Knot Pipatsrisawat and Adnan Darwiche. Clone: solving weighted Max-SAT in a re-

duced search space. In Proceedings of the Australian Joint Conference on Advances in

Arti�cial Intelligence (AUS-AI), pages 223�233, 2007.

Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers

with restarts. In Principles and Practice of Constraint Programming (CP), pages 654�

668, 2009.

Reza Ramezani and Sayed Rasoul Mousavi. Description of the IUT-RR solvers. In 2012

Maxsat Evaluation, 2012. http://maxsat.ia.udl.cat:81/12/solvers/index.html.

Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sattar. Partial

weighted MaxSAT for optimal planning. In Proceedings of the Paci�c Rim Interna-

tional Conference on Trends in Arti�cial Intelligence (PRICAI), pages 231�243, 2010.

Vadim Ryvchin and Ofer Strichman. Faster extraction of high-level minimal unsatis�able

cores. In Proceedings of Theory and Applications of Satis�ability Testing (SAT), pages

174�187, 2011.

SHARCNET. The shared hierarchical academic research computing network. www.

sharcnet.ca, 2013.

João P. Marques Silva and Inês Lynce. On improving MUS extraction algorithms. In

Proceedings of Theory and Applications of Satis�ability Testing (SAT), pages 159�173,

2011.

Dawn M. Strickland, Earl Barnes, and Joel S. Sokol. Optimal protein structure alignment

using maximum cliques. Operations Research, 53:389�402, 2005.

BIBLIOGRAPHY 166

Dave Tompkins and Holger Hoos. UBCSAT: An implementation and experimentation

environment for SLS algorithms for SAT and MAX-SAT. In Proceedings of Theory and

Applications of Satis�ability Testing (SAT), pages 306�320, 2004.

Vijay Vazirani. Approximation algorithms. Springer-Verlag, 2001.

Richard J. Wallace and Eugene C. Freuder. Comparative studies of constraint satisfac-

tion and davis-putnam algorithms for maximum satis�ability problems. The Second

DIMACS Challenge: Cliques, Coloring and Satis�ability, 26:587�615, 1996.

Karsten Weihe. Covering trains by stations or the power of data reduction. In Proceedings

of the Workshop on Algorithms and Experiments (ALEX), pages 1�8, 1998.

Laurence A. Wolsey. Integer Programming. Whiley, 1998.

Zhao Xing and Weixiong Zhang. MaxSolver: An e�cient exact algorithm for (weighted)

maximum satis�ability. Arti�cial Intelligence (AI), 164:47�80, 2005.

Hui Xu, Rob A. Rutenbar, and Karem Sakallah. sub-SAT: a formulation for relaxed

boolean satis�ability with applications in routing. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 22(6):814�820, 2003.

Lin Xu, Holger Hoos, and Kevin Leyton-Brown. Hydra: Automatically con�guring al-

gorithms for portfolio-based selection. In Proceedings of the AAAI Conference on

Arti�cial Intelligence (AAAI), pages 210�216, 2010.

Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan exam-

ples using weighted MAX-SAT. Arti�cial Intelligence (AI), 171:107�143, 2007.

Hantao Zhang, Haiou Shen, and Felip Manyà. Exact algorithms for MAX-SAT. Electronic

Notes in Theoretical Computer Science, 86(1):190�203, 2003.

