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Many problems that arise in the real world are difficult to solve partly because they present computational
challenges. Many of these challenging problems are optimization problems. In the real world we are
generally interested not just in solutions but in the cost or benefit of these solutions according to different
metrics. Hence, finding optimal solutions is often highly desirable and sometimes even necessary. The
most effective computational approach for solving such problems is to first model them in a mathematical
or logical language, and then solve them by applying a suitable algorithm.

This thesis is concerned with developing practical algorithms to solve optimization problems modelled
in a particular logical language, MAXSAT. MAXSAT is a generalization of the famous Satisfiability (SAT)
problem, that associates finite costs with falsifying various desired conditions where these conditions
are expressed as propositional clauses. Optimization problems expressed in MAXSAT typically have two
interacting components: the logical relationships between the variables expressed by the clauses, and
the optimization component involving minimizing the falsified clauses. The interaction between these

components greatly contributes to the difficulty of solving MAXSAT.

The main contribution of the thesis is a new hybrid approach, MAXHS, for solving MAXSAT. Our
hybrid approach attempts to decouple these two components so that each can be solved with a different
technology. In particular, we develop a hybrid solver that exploits two sophisticated technologies with
divergent strengths: SAT for solving the logical component, and Integer Programming (IP) solvers for
solving the optimization component. MAXHS automatically and incrementally splits the MAXSAT problem
into two parts that are given to the SAT and IP solvers, which work together in a complementary way
to find a MAXSAT solution. The thesis investigates several improvements to the MAXHS approach and
provides empirical analysis of its behaviour in practise. The result is a new solver, MAXHS, that is shown

to be the most robust existing solver for MAXSAT.
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Chapter 1

Introduction

Many problems that arise in the real world are difficult to solve partly because they
present computational challenges. Furthermore, it is often important to find not just any
solution to the problem, but rather one that is “best” according to some objective. In
this case, the problem falls into the class of optimization problems. The most effective
approach to solving such problems is to first model them in a mathematical or logical
language, and then solve them by applying a suitable algorithm. This thesis is concerned
with developing practical algorithms to solve optimization problems modelled in a par-
ticular logical language, MAXSAT. MAXSAT is a generalization of the famous Satisfiability
problem.

Both SAT and MAXSAT deal with propositional logic formulas in Conjunctive Normal
Form.! In the SAT problem, the goal is to find a truth assignment that satisfies all of
the clauses if one exists, and to report that no satisfying assignment exists otherwise.
However, when there is no satisfying assignment, it may still be useful to find the truth
assignment that satisfies as many clauses as possible, and this is the goal of MAXSAT. A
solution to a MAXSAT instance is a truth assignment that satisfies the maximal number

of clauses.

! Any Boolean function can be represented by a formula in CNF. A formula is in CNF if it is a
conjunction of clauses, each of which is a disjunction of literals (Boolean variables or their negations).
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In order to facilitate the modelling of a variety of optimization problems, where some
constraints may be more important to satisfy than others, the MAXSAT problem can be
extended by associating different costs with falsifying different clauses. In this case, it
is natural to cast MAXSAT in terms of minimizing the total cost of the falsified clauses.?
This thesis addresses the most general form of MAXSAT instances, commonly referred
to as Weighted Partial MAXSAT.® Each propositional clause is associated with a weight
that is either a positive integer or infinity. The solution to the MAXSAT instance is
a truth assignment to the propositional variables that minimizes the total weight of
falsified clauses, called the cost of the assignment. Hence infinite weight clauses express
conditions that must be satisfied.

To illustrate how MAXSAT is used to model optimization problems, we describe a
natural encoding of the well-known Traveling Salesman Problem (TSP). In TSP, we
imagine that there is a salesman who needs to visit a number of cities (each at most once
except for the starting city), ending up back at the first city. Such an itinerary is called
a tour. For the sake of simplicity, we assume that it is possible to travel directly between
any of the cities, and that the distance in both directions is equal (this is the symmetric
TSP on a complete graph). A solution to the TSP is a tour of minimal length, where
the length is calculated as the sum of the distances.

In order to model TSP as MAXSAT, let n be the number of cities. We introduce
n(n+ 1) Boolean variables x;; to represent visiting city ¢ at time step j, where 1 <i <n
and 1 <7 <n-+1. We add clauses over these variables to enforce the tour constraints,
as follows. In order to specify that some city is visited at every time step, we introduce
n+ 1 clauses {x1;, x9;, ..., Tn;}, 1 < j < n+ 1. These clauses state that at time j, the
salesman is visiting at least one of the cities. We must also specify that it is impossible

to be in more than one city at the same time, using the clauses {—x;;, ~xy; } for all pairs

2Qur definition of MAXSAT as a minimization problem is equivalent to the familiar definition because
minimizing the number of falsified clauses necessarily maximizes the number of satisfied clauses.

3In the remainder of the thesis whenever we refer to MAXSAT without any qualifications we mean
Weighted Partial MAXSAT.
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of distinct cities i # k, 1 < i,k <n and all time steps 1 < j < n + 1. This ensures that
if some z;; is true all other zy; for k # ¢ must be false, i.e., if the salesman is visiting
city 7 at time step j they cannot also be visiting another city k£ at the same time. Now
we must express the property that every city be visited. The clauses {x;1, ...z, } for each
city 7 capture this property since they require city 7 to be visited at one of the first n time
steps (at time step n + 1 the salesman revisits the starting city). Finally, we add the two
clauses {—x;1, Tiny1} and {1, @41} for every city @ which ensure that the first and
last city are the same. We associate an infinite weight with each of the clauses mentioned

so far, to make sure that the MAXSAT solution will satisfy all of these constraints.

Now, any assignment to the variables that satisfies the above mentioned clauses spec-
ifies a legal tour of the cities. It remains to express the different distances between the
cities, which is achieved by using additional clauses with finite weights. For every pair
of cities i # k, we add n clauses {—x;;, "@y;+1} for 1 < j < n, each with weight equal
to the distance between cities ¢ and k. A truth assignment falsifies such a clause if and
only if it assigns true to both x;; and xy;1,. This represents moving from city ¢ at time
step j to city k at time step j + 1. If a truth assignment falsifies such a clause, a cost
equal to the distance between ¢ and k will be incurred. Thus, any truth assignment that
satisfies all of the clauses with infinite weight from above, and therefore corresponds to a
valid tour, will have cost equal to the length of the tour. Therefore the MAXSAT solution,
which finds a minimal cost truth assignment, corresponds to a minimal length tour as

required to solve the TSP.

This thesis is concerned with practical, exact algorithms to solve the MAXSAT problem.
The MAXSAT problem is complete for the complexity class FPN"| which contains many
important discrete optimization problems including TSP. Therefore, if we could develop
a robust and efficient MAXSAT solver, it could be used to solve many different kinds of
optimization problems by translating them to MAXSAT. However, since MAXSAT is FPN'-

complete, it is an even harder problem than SAT. So developing a robust and efficient
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MAXSAT solver is a very challenging goal, and ultimately any MAXSAT algorithm will

have limitations.

Yet we are encouraged by the example of SAT solvers, which although also tackling
hard problems (in this case NP-complete), often perform very effectively as a black-box
solver for many real-world applications. Since MAXSAT is a natural extension of SAT we
believe that in the future, MAXSAT solvers will also see a rise in popularity, based on

providing a convenient and efficient approach for solving optimization problems.

Many MAXSAT solvers have been developed since the mid 1990’s, and they have been
successfully applied to solve a variety of problems. For example, the Electronic Design
Automation (EDA) domain is a natural application area for MAXSAT since the problems
deal with many logical constraints that are easily expressed as conjunctions of clauses.
EDA tasks such as circuit routing and design debugging can be encoded as MAXSAT
and efficiently solved using MAXSAT solvers that exploit SAT technology. Furthermore,
MAXSAT is used to model and solve problems in an increasing diversity of applications,

such as planning, scheduling, probabilistic inference, and bioinformatics as well.

The underlying algorithms implemented by existing state-of-the-art MAXSAT solvers
fall into two main classes: Branch and Bound search, and solving a sequence of decision
problems. In the latter class, most MAXSAT solvers exploit existing SAT technology,
by converting the decision problems to CNF and passing them to a SAT solver. In
contrast, the Branch and Bound solvers perform a backtracking search through the space
of truth assignments, and rely on calculating bounds to prune the search tree. It has
been observed that solvers that follow these two approaches tend to work efficiently on
different types of MAXSAT instances. Very generally, Branch and Bound solvers do better
on “crafted” instances, e.g. graph optimization problems like TSP, while MAXSAT solvers
that use a sequence of SAT problems approach are able to tackle the very large instances
arising in “industrial” applications like EDA. Tt is possible to speculate as to why this

is the case, but no experimentally or theoretically verified explanation for the differing



CHAPTER 1. INTRODUCTION )

behaviour of MAXSAT solvers currently exists.

As we described above, MAXSAT is a natural language to represent optimization prob-
lems and already many MAXSAT solvers have been developed. So it is striking that in
practice, the most commonly applied optimization technology is not MAXSAT but Inte-
ger Programming (IP). For example, the current best solver for TSP is based on the
techniques commonly used to solve IP problems (Applegate, Bixby, Chvatal, and Cook,
2007). IP is a formalism for representing linear optimization problems over discrete val-
ued variables, and it is well studied in the Operations Research community. In IP, the
goal is to find an assignment that satisfies a set of feasibility constraints, which are arbi-
trary linear inequalities over integer variables, and that minimizes or maximizes a linear
objective function. In the Operations Research community, sophisticated algorithms to
solve IP models have been developed. The main approach is Branch and Cut, which relies
on solving linear relaxations of the IP.* The best existing implementations of Branch and
Cut are those incorporated in proprietary Mixed Integer Programming (MIP) packages,
such as IBM ILOG’s ¢cPLEX. These packages are an important tool in many industries,
e.g. airline crew scheduling.

Given the proven popularity of MIP solvers, it is natural to ask whether they are also
effective on MAXSAT instances. There is a simple encoding of MAXSAT to IP and we show
in Section 3.7 that the MIP solver CPLEX actually solves many MAXSAT instances faster
than existing specialized MAXSAT solvers. However, it also fails on many other instances
that specialized MAXSAT solvers can solve.

Although in principle SAT can also be translated to IP and solved using MIP solvers,
the performance of MIP solvers on SAT instances is known to be very poor. This is
because the special-purpose techniques employed by SAT solvers are particularly suited
to handling a large number of logical constraints, which occur in MAXSAT instances as

well. Thus it is not surprising that MAXSAT solvers that exploit SAT technology are

4The linear relaxation of an IP is an LP (Linear Program) that is derived by lifting the restriction
that the variables take on integer values.
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able to solve many MAXSAT instances that are too challenging for MIP solvers. Hence,
a promising approach to create a more robust MAXSAT solver is to investigate ways to

combine SAT and MIP techniques.

In this thesis we introduce a new hybrid approach for solving MAXSAT, that ex-
ploits two sophisticated technologies with divergent but complementary strengths: SAT
and Integer Programming solvers. The proposed MAXHS approach decouples the sat-
isfaction and optimization aspects of MAXSAT. Specifically, MAXHS automatically and
incrementally splits the MAXSAT problem into two parts, given to the SAT and MIP
solvers respectively, and facilitates communication between the two sub-solvers so that
they work together to solve the MAXSAT problem. The SAT and MIP solvers are used
as black-boxes. Thus MAXHS is able to exploit the different abilities of SAT and MIP
solvers to effectively solve the MAXSAT problem, automatically and without touching the

SAT and MIP solvers’ internal algorithms.

We demonstrate through an extensive empirical evaluation that our new MAXSAT
solver based on the MAXHS approach is more robust than any existing MAXSAT solver.
Furthermore, the hybrid MAXHS solver performs significantly better than using a MIP

solver alone to solve MAXSAT.

The remainder of the thesis is organized as follows. In Chapter 2, the MAXSAT prob-
lem is defined, applications of MAXSAT are listed, and the main existing approaches for
solving MAXSAT are explained in detail. The MAXHS approach is introduced in Chap-
ter 3, and the implementation of the MAXHS solver is also described. Section 3.7 describes
the experimental setup used throughout the thesis, and is followed by an empirical com-
parison of the initial version of the MAXHS solver and existing state-of-the-art solvers.
The following two chapters (Chapters 4 and 5) consider two significant enhancements
to the basic MAXHS approach, based on increasing the information provided to the MIP
solver, that result in greater robustness. Chapter 4 proposes to generalize the type of

constraints MAXHS gives to the optimization subproblem, while Chapter 5 studies how
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MAXHS can utilize cheaper approximations of the optimization subproblem. The thesis
changes direction in Chapter 6, where some of the MAXHS ideas are applied within a
Branch and Bound algorithm for MAXSAT. Finally, Chapter 7 concludes the thesis with

a summary of the contribution and ideas for future work.



Chapter 2

Background

2.1 Introduction

The Maximum Satisfiability (MAXSAT) problem is an extension of Satisfiability (SAT)
that is able to represent optimization problems. Many kinds of real-world optimization
problems can be expressed as MAXSAT, and then solved using a general purpose solver.
This approach is often a very efficient method of getting an optimal answer to the original

problem.

MAXSAT, like SAT, deals with formulas in Conjunctive Normal Form, which consist
of a conjunction of clauses, where each clause is a disjunction of propositional literals.
In the SAT problem, the goal is to find a truth assignment that satisfies all clauses
of the formula, and to report that the formula is unsatisfiable if such an assignment
does not exist. However, if the formula is unsatisfiable, it may still be useful to find
a truth assignment that satisfies as many of the clauses as possible, and finding such
an assignment is the aim of MAXSAT. If some of the clauses are more important to
satisfy than others, this can be enforced by associating a cost with falsifying each clause.
Furthermore, if some clauses are mandatory to satisfy, they can be given infinite cost.

Section 2.2 defines the MAXSAT problem and highlights theoretical results that suggest
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it is an important, but hard, problem to solve.

Solving MAXSAT is also important from a practical perspective. Many interesting
real-world problems have been expressed as MAXSAT, from areas such as electronic design
automation (EDA), planning, probabilistic inference, and software upgradeability. There
are potential applications in bioinformatics, scheduling, and combinatorial auctions as
well. Given the success story of SAT solvers, which can be treated as a blackbox to
solve very large problems arising from industrial applications, and the close relationship
of MAXSAT and SAT, it is possible that future MAXSAT solvers will play a significant
role in solving real-world optimization problems. Section 2.3 begins by showing how a
familiar combinatorial optimization problem can be naturally expressed as MAXSAT, and

then describes some real-world applications of MAXSAT in detail.

The existence of important real-world applications motivates the development of ef-
ficient MAXSAT solvers. The first MAXSAT solvers were based on the Branch and Bound
algorithm, an established approach for solving combinatorial optimization problems.
Branch and Bound performs a depth-first search over partial assignments, keeping track
of the best complete assignment found so far. At each node of the search tree, a bound on
the quality of any complete assignment below the current node is calculated. This bound
can be used to prune the subtree. Typically, the performance of Branch and Bound is
significantly affected by the strength of this bound. Section 2.5.1 explains the specialized

bounds used by MAXSAT solvers.

Some MAXSAT instances, especially those arising in industrial applications like EDA,
are too challenging for existing Branch and Bound MAXSAT solvers, yet can be easily
refuted by a state-of-the-art SAT solver. Such instances can sometimes be solved by
instead converting the MAXSAT problem to a sequence of SAT problems, and then ex-
ploiting a SAT solver as a blackbox to solve each one. These solvers work by adding fresh
variables to the soft clauses, called relaxation variables since they can effectively remove

soft clauses from the problem. Constraints over the relaxation variables are added to
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control how many clauses are relaxed. The various methods used to reduce both the
number of calls to the SAT solver and the size or difficulty of the SAT instances, are

discussed in Section 2.5.2.

2.2 The MAXSAT Problem

We first define the MAXSAT problem, as it will be used throughout the thesis. An instance
of the MAXSAT problem is given by a CNF formula and a weight for each clause in the

formula.

Definition 1 (Instance of MAXSAT). An instance of the MAXSAT problem is given by a
propositional formula in Conjunctive Normal Form, F, and a weight wt(c) € NT U {oco}

for every clause ¢ in F.

Although Definition 1 specifies that the weights are integers, in practise the algorithms
introduced in this thesis can handle finite precision real costs as easily as integers. The
weights are assumed to be greater than zero, since clauses with weight zero can be
removed from F without impact.

Clauses might be hard clauses, indicated by them having infinite weight. Clauses with
finite weight are called soft clauses. hard(F) is used to indicate the hard clauses of F
and soft(F) the soft clauses. In practise, the infinite weight is represented by a suitable

large integer, for example, a value larger than the sum of the weights of all soft clauses.

Definition 2 (Hard and Soft Clauses). hard(F) = {c € F : wt(c) = oo} is the set of
hard clauses of MAXSAT instance F. soft(F) = {c € F : wt(c) # oo} is the set of soft

clauses of F. It is the case that F = hard(F) U soft(F) and hard(F) N soft(F) = 0.

In the literature, the type of MAXSAT instance defined in Definition 1 is often called
Weighted Partial MAXSAT. Three common restrictions include Partial MAXSAT, where

all soft clauses have weight 1, and Weighted MAXSAT, where there are no hard clauses.
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The “unweighted” MAXSAT problem is to satisfy as many clauses as possible; there are
no hard clauses, and all clause weights are 1.

The weight wt(c) associated with a clause ¢ of a MAXSAT instance F represents the
cost of falsifying that clause. The goal of solving MAXSAT is to find a truth assignment
that falsifies the least weight of clauses, i.e. that incurs the least cost. The cost of a

truth assignment is defined as follows.

Definition 3 (Cost of a Truth Assignment). If 7 is a truth assignment to the variables

in MAXSAT instance F then cost(m,F) is the sum of the weights of the clauses falsified

by m: cost(m, F) =3 e r | nppey WE(C).-
Sometimes it will also be necessary to refer to the cost of a set of clauses.

Definition 4 (Cost of a Clause Set). If H is a set of weighted clauses then cost(H) is

the sum of the clause weights in H: cost(H) =) ., wt(c).
To solve a MAXSAT instance, a truth assignment of minimal cost must be found.

Definition 5 (MAXSAT Solution). If F is a MAXSAT instance then a solution to F is a

truth assignment m to the variables of F such that cost(m, F) is minimal.
We use mincost(F) to denote the cost of a solution to MAXSAT instance F.

Definition 6 (mincost(F)). mincost(F) denotes the cost of a solution to MAXSAT in-

stance F.

Solving MAXSAT can be equivalently defined in terms of maximizing the sum of the
weights of the satisfied clauses. In this thesis, the MAXSAT problem is defined in terms
of minimization of cost because it allows hard clauses to be treated the same as other
weighted clauses.

If the hard clauses of MAXSAT instance J are not satisfiable, then every truth assign-

ment will falsify at least one hard clause and therefore mincost(F) = oc.



CHAPTER 2. BACKGROUND 12

Definition 7 (Unsatisfiable). If mincost(F) = oo then the MAXSAT instance F is said

to be unsatisfiable.

In the remainder of the thesis, it is assumed that hard(F) is satisfiable and that
F = hard(F)Usoft(F) is unsatisfiable. It is straightforward to extend all of the results to
deal with these corner cases. Furthermore, from a practical point of view both conditions
can be easily tested with a SAT solver and if either is violated the MAXSAT solution is
immediately known: if hard(F) is unsatisfiable then mincost(F) = oo and any truth
assignment is a solution; and if F is satisfiable then mincost(F) = 0 and the SAT
solution is also a MAXSAT solution.

We will also need two additional basic definitions. In the context of SAT, an UNSAT
core is any unsatisfiable subset of the formula. In MAXSAT, where some clauses are hard
and some are soft, we define a core similarly as a subset of the soft clauses that can not

be satisfied at the same time as the hard clauses.

Definition 8 (Core). A core r for a MAXSAT formula F is a subset of soft(F) such

that k U hard(F) is unsatisfiable.

Note that every truth assignment falsifies at least one clause of kU hard(F), and any
truth assignment that satisfies the hard clauses will falsify at least one clause in x itself.

Finally, the decision version of the MAXSAT problem is defined as follows.

Definition 9 (MAXSAT Decision Problem). The MAXSAT decision problem is to deter-
mine for a particular k € R™ U oo if there is a truth assignment w to the variables of

MAXSAT instance F such that cost(m, F) = k.

The MAXSAT decision problem is NP-complete and MAXSAT is NP-hard (Cook, 1971),
so it is not expected that an algorithm to efficiently solve all instances will be found.
Another way to understand the difficulty of solving MAXSAT is to consider the com-

plexity of solving MAXSAT given access to a SAT oracle.
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Definition 10 (FPY"). FPYY is the class of all functions from strings to strings that can

be computed in polynomial time by a deterministic Turing machine with a SAT oracle.

Theorem 1. (Papadimitriou, 1994) The MAXSAT problem with finite integer weights is

complete for the complezity class FPNT.

Many other well-known optimization problems are also FPN'-complete, including
The Traveling Salesman Problem, Knapsack, weighted Max-Cut and weighted Bisection
Width.!

2.3 Applications of MAXSAT

There are many potential applications of MAXSAT. For example, wherever SAT is cur-
rently employed to solve a real-world problem, if there are preferences over the SAT
solutions they can be captured using MAXSAT, in order to find a preferred solution. Or
in the case that the SAT encoding of a problem is over-constrained and there is no sat-
isfying assignment, the MAXSAT solution that satisfies as many constraints as possible
may still be of practical utility. Going farther, any optimization problem in FPN" | which
also includes many practical optimization problems, can be expressed as MAXSAT. Of
course, MAXSAT is more suited to some applications than others, since for example, there
may be no reasonably compact MAXSAT model. There are alternative ways to model and
solve optimization problems that generalize MAXSAT, such as Weighted Constraint Sat-

isfaction and Integer Linear Programming. In this section we first explain how a familiar

! An instance of the Traveling Salesman Problem is given by a list of n cities and a nonnegative integer
distance between each pair of cities. The problem is to find a shortest tour, that begins and ends at
the same city and visits each other city exactly once. An instance of the Knapsack problem is given by
a set of n items, each with a positive integer value v; and weight w;, and a maximum total weight G.
The problem is to find a subset of the items such that their total weight is at most G and their total
value is maximized. The weighted Max-Cut problem is posed on an undirected graph with positive edge
weights, and its solution is a partition of the vertices into two sets such that the total weight of the edges
that cross the partition is maximized. The weighted Bisection Width problem is similar to weighted
Max-Cut except that the desired partition must divide the vertices into two equally sized sets such that
the total weight of the edges crossing the bisection is minimized.
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optimization problem can be easily encoded as MAXSAT. Then we go on to highlight

real-world problems where MAXSAT solvers have been applied successfully.

2.3.1 Max-Cut

The Maximum Cut problem is to find a partition of the vertices of an undirected graph
into two sets such that the number of edges going between the sets is maximized. The
Weighted Maximum Cut problem adds positive weights to the edges of the graph, and
the goal becomes to maximize the sum of the weights of the edges in the cut. Next we

give two possible MAXSAT encodings of the Weighted Maximum Cut problem.

Binary Clause Encoding

Let G = (V, E) be an undirected graph with edge weights given by the function w : £ —
R=%. For every vertex i € V in the graph, the MAXSAT instance has a boolean variable
v; that represents whether or not vertex 4 is in the first partition. For each edge (i, 7) in
the graph, there are two binary soft clauses in the MAXSAT instance of the form (v; V v;)
and (—v; V —w;). The cost of each of these two clauses is equal to the weight of the
edge. So F = {(v; Vv;), (—v; V —w;) : (4,5) € E} where wt((¢; V {;)) = w((4,j)) for each
(l; Vi) e F.

Therefore, every time two vertices i, j that are connected by an edge are assigned
to the same partition, a cost of w((,7)) is incurred by falsifying exactly one of the two
clauses (v; V v;) and (—w; V —w;). Since the solution to the MAXSAT instance minimizes
the cost, the weight of edges that are not in the cut will be minimized. This maximizes

the weight of the cut.

The number of variables in this encoding is |V'| and the number of soft clauses is 2|E)|.
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Hard Clause Encoding

In this alternative encoding of Weighted Maximum Cut, the MAXSAT instance has a
variable e;; for each edge (i,j) € E in addition to the variables corresponding to the
vertices. If the variable e;; is true, it will mean that the edge (7,7) is in cut. Hard
clauses are used to ensure that the set of true variables actually corresponds to a cut
in the graph, as follows. For each edge (i,j) € E there are four hard clauses that say
that e;; is true if and only vertices ¢ and j are in different partitions. So hard(F) =
{(v; V=05 Voei), (—v; Vo Vei), (v Vo Vo—e ), (—u; V =y Vo—ey ) (4, 5) € E}. Finally,
for each variable there is a soft unit clause (e;;) with weight equal to the weight of the
corresponding edge in the graph.

This encoding is larger than the binary clause encoding in terms of both the number
of variables and clauses. There are |V| 4 |E| variables, |E| soft clauses and 4|E| hard
clauses.

This example of encoding Weighted Maximum Cut in MAXSAT illustrates that more
than one natural MAXSAT model may exist. For example, the costs may be associated only
with the unit clauses, as in the hard clause encoding, or with violating non-unit clauses,
as in the binary clause encoding.? The choice of encoding may affect the performance of

state-of-the-art MAXSAT solvers.

2.3.2 Design Debugging

MAXSAT solvers can be used to find the source of errors in the design of digital circuits.
In order to verify that a circuit implements the intended behaviour, various inputs to
the circuit are tested. If the output of the circuit does not match the desired output, the
circuit must be debugged. This means that the source of the faulty behaviour must be

found and then fixed. Debugging is very time consuming for humans to perform, and can

2Tf all of the soft clauses of a MAXSAT instance are unit, then it is also a Binate Covering problem, a
Pseudo-Boolean Optimization problem and an Integer Linear Program.
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also be challenging to automate efficiently. MAXSAT can be used within the debugging
task in order to rule out irrelevant parts of the circuit and focus on the potential error
sources (Chen, Safarpour, Veneris, and Marques-Silva, 2009; Chen, Safarpour, Marques-
Silva, and Veneris, 2010).

In design debugging, the circuit is translated to CNF in the usual way, by introducing a
variable to represent the output of each gate, and clauses that constrain its value to be the
appropriate function of its input variables. The circuit’s CNF formula C'is conjoined with
the assignment to the input variables I that resulted in the faulty output during testing.
Finally, the correct output O is also asserted, resulting in the formula C'A I A O, which is
unsatisfiable since the circuit represented by C' does not actually produce output O when
given input /. The input and output unit clauses are hard clauses, and the circuit clauses
are soft with uniform weights. Therefore, the MAXSAT solution will provide a minimal
subset of C' that if removed will allow the circuit to be fixed. Thus the MAXSAT solution
represents a possible source of error, which can be further analyzed and aggregated with

other potential error sources in order to fully debug the circuit.

2.3.3 Other Applications

Another application of MAXSAT in Electronic Design Automation is FPGA (Field Pro-
grammable Gate Array) routing (Xu, Rutenbar, and Sakallah, 2003). MAXSAT solvers
perform well on scheduling problems for image capture on the SPOT5 Earth observ-
ing satellite (Bensana, Lemaitre, and Verfaillie, 1999). The optimal protein alignment
problem from biology was first cast as a Max Clique problem and solved efficiently using
dedicated algorithms (Strickland, Barnes, and Sokol, 2005). However, the same instances
when translated to MAXSAT are challenging for state-of-the-art MAXSAT solvers, as can
be seen in the results of the 2009-2012 MAXSAT Evaluations on the PROTEIN-INS fam-
ily (Argelich, Li, Manya, and Planes, 2007-2012). Another application in bioinformatics

is haplotype inference by pure parsimony (HIPP), which seeks to explain the genetic
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makeup of a population (Graga, Marques-Silva, Lynce, and Oliveira, 2011; Graga, Lynce,
Marques-Silva, and Oliveira, 2012). The winner determination problem in combinato-
rial auctions can be solved using Integer Programming solvers (Andersson, Tenhunen,
and Ygge, 2000), but MAXSAT solvers are also effective on artificially generated in-
stances (Leyton-Brown, Pearson, and Shoham, 2000). In planning, MAXSAT is used
in optimal planning with action costs (Robinson, Gretton, Pham, and Sattar, 2010),
preference-based planning (Juma, Hsu, and Mecllraith, 2011), and optimizing partial-
order plans (Muise, Mcllraith, and Beck, 2011), as well as to learn action models from
plan examples (Yang, Wu, and Jiang, 2007). The Most Probable Explanation (MPE)
problem in probabilistic networks can be expressed as MAXSAT (Park, 2002). Another
industrial application is upgrading software package installations (Argelich, Berre, Lynce,

Marques-Silva, and Rapicault, 2010).

2.4 Resolution for MAXSAT

This section describes an algorithm for solving MAXSAT that is similar to the Davis-
Putnam algorithm for SAT, that is based on ordered resolution (Davis and Putnam,
1960). The algorithm is based on the MAXRES rule, which is an equivalence-preserving
transformation rule that generalizes Resolution. The MAXRES rule is defined first, fol-
lowed by a description of how it can be applied by the Saturation algorithm to solve
MAXSAT. Finally, the limitations of this algorithm are discussed from a practical per-

spective.

2.4.1 The MAXRES Rule

In propositional logic, an inference rule is a way of deriving new conclusions that are logi-
cally implied by the original formula. For example, the Resolution rule (see Appendix A)

is an inference rule that can be used to derive any clause logically implied by the input
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CNF formula. Inference can be thought of as transforming a formula into one that is
equivalent, but in some sense more informative.
Although Resolution is sound and complete for SAT, it is not a sound method of

inference for MAXSAT.

Example 1. Consider the MAXSAT instance F = {(—z,y), (z), (—y)} where all clauses
have weight 1. The clause (y) can be derived through Resolution on the first two clauses
of F. However, adding this clause changes the MAXSAT solutions. The truth assignment
m = (z = true,y = false) is a solution to F since it falsifies only one clause. On the other
hand, m is not a solution to F U {(y)}: 7 falsifies two clauses while o = (x = true,y =

true) falsifies only one.

The MAXRES rule is similar to Resolution but is sound and complete for MAXSAT (Bonet,
Levy, and Manya, 2007). MAXRES is a transformation rule, in that it removes some
clauses from the formula and replaces them with another set of clauses. This is in con-
trast to Resolution, which only adds clauses.

MAXRES is applied to two weighted clauses (z, A) and (—z, B) with wt((z, A)) = w;
and wt((z, B)) = wsy, where A and B are possibly empty sets of literals. TLet m be
the minimum of w; and w,, and define an ordering on the literals in A and B so that
A ={a,..,a;} and B = {by,...,b;}. MAXRES removes the clauses above the horizontal
line in Figure 2.1 from the formula and replaces them by the clauses appearing below
the line. The clauses containing negated a; and b; variables are called the compensation
clauses. Here, if any weight (including infinity) is subtracted from an infinite weight,
the result is always infinity. Note that if A is empty, none of the compensation clauses
containing —a; are really generated, and similarly if B is empty. Any tautologies or
0-weight clauses that would be generated are omitted. Also, if one of the clauses is
subsumed by another hard clause generated in this MAXRES step, the subsumed clause
will be omitted. This means that if both input clauses are hard, MAXRES behaves exactly

the same as Resolution.
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Clause Weight
(x,A) wy
(—z, B) Wy
(A, B) m
(z, A) wy —m
(—z, B) wy —m
(x, A, —by) m
(x, A, by, —by) m

(x, A, by, ... bj_1, b))

m
(_‘37,37_'&1) m
(—x, B,ay, ..., ax_1, "ay) m

Figure 2.1: The MAXRES rule. A = {ay,...,ax}, B = {b1,...,b;}, k,j > 0, and m is the
minimum of w; and we. MAXRES replaces the two weighted clauses above the line by the
set of weighted clauses appearing below the line.

It is easy to verify that the MAXRES rule is sound for MAXSAT, by showing that it
preserves the cost of every truth assignment. This guarantees that applying MAXRES

does not change the MAXSAT solutions.

Proposition 1. (Bonet et al., 2007) If F is a MAXSAT instance and F' is the re-

sult of applying one MAXRES step to F, then for all truth assignments m, cost(m, F) =

cost(m, F').

2.4.2 The Saturation Algorithm

The MAXRES rule is potentially useful because it can simplify the MAXSAT formula and
reveal more information about the optimal solution. In fact, it is possible to solve MAXSAT
by using the MAXRES rule alone. That is, MAXRES is complete as well as sound for

MAXSAT.

Theorem 2. (Bonet et al., 2007) MAXRES is complete for MAXSAT. That is, given an
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instance of MAXSAT F, there is a sequence of MAXRES transformations starting with F
that results in a MAXSAT theory F' such that the cost of the empty clauses in F' is equal
to mincost(F), and the rest of the clauses in F' are satisfiable. Furthermore, any truth

assignment satisfying the non-empty clauses of F' is a solution to F.

The proof that MAXRES is complete for MAXSAT (Theorem 2) requires the following

definition of saturation.

Definition 11 (Saturation). A MAXSAT theory F is saturated with respect to variable x
if for every pair of clauses C1, Cy in F that clash on x, Cy and Cs also clash on another

variable y # x.

An algorithm to find a sequence of MAXRES transformations that satisfies the con-
ditions of Theorem 2 is MAXSAT-Saturation, shown in Figure 1 (Bonet et al., 2007).
MAXSAT-Saturation works as follows. Given an ordering over the variables, MAXSAT-
Saturation performs MAXRES steps resolving on z; until the formula A; ; is saturated
with respect to x;. The algorithm sets aside the clauses that still contain z;, and sat-
urates the clauses not containing x; by the next variable x;.,. These saturation steps
continue until all variables have been saturated. Bonet et al. prove that the result of
MAXSAT-Saturation is a set of empty clauses whose weights sum to mincost(F) and a
satisfiable set of clauses (those that were set aside in each saturation step) whose satis-
fying truth assignments are solutions for F. Bonet et al. show how a truth assignment
that is a solution to F is easy to build given the sequence of set aside clauses {B;} ,
by greedily assigning one literal at a time starting with z,,.

The worst-case time complexity of MAXSAT-Saturation is O(m2"), where m is the
number of clauses in F and n is the number of variables. Indeed, Algorithm 1 is unlikely
to work well in practise. In the worst case one MAXRES step increases the number of
clauses in the formula by ||A| + || B|| + 1, or O(n) where n is the number of variables.
Furthermore, the clauses produced by MAXRES may be quite long. It is likely that the

space required by MAXSAT-Saturation will be prohibitive in practise.
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Algorithm 1: The Saturation algorithm for solving MAXSAT. F is a MAXSAT
formula. Returns mincost(F).

1 MAXSAT-Saturation (F)

2 AO = F

3 for i=1 to n do

4 S = Saturate(A;_1, z;)

5 A ={CeS:z ¢C}
6 | Bi— S\ A,
/* Any truth assignment that satisfies | J;_, B; is a solution to the MAXSAT
instance F. */
/* A, contains only empty clauses. */

7 return Yoea, wt(C)

Yet the MAXRES rule is used in practical MAXSAT solving. MAXRES is utilized by state-
of-the-art Branch and Bound MAXSAT solvers to transform the current formula at each
node of the search tree (Heras, Larrosa, and Oliveras, 2008; Larrosa, Heras, and de Givry,
2008; Li, Manya, Mohamedou, and Planes, 2009; Kiigel, 2010). The goal of applying
MAXRES during Branch and Bound is to create more empty clauses, since they provide a
lower bound on the cost of a solution to the current formula. The transformation may also
simplify the current formula, for example, by reducing the number of clauses. However,
the MAXRES rule can quickly produce many large clauses that are not necessarily useful,

so in practise, MAXRES is only applied in particular cases where it is found to pay off.

2.5 Existing MAXSAT Solvers

The existing MAXSAT solvers can be divided into two groups based on their underlying

algorithm: the Branch and Bound solvers, and the sequence of SAT instance solvers.

2.5.1 Branch and Bound Solvers

Branch and Bound algorithms are a common approach for solving optimization problems,

including MAXSAT. Branch and Bound searches the binary tree of partial assignments to
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the variables, starting with the empty assignment at the root. At each node of the tree
an uninstantiated variable is chosen to branch on. The children of this node correspond
to assigning the variable to true and false. This tree is explored in a depth-first manner,

to find a complete assignment with minimal cost.

However, it may be unnecessary to visit all 2" complete assignments. A first step
to pruning the search space is to keep track of the cost already incurred by the partial
assignment at the current node. If this known cost meets or exceeds the cost UB of the
best complete assignment found so far, then the subtree below this node can be pruned.
Furthermore, if it can be anticipated that some additional cost must be incurred by
any complete assignment below the current node then that information can also be used
to backtrack. A method of proving that any complete assignment extending a partial
assignment has cost at least C' is called a lower bound function, and it is a significant

factor in the performance of Branch and Bound algorithms.

Algorithm 2 shows a recursive version of this basic algorithm. The initial call to
MAXSAT-B&B-1 requires an upper bound on the cost of the MAXSAT solution, which is
usually supplied by a local search procedure that tries to find a complete assignment with
small cost (Tompkins and Hoos, 2004). On line 2, it is assumed that the LowerBound(F)
function returns a value at least as large as the sum of the weights of the empty clauses in
F. On Line 5, SumEmpty is a function that returns the sum of the weights of the empty
clauses in the given formula. On Line 6, ChooseLiteral is a function that returns a literal
(whose variable appears in the given formula) according to the variable and value ordering
heuristics. This chosen literal is also sometimes called the branching literal or the decision
literal. Most MAXSAT solvers use a variable ordering heuristic that favours variables that
appear in many clauses, many short clauses, or clauses with large weight (Wallace and
Freuder, 1996; Alsinet, Manya, and Planes, 2003; Xing and Zhang, 2005). On lines 7 and
8, the chosen literal and then its negation are instantiated, with the reduced formulas

given to the recursive calls.
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Algorithm 2: The basic Branch and Bound algorithm for solving MAXSAT. F is a
MAXSAT formula. On the initial call, UB = cost(w) for some complete assignment
7. Returns mincost(F) if it is less than UB, and UB otherwise.

MAXSAT-B&B-1 (F,UB)

if LowerBound(F) > UB then

3 L return UB

if F contains no variables then

5 | return SumEmpty(F)

6 v = ChooseLiteral(F)

7 UB = MAXSAT-MAXSAT-B&B-1 (F|,,UB)

8 Teturn MAXSAT-MAXSAT-B&B-1 (F|.,,UB)

N e

'y

It is important for the Branch and Bound search to try to prune the part of the
search space where the hard clauses of F can not be satisfied, since this can drastically
reduce the size of the search space that must be visited. MAXSAT solvers can apply
Unit Propagation (UP), and clause learning (see Appendix B) to the hard clauses in F
in order to perform this type of pruning soundly and efficiently (Argelich and Manya,
2007). MAXSAT solvers use the two watched literal data structure, first developed for SAT
solvers (Moskewicz, Madigan, Zhao, Zhang, and Malik, 2001), in order to support efficient
UP and backtracking (see Appendix B) (Argelich and Manya, 2005). The VSIDS variable
ordering heuristic, also borrowed from SAT solving, works well for MAXSAT solvers that
learn hard clauses (Heras, Larrosa, and Oliveras, 2007).

The first Branch and Bound solver for MAXSAT was developed by Wallace and Freuder
in the mid 1990s (Wallace and Freuder, 1996). Over the years, the most significant
improvements have been gained by better lower bounds and the application of additional
transformation rules (i.e. on lines 7 and 8 of Algorithm 2 after instantiating the chosen

literal).

Lower Bounds Using Disjoint Cores

Wallace and Freuder introduced the Inconsistency Count lower bound, that only takes

into account the wnit clauses in the current formula. The sum over all variables v of
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the minimum of the number of unit clauses (v) and the number of unit clauses (—wv)
is a lower bound on the optimal number of falsified clauses: LB = #Empty(F) +
Yo (mindic(v),ic(—v)}) (Wallace and Freuder, 1996).

Note that each pair of conflicting unit clauses is actually a core of the current formula,
which in this context is usually referred to as an inconsistent subformula. The correctness
of the Inconsistency Count lower bound is based on the fact that every truth assignment
will falsify either (v) or (—w), independently of all other variables.

This idea of finding disjoint inconsistent subformulas can be extended to finding
disjoint inconsistent sets each of which may contain more than two clauses (Li, Manya,
and Planes, 2005, 2006; Darras, Dequen, Devendeville, and Li, 2007). Unit propagation
is used to find such inconsistent sets, because it can be implemented efficiently and
undone very easily (see Appendix B). Given the current formula F at an internal node
of the search, the disjoint inconsistent sets are found by applying unit propagation until a
conflict is found, removing the involved clauses, and repeating UP until no more conflicts
can be found in this way. The lower bound is then the sum of the weights of the minimum
weight clauses from each inconsistent set. Once the lower bound has been calculated, all
of the changes to the formula are undone before continuing search.

The number of disjoint inconsistent sets that will be found is dependent on the order
in which unit clauses are propagated, and propagating the most recently created unit
clause seems to work best in practise (Li et al., 2006). Additional inconsistent sets can
be found by applying Failed Literal Detection,® since if unit propagation finds a conflict
in both F U {¢} and F U {—(}, the set of clauses involved (excluding (¢) and (—¢)), is an
inconsistent subformula of F.

One drawback to such lower bound functions is that the same inconsistent subformulas
may be rediscovered at descendent nodes in the search. This is very likely to happen

because when the next decision literal is instantiated, only some limited transformations

3Failed Literal Detection on a literal x is performed by temporarily adding the unit clause () to the
current formula F and then applying UP, i.e., UP is applied to F U {(z)}.
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are applied to the formula as a result of this new variable assignment. The changes
to the formula are limited because unit propagation can not be soundly applied to the
soft clauses. Therefore, many of the clauses remain unchanged when a new decision is
instantiated. In order to reduce the amount of recomputation, some of the inconsistent
sets can be memorized (Darras et al., 2007). However in the next section we see a more
popular method of making the lower bound computation incremental, based on MAXRES

transformations.

Transformations and Lower Bounds

The best performing Branch and Bound solvers in the latest MAXSAT Evaluation combine
a lower bound based on disjoint inconsistent subformula detection with sound transfor-
mations based on MAXRES.

The main idea is to use UP to find an inconsistent subformula R, and then apply some
series of MAXRES steps to the clauses in R. The goal is to generate a new empty clause,
since it will immediately contribute to the lower bound and also record the inconsistency
for all descendent nodes. Furthermore, if this process is repeated until UP can find no
more conflicts, the resulting lower bound may be greater than the lower bound that
can be calculated using disjoint inconsistent subformulas. Intuitively, the inconsistent
subformulas no longer have to be disjoint.

The challenge with this approach is that MAXRES can become expensive to apply,
since in general each MAXRES step adds many compensation clauses to the formula.
Therefore, several ways to apply MAXRES to inconsistent subformulas have been pro-
posed.

For example, MINIMAXSAT (Heras et al., 2007, 2008) takes the inconsistent set found
by UP and applies the analysis algorithm used to learn clauses in SAT (Algorithm 13 in
Appendix B), except that each Resolution step in the derivation is replaced by a MAXRES

step. It is possible to use MAXRES to copy the derivation of the learnt clause because each
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clause is used no more than once. However, Heras et al. found that this transformation
only pays off if the intermediate clauses generated by Algorithm 13 are all of length three
or less.

All other recent Branch and Bound MAXSAT solvers are based on MAXsATZ (Li,
Manya, and Planes, 2007), including WMAXSATZ-2009 (Li et al., 2009), INCMAXSATZ (Lin,
Su, and Li, 2008), wMAXSATZ+ (Li, Manya, Mohamedou, and Planes, 2010), AK-
MAXSAT_Ls (Kiigel, 2010) and 1UT_RR (Ramezani and Mousavi, 2012). These solvers
apply transformations if the inconsistent set of clauses contains a subformula matching
one of three patterns. The first pattern is a Chain containing two unit clauses and k > 0
binary clauses: {(¢1), (=1, 02), (=2, l3), ..., (=g, lkt1), (—lk+1)}. The second pattern is
Cycle Resolution restricted to three variables. The third pattern is a combination of the
first two patterns. In each case, the transformation rule can be justified by a series of
MAXRES steps.

Note that only binary and unit clauses are involved in the transformations applied
by the MAXSATZ family of solvers, which limits the strength of their lower bounds. Also,
not all inconsistent sets discovered by unit propagation will match one of the specific
patterns, e.g.

{(1), (b1, 05), (—ly,ls), (—la, £y), (05, —ly)} does not match the Chain or Cycle pat-
terns. Nevertheless, the best performing Branch and Bound solver in the 2011 MAXSAT

Evaluation was AKMAXSAT_ LS, that uses just these rules (Kiigel, 2010).

Other Lower Bounds

A few other distinct lower bounds have been proposed. One translates the current
MAXSAT formula F to an Integer Program, and then solves its linear relaxation which
gives a lower bound on mincost(F) (Xing and Zhang, 2005).* Another lower bound re-

quires that the original MAXSAT CNF F be relaxed by variable-splitting until its treewidth

4This solver also uses a unique inference rule based on a non-linear formulation of MAXSAT.
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is less than 8. The relaxed CNF F’ is then compiled to Deterministic Decomposable Nega-
tion Normal Form (d-DNNF'), which allows mincost(F’) to be calculated in time linear in
the size of the d-DNNF formula. During search, the d-DNNF formula can be conditioned
on the current partial assignment to get a lower bound for that node (Pipatsrisawat and
Darwiche, 2007). The MHET method (Hsu and Mcllraith, 2010) is related to the soft
arc consistency notions studied in Weighted Constraint Satisfaction (Cooper, de Givry,

Sanchez, Schiex, Zytnicki, and Werner, 2010).

Preprocessing

Transformations similar to those that are applied at each node of a Branch and Bound
search tree can also be performed prior to search as a preprocessing step. For example,
some early MAXSAT solvers applied an ordered form of Neighbourhood Resolution to
binary clauses (Alsinet, Manya, and Planes, 2004), or deleted pure literals as a prepro-
cessing step (Zhang, Shen, and Manya, 2003). Preprocessing was studied in more depth
in the context of approximate MAXSAT solvers (Heras and Baferes, 2010). However,
preprocessing is not a component of any state-of-the-art exact MAXSAT solver. Therefore
it is a promising direction to explore in order to tackle MAXSAT instances that remain

challenging for existing approaches.

Performance of Branch and Bound MAXSAT Solvers

The Branch and Bound solvers were developed for random 2CNF and 3CNF formulas,
as well as for applications like Max-Cut, Max-Clique, and Graph Colouring (“Crafted”
instances). In the MAXSAT Evaluations, a Branch and Bound solver has always won in all
the Random and Crafted categories. However, Branch and Bound solvers can solve very
few of the Industrial category instances. The reason for this has not been adequately
explained, although it must either be due to the size of the search space explored or

the time taken at each node, or a combination of both factors. It should be possible to
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develop more effective lower bounds for Industrial instances.

2.5.2 Sequence of SAT Instance Solvers

Another approach to solving MAXSAT is to convert the problem to a sequence of SAT
instances. Each SAT instance in the sequence can be solved using a state-of-the-art
SAT solver. Therefore, any improvement to SAT solvers immediately benefits MAXSAT
solvers based on this approach. These MAXSAT solvers can handle some large instances
from industrial applications that are too challenging for existing Branch and Bound

algorithms (Argelich et al., 2007-2012).

Using the MAXSAT Decision Problem

The most obvious sequence of SAT instances can be described as follows. Given an
unweighted MAXSAT instance, it is first determined if there is an assignment that falsifies
zero clauses. If not, it is determined if there is an assignment that falsifies only one
clause. This process is repeated, each time increasing the number of allowed falsified
clauses, until the answer is ‘yes’, at which point the minimum number of falsified clauses
has been determined. The decision problem posed at each stage is simply an instance of
the decision version of MAXSAT, which can be encoded as SAT since it is in NP. Each
SAT instance can be solved by using a state-of-the-art SAT solver.

This algorithm is shown in Algorithm 3. The MAXSAT decision problem is encoded
as SAT by first adding a distinct relaxation variable b; to each of the soft clauses (line
4). These new variables are called relaxation variables because setting one true causes
its clause to be relaxed (i.e., immediately satisfied). At each iteration, a linear constraint
that limits how many clauses are relaxed is translated to CNF and added to the SAT
instance (line 7). The upper bound on the cost of the relaxation, k, is increased by the
smallest weight in the input formula (not necessarily 1), until it equals mincost(F), at

which point the SAT instance will finally be satisfiable, terminating the loop.
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There are many ways to translate the linear constraint to CNF (line 7). Some en-
codings introduce new variables. The size of the CNF encoding of the linear constraint
can make the SAT instances harder to solve. Xu et al. proposed an encoding of the
>;b; < k constraint based on a linear circuit of m incrementers, one for each relaxation
variable. The CNF encoding of this circuit adds O(mlog(k)) variables and O(mlog?(k))
clauses to the original MAXSAT theory. This encoding is sufficient for instances with a
small number of soft clauses, and instances with a small optimum (Xu et al., 2003).?
Later improvements aimed for an encoding that was mostly independent of the bound £,
in order to allow more learnt clauses to be saved from one iteration to the next (Fu and
Malik, 2006).

Fu and Malik were also the first to suggest that refuting the augmented SAT instances
might be more difficult than refuting the original formula. They note that the adder
circuits, used to implement the cardinality constraints, include many XOR gates. Since
unit propagation does not derive very useful information from clauses encoding XORs,
the SAT solver’s performance may be degraded. They also pointed out that a binary
rather than linear search over k should be used when the MAXSAT solution is larger than
log(m). However, the instances they experimented with did not challenge the limits of

the simple sequence of SAT approach.

There is also an opposite approach that starts with satisfiable SAT instances and
works towards an unsatisfiable instance. That is, starting with an upper bound on the
optimum (trivial or obtained by local search) the MAXSAT solver decreases the allowed
weight of falsified clauses until an unsatisfiable instance is found. In this case, it is possible
to take advantage of the solutions returned by the SAT solver to reduce the number
of iterations. The cost of the satisfying truth assignment 7 (ignoring the relaxation

variables) returned by the SAT solver can be used as the next value of k in the constraint

5Xu et al. applied Algorithm 3 to FPGA routing problems that had a small number of soft clauses,
and unsatisfiable SAT benchmarks from the DIMACS repository that while containing only soft clauses,
had optimums of at most 4.
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Algorithm 3: An algorithm to solve MAXSAT using a sequence of instances of the
MAXSAT Decision Problem. The input F is a MAXSAT formula, and the return value
is mincost(F).

1 MAXSAT-seq-1 (F)
2 m = min{wt(C) : C € F}
3 k=—-m
/* Add a new relaxation variable to every soft clause in F */
F ={C;U{b;} : C; € soft(F)} U hard(F)
repeat
kE=FEkE+m
until SAT-Solver(Fy) returns SAT
return £

© G N o oA

Ybyw; < k. This SAT—UNSAT approach is very effective on some instances, and was
utilized by the winner of the Industrial Partial MAXSAT category in the 2011 MAXSAT
Evaluation, QMAXSAT (Koshimura, Zhang, Fujita, and Hasegawa, 2012).

However, a drawback to these two algorithms is that the SAT instances can become
very hard to solve because of the added variables and constraints. This is especially
true for large instances with few hard clauses, since the number of variables in the SAT
instances will be even larger than the number of soft clauses in the MAXSAT theory.
Furthermore, if mincost(F) is large in comparison to the minimum weight, or a good
upper bound on the optimum can not be found, the number of iterations (i.e., SAT
solving episodes) required can be prohibitive unless binary search is used.

Several alternative sequence of SAT algorithms were developed to address these is-
sues, for example by using simpler linear constraints, reducing the number of relaxation
variables, reducing the number of iterations required, or eliminating the linear constraints

entirely. These algorithms are described next.

Relaxing Cores

When given an unsatisfiable CNF formula, some modern SAT solvers can output a core

(see Section A for the definition of core) with not much more work than they use to
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refute the theory. Although there is no guarantee that the core will be a strict subset of
the original clauses, in practise it usually is. An optimal truth assignment for a MAXSAT
formula will only falsify a clause if it appears in some core of the formula; this follows
from Proposition 2 in Chapter 3. Therefore, only clauses that belong to some core may
need to be relaxed. On the other hand, at least one clause in every core will need to
be relaxed. Therefore the number of relaxation variables used by a sequence of SAT

approach can be reduced, by only adding them to clauses that appear in cores.

The first sequence of SAT algorithm to exploit this insight was Fu and Malik’s Diag-
nosis algorithm (Fu and Malik, 2006), whose extension to Weighted Partial MAXSAT is
shown in Algorithm 4 (Manquinho, Marques-Silva, and Planes, 2009; Ansotegui, Bonet,
and Levy, 2009). The algorithm works by finding and “blocking” cores of the working
formula. In every execution of the loop on line 5, the SAT solver is called on the cur-
rent CNF formula. If the formula is satisfiable, the loop terminates and the cost of the
optimum is returned on line 13. Otherwise, the SAT solver returns a core of the current
formula. The formula is updated by splitting each soft clause that appears in the core
into two copies, one whose weight is decreased by the minimum cost m of a clause in the
core (discarding it if its weight is decreased to zero), and the other with weight m and
containing a new relaxation variable (line 9). This update can be thought of as blocking
m copies of the unweighted version of the core. Finally, a hard constraint saying one
of these relaxation variables must be {rue is added on line 11. Note that a clause can
eventually contain more than one relaxation variable, if the clause appears in more than

one of the cores.

There are two advantages to Algorithm 4 compared to Algorithm 3. First, each of

SProposition 2 shows that mincost(F) is equal to the cost of a minimal cost hitting set (MCHS) of
the cores of F. Consider a truth assignment 7 that falsifies a clause ¢ that does not appear in any core
of F. We show that m can not be a MAXSAT solution, as follows. It is clear that = must falsify at least
one clause in every core of F (since each core is unsatisfiable). Thus the set of clauses falsified by =, hs,
is a hitting set of the cores. Consider the set of clauses hs’ = hs \ {c}. Since ¢ does not appear in any
core of F, hs' is also a hitting set of the cores. But cost(hs') < cost(hs) = cost(n). Therefore cost(r) is
greater than the cost of the MCHS of the cores. So by the proposition, 7 is not an optimal assignment.
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the added constraints is over a smaller set of variables (just those appearing in the core).
Second, the cardinality constraints, whose coefficients are all equal to one, are easier to
encode as CNF than the arbitrary linear constraints used in Algorithm 3. However, the
formulas at successive iterations also get larger and larger because Algorithm 4 must
duplicate soft weighted clauses appearing in the cores.

Several different encodings of the cardinality constraints have been proposed, that can
significantly affect the performance of Algorithm 4. Fu and Malik used the basic quadratic
encoding of the constraint, which uses one clause to say that at least one variable is true,
and a binary clause for each pair of variables saying at least one of them is false (Fu
and Malik, 2006). Marques-Silva and Planes chose a more efficient BDD-based encoding,
that adds only a linear number of variables and clauses (Marques-Silva and Planes, 2007;
Eén and Sorensson, 2006). Later, a bitwise encoding was tried, that adds only O(log(n))
variables but O(nlog(n)) clauses to encode a constraint over n variables (Marques-Silva
and Manquinho, 2008). The original wpM1 solver of Ansotegui et al. (Ansétegui et al.,
2009) uses a linear encoding based on signed CNF (Ansotegui and Manya, 2004).

There is an encoding of arbitrary pseudo-boolean constraints to CNF that is of
polynomial size and on which unit propagation achieves Generalized Arc Consistency
(GAC) (Bailleux, Boufkhad, and Roussel, 2009), however, to our knowledge it has not
been applied in any MAXSAT solver. An alternative to encoding the linear constraints as
CNF is to handle them natively using a Pseudo-Boolean solver (Manquinho et al., 2009).

The solver wpM1 (Ansotegui et al., 2009), based on Algorithm 4, won the Industrial

unweighted and weighted partial MAXSAT categories in the 2011 MAXSAT Evaluation.

Other Algorithms that Add Constraints

Many other sequence of SAT algorithms have been proposed that are similar to Algo-
rithms 3 and 4. They all involve adding relaxation variables to soft clauses appearing

in cores of the working formula, along with linear inequality constraints on these variables.
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Algorithm 4: The Diagnosis algorithm of Fu and Malik, extended to weighted
partial MAXSAT. F is a MAXSAT formula. Returns mincost(F).

1 MAXSAT-seq-2 (F)

/* Split the formula into hard and soft clauses */
2 Fy = hard(F)
3 Fs = soft(F)

4 cost = 0
/* The SAT solver ignores the clause weights */
5 while R — SAT-Solver(Fy U Fs) returns a core do
6 B=1
/* Find a minimal weight clause in the core */

7 m = min{wt(C) : C € R}

for C € soft(R) do

/* Reduce the weight of C' by m */
9 wt(C) = wt(C) —m

/* Create a new clause that is a copy of C, relaxed by a new variable. */

10 ' = CuU{b}

/* The weight of the new clause is m */
11 wt(C') = m
12 fs — .FS U {C/}
13 B = BU{b}

/* Add a hard constraint that one of the new relaxation variables must be

true */
14 .FH — .FH U CNF(EbeBb = 1)
15 cost = cost + m

16 return cost

msu3 is an algorithm for unweighted MAXSAT (Marques-Silva and Planes, 2007). It be-
gins with a preliminary phase that finds as many disjoint cores of the original MAXSAT
formula as possible. The number of disjoint cores provides a lower bound on the opti-
mum. The second phase is similar to Algorithm 3 except it can begin with k equal to
the number of disjoint cores found, and relaxation variables are only added as needed to

the clauses appearing in the cores.

msu4 is also restricted to unweighted MAXSAT (Marques-Silva and Planes, 2008). The

algorithm adds > 1 constraints to relax each core it finds, until the formula becomes
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satisfiable. When the formula becomes satisfiable, the number of satisfied relaxation
variables in the solution is used to strictly upper bound the total number of relaxation
variables that can be true. The algorithm alternates between series of UNSAT and SAT
instances, until it terminates when the number of cores found equals the number of re-

laxation variables satisfied by a solution.

PM2 is an algorithm for partial MAXSAT (Ansotegui et al., 2009) that is like Algorithm 3
but also adds a new > j constraint for each core R where j equals the number of previ-

ously found cores that are subsets of R.

WPM2 solves weighted partial MAXSAT (Ansotegui, Bonet, and Levy, 2010). Its dis-
tinguishing feature is that the discovered cores are grouped into “covers”, which are a
decomposition of the cores into disjoint sets. The relaxation variables in each cover are
constrained to relax a particular weight of clauses k, that is updated to be the next
largest value that the clauses’ weights can sum up to. Even calculating the next value
of k can be expensive, since it requires solving the NP-hard Subset Sum problem and
additional calls to a SAT solver. The performance of WpM2 is also affected by the struc-

ture of the cores, since in the worst case all cores will eventually belong to the same cover.

WMSU1-ROR is a modification of Algorithm 4, that attempts to avoid adding relax-
ation variables by applying MAXRES to transform the core instead (Heras and Marques-
Silva, 2011). Given the core R returned by the SAT solver, a Resolution refutation is
calculated by a specialized tool. As much of this refutation as possible is copied by ap-
plying MAXRES steps to the working formula F. The result is a transformed formula
F', and a core of ', R, that is easily obtained from R. If the transformation derived
the empty clause, it means the core is trivial and the sequence of SAT algorithm can

continue without adding any relaxation variables for this step. Otherwise, the core R’ is
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relaxed as in Algorithm 4 before the next iteration begins.

WPM1-BSD (Ansotegui, Bonet, Gabas, and Levy, 2012) and PAR (Martins, Manquinho,
and Lynce, 2012b) both modify Algorithm 4 in a similar manner. Their idea is to only
allow the SAT solver to find cores over a restricted subset of the original MAXSAT prob-
lem, increasing the size of this subset when no more cores can be found. The restricted
subset can be chosen in different ways, but the most promising approach is to choose the
clauses with largest weights first. This ensures that cores whose min weight clause is of
largest weight are found first, which may significantly reduce the overall number of cores

needed by Algorithm 4.

BINCD is a state-of-the-art solver for weighted partial MAXSAT (Heras, Morgado, and
Marques-Silva, 2011; Morgado, Heras, and Marques-Silva, 2012). The BINCD algorithm is
similar to WPM2, since in BINCD intersecting cores are also organized into disjoint covers.
However, BINCD maintains both a lower and upper bound on the cost of each cover and
performs a binary search on this cost by testing the midpoint value (Heras et al., 2011).
This is in contrast to WPM2 where each cover only has a lower bound, that is successively
increased to the next possible larger value. In (Morgado et al., 2012), BINCD is improved
by using a global upper bound, and as a consequence the upper bounds that the original
version of BINCD maintained for each cover become instead estimates of the cost that
the cover contributed to the global upper bound. Another improvement is that when
the lower bound for a cover is increased, a Subset Sum calculation is used to find the
next possible larger value as in wpM2. Morgado et al. also proposed to use a biased
binary search where instead of testing the middle value between the bounds, the value
between the bounds is chosen based on the ratio between the number of calls to the
SAT solver that have answered SAT and the number of calls that have reported UNSAT.

Their policy will choose a value that is closer to the lower bound if the SAT solver has
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returned a majority of SAT answers in the computation so far, and a value closer to the

upper bound if the SAT solver has returned a majority of UNSAT answers.

2.6 Conclusion

This section has described the main recent approaches for solving the MAXSAT problem.
Exact algorithms for MAXSAT can be divided into those that use a Branch and Bound
search, and those that pose a sequence of SAT queries. In both cases, the algorithms
need to reason with intersecting cores of a CNF formula. So far, two techniques have
been used to deal with interesting inconsistencies: MAXRES and adding linear constraints
over relaxation variables. The MAXRES rule is difficult to apply in practise because it can
easily increase the size of the formula without making progress. Therefore, in practise
it is only applied to particular patterns of cores involving short clauses, which limits its
power and applicability. On the other hand, the technique of adding relaxation variables
and constraints can create CNF formulas that are very hard for SAT solvers to refute.
In the remainder of this thesis we explore a new approach, offering greater power and

flexibility to reason about the cores of a MAXSAT instance.



Chapter 3

Solving MAXSAT with Hitting Sets

3.1 Introduction

Section 2.5.2 described existing MAXSAT solvers based on a sequence of SAT approach,
that convert the optimization problem into a sequence of decision problems, each of which
is then encoded as a SAT problem and solved with a modern SAT solver. This approach
is very successful when only a few decision problems must be posed before a solution
is found. However, the SAT decision problems can be much larger than the original
MAXSAT instance, and performance can be significantly degraded as larger and larger

decision problems must be solved.

This chapter introduces a new approach for solving MAXSAT that also utilizes a se-
quence of SAT problems, but in contrast to previous algorithms, the SAT problems
become progressively easier. In particular, the SAT solver is only ever asked to solve

problems that are composed of a subset of the clauses of the original MAXSAT problem.

The new approach decomposes the MAXSAT problem into two parts. One part com-
putes minimum cost hitting sets, while in the other part the SAT solver tests the satis-
fiability of subsets of the original problem. This decomposition allows the SAT solver to

deal only with the logical structure of the original problem. Furthermore, the sequence

37
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of satisfiability problems that have to be solved can only become easier. However, the
hitting set computations can and do become harder. It is hoped that splitting the prob-
lem in this manner will more effectively exploit the strengths of modern SAT solvers as
well the strengths of solvers that are effective at performing the optimization required,

e.g., integer programming solvers.

3.2 The MaxHS Algorithm

The cores of a MAXSAT instance play an important role in determining the MAXSAT
solution. We have already seen that inconsistent clause subsets (i.e., cores) are used to
derive lower bounds in Branch and Bound MAXSAT solvers. Recall that the Diagnosis
algorithm of Fu and Malik (Algorithm 4 on page 33) solves MAXSAT by finding and
relaxing cores until no additional cores can be found. In this section we formalize the
connection between cores and the MAXSAT solution, showing that any solution to a
MAXSAT instance must falsify at least one clause from every core. In other words, the
clauses falsified by the MAXSAT solution will form a minimum cost hitting set of the
cores. We then show how this hitting set connection can be used to guide the discovery
of cores within a complete algorithm for MAXSAT.

We begin by defining the minimum cost hitting set problem (MCHS), which is a
well-studied NP-hard optimization problem. We are interested in the MCHS problem
because, as we will show, solving MAXSAT can be decomposed into solving a series of

MCHS and SAT problems.

Definition 12 (The Minimum Cost Hitting Set Problem). Let KC = {k1, Ko, ..., kr} be a
collection of k finite sets where each k; is a subset of a universe of positively weighted
elements. Then a hitting set of K is a subset of elements hs such that hs N k; # O for
each 1 < i < k. The cost of a set of elements is the sum of their weights. A minimum

cost hitting set of K is a hitting set of KC such that there is no other hitting set of smaller
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cost.

We will now explain how the MCHS problem can be used to solve MAXSAT. As
mentioned in Section 2.2, it is assumed that the hard clauses of the MAXSAT instance are
satisfiable, and that the cost of the MAXSAT solution is greater than zero. Under these
conditions, it is easy to observe that every truth assignment necessarily falsifies at least
one clause in every core of the MAXSAT instance, and therefore, every truth assignment
corresponds to a hitting set of the instance’s cores. Thus the cost of the MAXSAT solution
will be at least the cost of the minimum cost hitting set of the cores. This raises the
question of whether there exists a truth assignment that actually achieves this minimum

cost. The answer is affirmative: the MAXSAT solution always achieves this minimum cost.

Proposition 2. If F is a MAXSAT instance, K is the set of all cores of F, and hs is a

minimum. cost hitting set of IC, then mincost(F) = cost(hs).

Proof. Let hs be a minimum cost hitting set of IC. Any truth assignment falsifies a set of
clauses that form a hitting set of K. Therefore, since hs is a MCHS of I, mincost(F) >
cost(hs). It is not possible to prove the empty clause from F \ hs, otherwise there would
be a core k in K such that k C (F — hs). But then hs would not hit x and hs would not

be a hitting set of K. Thus F\ hs is satisfiable and therefore mincost(F) < cost(hs). O

Proposition 2 says that the technique of finding hitting sets can solve the MAXSAT
problem: it is a complete method. However, as stated it is also quite impractical. For
one there are an exponential number of possible cores of F. Consider the case where
instead of having access to all cores of F, an incomplete collection of cores is available.

In this case a minimum hitting set provides a lower bound on mincost(F).

Proposition 3. If K is any set of cores of MAXSAT instance F, and hs is a minimum
cost hitting set of IC, then mincost(F) > cost(hs). That is, cost(hs) is a lower bound on

the cost of the solution of F.
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Proof. If K and K" are two sets of cores with K C X', with minimum cost hitting sets hs
and hs' respectively, then cost(hs) < cost(hs'), because every hitting set of K’ must be a

hitting set of K. O

So any set of cores of a MAXSAT instance can provide a lower bound on the MAXSAT
solution’s cost. Can an incomplete set of cores ever be sufficient to prove the MAXSAT
solution itself? If in fact an incomplete set of cores is enough, how can we know that the
lower bound they provide is equal to the optimum? The next theorem gives a condition

on a set of cores and their MCHS under which we can derive the MAXSAT solution.

Theorem 3. If K is a set of cores for the MAXSAT problem F, hs is a minimum cost hit-
ting set of IC, and 7 is a truth assignment satisfying F \ hs then mincost(F) = cost(m) =

cost(hs).

Proof. mincost(F) < cost(m) as mincost(F) is the minimum over all possible truth
assignments. cost(m) < cost(hs) as the clauses 7 falsifies are a subset of hs (7 satisfies
all clauses in F — hs). On the other hand mincost(F) > cost(hs). Any truth assignment
must falsify at least one clause from every core k € K. Thus for any truth assignment 7,
cost(7) must include at least the cost of a hitting set of K. This cannot be any less than

cost(hs) which has minimum cost. O

So any set of cores K is sufficient to determine the MAXSAT solution if the MAXSAT
formula can be rendered satisfiable by removing a set of clauses that forms a minimum
cost hitting set of K. Thus, a SAT check provides the stopping condition for a MAXSAT
algorithm that accumulates cores and calculates lower bounds based on the cores’ MCHS.
This idea for a new MAXSAT algorithm is formalized in Algorithm 5. The algorithm starts
off with an empty set of cores IC. At each stage it computes a minimum cost hitting set hs
via the function “FindMinCostHittingSet” and calls a SAT solver to determine if F \ hs
is satisfiable. If it is satisfiable then the SAT solver returns ({rue, k) with k set to a

satisfying assignment for F \ hs. Otherwise, if F \ hs is still unsatisfiable, the SAT solver
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Algorithm 5: The MaxHS algorithm for solving MAXSAT

1 MAXHs-basic (F)

K=10

while true do

hs = FindMinCostHittingSet ()

(sat?,k) = SatSolver(F \ hs)

; // If SAT, k contains the satisfying truth assignment.
; // If UNSAT, k contains an UNSAT core.

6 if sat? then

7 L break ; // Exit While Loop

// Add new core to set of cores
8 K=KU({k}

[S1 SN VUR V]

o return (k, cost(k))

returns (false, k) with k set to a new core of F \ hs. New cores are added to K, while

satisfying assignments cause the algorithm to terminate.

Proposition 4. Algorithm 5 correctly returns a solution to the inputted MAXSAT problem

F. That is, it returns a truth assignment k for F that achieves mincost(F).

Proof. First observe that Algorithm 5 only returns when it breaks out of the while loop,
and this occurs only when the current F \ hs is satisfiable. Since in this case hs is a
minimum cost hitting set of a set of cores and & is a truth assignment satisfying F \ hs,

by Theorem 3 cost(x) = mincost(F). This shows that the algorithm is sound.

Second, to show that the algorithm is complete, it simply needs to be shown that
it must terminate. Since F is a finite set of clauses, the set of cores of F must also be
finite. Each iteration of the while loop computes a new core of F and adds it to K.
This core cannot be the same as any previous core, hence the while loop must eventually
terminate. Consider the hitting set hs computed at line 4 prior to the computation of
k at line 5. kN hs = () since k C (F \ hs). However, for any previously computed core
Kk~ we have that k=~ N hs # () since hs is a hitting set of all previous cores. Hence for all

previous cores K, kK # K. ]
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3.3 Benefits of MAXHS

The worst-case behaviour of Algorithm 5 is analyzed in Section 3.4 below, but first we
point out why it is a promising basis for a new state-of-the-art MAXSAT solver. First,
MAXHS is able to immediately exploit advances in practical SAT solving, since it uses
a SAT solver as a black-box. This is a benefit shared with existing MAXSAT solvers
based on a sequence of SAT approach. However, all existing algorithms must add extra
variables and constraints to the SAT instances, which may result in very challenging
instances for the SAT solver. In contrast, MAXHS only asks the SAT solver to deal with
subsets of the original MAXSAT formula. We expect that in practise, the various subsets
of the MAXSAT formula are likely to be of similar difficulty for the SAT solver to refute.
Therefore, MAXHS better exploits SAT solver technology than the existing sequence of

SAT algorithms.

The second benefit of MAXHS is that it allows the SAT solver to be combined with
another powerful technology in a hybrid approach. MAXHS decomposes the MAXSAT
problem into a SAT problem and a MCHS problem; the latter is equivalent to the Set

1" The Set Cover problem, like MAXSAT, is an NP-hard optimization

Cover problem.
problem, but it has been well studied from a theoretical and practical perspective by the
computer science and operations research communities respectively. Very large instances
of Set Cover, arising in industrial applications, are routinely solved by sophisticated

Mixed Integer Programming solvers like CPLEX. The MAXHS algorithm can utilize such

a MIP solver as a black-box, to solve the MCHS instances efficiently.

As we have discussed, the MAXHS algorithm allows the differing strengths of SAT

! An instance of Set Cover is a finite set K = {r1, ..., 5, } Where each k; € K is a finite set of elements
from universe U = J,, cx #i- There is also a weight wt(k;) € R”? associated with each x; € K. The
answer to the Set Cover instance is a subset X' C I, such that (J,.c, & = U, that is, a set of sets whose
union contains all possible elements. Furthermore, K’ must be a minimum cost subset satisfying this
property, where the cost of K’ is given by cost(K') = X,exrwt(k). The equivalent MCHS instance is
as follows. For each e € U in the Set Cover instance, there is a set S, = {k; : e € k;} in the MCHS
instance. Then the MCHS solution is a minimum cost set of x; that hits every S., i.e. whose union
includes every e € U.
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solvers and MIP solvers to be combined, in a clean and effective manner. Both solvers
are used as a black-box, and the problems given to each are well suited to the solvers’

abilities.

3.4 Factors Affecting Performance

The worst case complexity of solving MAXSAT with a Branch and Bound solver is 20"
where n is the number of variables. However, the worst case complexity of Algorithm 5 is
worse. There are 2™ possible cores where m is the number of soft clauses. This provides
a worst case bound on the number of iterations executed in the algorithm. Each iteration
requires solving a SAT problem of 2°™ and a hitting set problem of 2™ (one has to
examine sets of clauses to find a hitting set). This leaves the worst case complexity
20(m) 5 (20(m) 4 20(m)y — 20(m) gince m > n (typically, the number of clauses m is much
larger than the number of variables n).

Fortunately, we can say more about the expected behaviour of MAXHS than just its
worst case complexity. The performance of the MAXHS algorithm is affected by three
factors: the difficulty of the SAT instances, the difficulty of the MCHS instances, and the
total number of cores required. These factors are not independent of each other, since as
the number of cores grows, the MCHS instances get larger and therefore harder to solve.
The time spent by the SAT solver may also be traded off against the other two factors.
For example, more time can be spent on SAT solving in order to find particular cores
that reduce the total number of cores required, or change the structure of the MCHS
instances making them easier to solve. Thus the interplay between these three factors
offers a rich space in which to explore trade-offs.

On the other hand, the performance of MAXHS is likely to be quite variable and hard
to predict because of these three factors. MAXHS relies on two potentially expensive

subroutines, the SAT solver and the MCHS solver, whose runtimes can not be predicted
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easily. In fact, any one of the three factors can be the source of exponential runtime in

MAXHS, as shown by the following three examples.

Example 2. Let F be an instance of the Pigeon Hole Principle, where all clauses are
considered soft with uniform weights. Note that removing any single clause from F will
make the remaining clauses satisfiable. Therefore, MAXHS will terminate after the first
core s found. So only one MCHS problem will be solved, and it is trivial. However, the

time spent by the SAT solver to find the single core will be exponential.

Example 3. Given any known MCHS solver, there exists some MCHS instance for
which its runtime will be exponential (unless P = NP). Let K be a MCHS instance. We
construct @ MAXSAT instance F that is equivalent to IC as follows. For each set k € IC,
where k = {eq, ..., e}, there is a hard clause (e1V, ..., Vey). Finally, there is a soft clause
(—e) with weight wt(e) for each element e € |J,,oc k. A minimal core is a core such that
any proper subset is not a core. It is easy to see that the minimal cores of F correspond
to the hard clauses of F and therefore the total number of minimal cores is equal to
IKC|. The SAT solver can find each of the minimal cores in polynomial time, by using
unit propagation alone. The number of minimal cores required by MAXHS is at most |K|.
So the only possible source of exponential runtime on K is solving the MCHS problems,
and assuming that P # NP, there is some MCHS instance IC on which MAXHS will take

exponential time.

Proposition 5. Let E = {ey,...,e,} be a universe of n equally weighted elements. Let
Knr={k C E:|k| =1} be an instance of the MCHS problem where 1 < r < n. Then

the MCHS of IC,,» is of sizen —r + 1.

Proof. By induction on n. When n = 1, r = 1 and there is only one set in K;;. The
MCHS is of size 1 =n —r+ 1. Let n > 1 and assume that the size of the MCHS of K, ,
isn—7r+41forall 1 <r <n. Now consider KC;,1;, forsome 1 <r<n+1.Ifr=n+1

then IC, 11, has only one set to hit and its MCHS is of size 1 = (n+ 1) — (n+ 1) + 1.
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So assume that r < n + 1. Let hs be a MCHS for K,;;, and without loss of generality
assume that hs contains element e, 1. Consider K' = K11, \ {k € Kpi1, : €ny1 € K}
Each element of E = {ey, ..., e,41} appears in exactly (Tfl) of the sets of IC,,11,, because

given any element there are (rfl) ways to choose the other » — 1 elements to make up a

set. So [K'| = |Kng1| = (") = (") = (")) = (7) as shown below.

r—1 T r—1

(njl) B (731) " (n <+n1+—17)~!)!r! B (n—r—i—q!)!(r— 1)!

(n+ 1)l = nlr

nl[(n+1) — 7]

(n+1—r)lr!
n!

(n—r)lr!
_(n
\r
It is easy to see that K’ is actually equal to /C,, .. Furthermore, hs’ = hs\ {e,41} is a
hitting set for X', of size |hs| — 1. By the Induction Hypothesis and our assumption that
r <n+1, the MCHS of K’ = K,, . is of size n —r + 1. Thus n —r+1 < |hs'| = |hs| — 1.
So |hs| >n—r+2=(n+1)—r+ 1. It remains to show that a hitting set of size
(n4+1) —r+1 exists for I, 41, Such a hitting set can be constructed by taking a MCHS

of K, , and adding element e,.

O

Proposition 6. Let n be an even number and let E = {ey, ..., e, } be a universe of equally
weighted elements. Let IC,,, = {k C E : |k| = r} be an instance of the MCHS problem
where r = 3. Let K' = IC,,, \ &' for some v’ € Ky . Then the MCHS of K' is strictly
smaller than the MCHS of IC,, .

Proof. By Proposition 5, the MCHS of K, isof sizen —r+1=n—-45+1=2+1.

We will show that the MCHS of K’ is of size at most § and is therefore strictly smaller.
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We do this by arguing that the n —r = % elements that do not appear in «' hit all sets
in K'. Assume for contradiction that there is a set k € K’ that is not hit by E \ &'.
That is, assume that x N (E \ ') = (). Since x C E, this means that x C «’. But this
is impossible since |k| = ||, Kk € K’ and &’ ¢ K’ and K’ contains no duplicate sets.

Therefore, n — r = 5 elements are enough to hit all sets in K. O]

Example 4. Let F be a MAXSAT instance with an even number n of soft clauses with
uniform weights, (x1), ..., (x,) and let the hard clauses of F form a clausal encoding of the
cardinality constraint X x; < n/2. On this family of problems, an exponential number
of cores will always be required by MAXHS, as we explain next. The solutions to F are the
truth assignments that set as many of the variables to true as possible without violating
the hard cardinality constraint. Thus a solution to F will set exactly 5 — 1 of the x;
variables to true and the rest to false, and 5 + 1 is the optimal cost. Any subset of the
n soft clauses, with size greater than or equal to 3, is a core of F. Therefore, F has
at least (n’}’z) cores. By Proposition 6, for any number of cores k < (732), the cost of
their MCHS is less than the optimum. Therefore, MAXHS will require at least (n72) cores,

which is exponential in n. Fach core has a polynomial size refutation, assuming a suitable

encoding of the cardinality constraint is used (Bailleuz et al., 2009).

We will see that in practise, the cores are often easy for a SAT solver to refute and
the SAT solving time makes up a small fraction of the total time taken by MAXHS. The
limiting factor is the time taken to solve the MCHS instances, which grows quickly as
more cores are added. This limits the total number of iterations MAXHS can accomplish.
However, the number of cores required by MAXHS does vary depending on which cores
are discovered by the SAT solver. Therefore it is important to solve the MAXSAT problem
in as few iterations as possible, by finding the right set of cores. Section 3.6 introduces
techniques which improve the quality of the cores by encouraging core diversity.

In the remainder of the thesis, we take an experimental approach to investigate the

trade-offs that affect the performance of MAXHS. The first step is to implement the basic
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MAXHS algorithm, as described in the next section.

3.5 Implementation

Algorithm 5 was implemented in C++. The two main decisions that must be made
when implementing MAXHS are which SAT solver to use, and how to solve the MCHS
problems. We chose to use MINISAT-2.0 as the SAT solver, because of its good perfor-
mance and extensible source code (Eén and Sorensson, 2003). MINISAT is based on the
DPLL algorithm as described in Appendix B. For the MCHS problems, we first tried
creating two special-purpose solvers, based on A* search and Branch and Bound respec-
tively. However, their preliminary performance was not very promising in comparison to
the more general and mature MIP solver CPLEX. We believe that considerable ingenuity
and engineering would be required to outperform CPLEX on the MCHS instances arising
from MAXHS. Therefore, in order to focus on questions raised by MAXHS as a whole, we

decided to use CPLEX to solve the MCHS problems.

3.5.1 Extracting Cores

The MINISAT-2.0 SAT solver is used to compute cores. Our implementation of MAXHS
actually incorporates the source code of the “core” solver of MINISAT-2.0. This offers more
flexibility and efficiency than invoking the SAT solver as a separate process, as well as
allowing the state of the SAT solver (e.g. the learnt clauses and activities) to persist from
one SAT solving episode to the next. We use a simple trick of introducing relaxation
variables to the soft clauses, which makes extracting cores very simple (Ryvchin and
Strichman, 2011). This trick also means that any clauses learned by the SAT solver
in one iteration are sound for all other iterations as well. Similar to other core-based
MAXSAT solvers (see Section 2.5.2), a unique “relaxation variable” is added to each clause

of soft(F). So soft clause C; becomes C; U {b;} where b; appears nowhere else in the new
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theory. The hard clauses of F are left unchanged.

Definition 13 (b-Variable Relaxation). If F is a MAXSAT instance, then the b-variable

relaxation of F is a CNF formula F° = {(C; V ;) : C; € soft(F)} U hard(F).

The CNF formula F? is called the b-variable relaxation of F because the b-variables
can be used to relax the constraints of F. If b; is set to true, the clause C; is removed
from the theory. On the other hand, if b; is set to false, the clause C; is activated.

Each solution of F° has an associated cost, which is equal to the sum of the weights

of the clauses corresponding to the b-variables it sets to true.

Definition 14 (bcost). If w is a truth assignment to the variables of F°, we define its

cost as beost(m): if w £ FP then beost(m) = oo, otherwise beost(m) = D bseret; WE(C3).

The problem of finding a minimum cost solution of F° is equivalent to solving the
original MAXSAT instance. As shown by the following proposition, the minimum bcost

satisfying assignments for F° correspond to solutions of F.

Proposition 7. mincost(F) = min, bcost(r), where the minimum is taken over all truth
assignments m to the variables of F°. Furthermore, if T achieves a minimum value of

beost(), then m restricted to the variables of F is a solution for F.

Proof. Let m be a truth assignment of minimum bcost, and let 7’ be 7 restricted to the
variables of F. Then 7 satisfies every clause of F?, since a truth assignment satisfying
hard(F) can be extended to a satisfying assignment for F° by assigning all of the b-
variables to true, and furthermore, ), wt(C;) < oo so the minimal bcost assignment will
be one that satisfies F°.

Next, we show that 7 sets a b-variable to true if and only if it is necessary to satisfy
the clause. Suppose for contradiction that 7’ satisfies a clause C; of F such that 7 assigns
the corresponding b-variable for that clause, b;, the value true. Then the assignment to

the variables of F° that is the same as 7 but with b; set to false has bcost strictly less
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than that of 7 (since C; remains satisfied even though the value of b; is changed, and b;
does not appear in any other clause of F°.). This is a contradiction since 7 was chosen to
have minimal bcost. Therefore, for every clause C; of F that is satisfied by 7', 7 assigns
its b; to false.

On the other hand, if 7’ falsifies C;, it must be the case that b; is set to {rue in w
since 7 satisfies all clauses in F°. Thus we have shown that the b-variables that 7 sets
to true correspond to the clauses that 7’ falsifies, and beost(mw) = cost(n’).

Finally, we show that bcost(m) = cost(n') = mincost(F) and thus that 7’ is a MAXSAT
solution. Assume for contradiction that cost(n’) > mincost(F). Then beost(r) =
cost(n') > mincost(F). Let o be a MAXSAT solution to F. We can define a truth
assignment ¢’ to the variables of F° by extending o to the b-variables as follows. If o
falsifies clause C; € F, then o' assigns b; to true, and if o satisfies C; then ¢’ assigns b;
to false. Then cost(c) = beost(o’), but cost(o) = mincost(F) < bcost(m) and therefore

beost(o') < beost(m). This contradicts the fact that = has minimal bcost. O

The b-variable relaxation allows any subset of F to be selected through the proper
instantiation of the b-variables. Therefore, when Algorithm 5 needs to test the satisfia-
bility of F \ hs, the b-variables associated with the clauses in hs are set to true, and all

other b-variables are set to false.

Observation 1. Let hs be a subset of soft(F) and let 1 = {b; : C; € hs} U {=b; : C; €
soft(F)\ hs} be a truth assignment to the b-variables of F°. Then F \ hs is the same as
FP reduced by 7, i.e., F\ hs = F°|;.2

Proof. First we note that truth assignment 7 assigns a value to every b-variable in F?,
so after F? is reduced by 7, only original variables will remain in F°|,. Consider a clause
in F \ hs. If the clause is hard, it appears unchanged in F° and after reduction by 7 it

will still remain unchanged in F°|, (since it does not contain a b-variable). So consider a

2See Appendix A
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clause C; in soft(F) \ hs. By definition of 7, 7 assigns b; to false. Therefore, the relaxed
clause C; U {b;} € F* will be reduced to C; by 7. Thus we have shown that C; € F°|,
and therefore F \ hs C F°|,.

For the other direction, consider a clause in F°|,. If the clause did not contain a
b-variable in F? then it was a hard clause of F, and therefore it will also appear in F \ hs
since hs C soft(F). So let C; € F°|, and assume that C; U {b;} € F°. If 7 had assigned
b; to true, then C; would have been satisfied by reducing F° by 7. So it must be the case
that 7 assigned b; to false. By the definition of , this only occurs if C; € F \ hs. Thus

we have also shown that F°|, C F \ hs.

These b-variable assignments are added as “assumptions” in MINISAT. MINISAT pro-
vides the assumption interface to test whether a given set of literals can be extended to
a satisfying assignment. MINISAT can take as input a set of assumptions A, specified as
a set of literals, along with a CNF formula F and then determine if F A A is satisfiable.
It will return a satisfying truth assignment for F A A if one exists (this truth assignment
necessarily extends A). Otherwise it will report UNSAT and return a learnt clause C
which is a disjunction of negated literals of A. This clause has the property that —C'
specifies a subset of A such that F A =C is unsatisfiable. This means F = C. We
give MINISAT the CNF F? and the assumptions A = 7 as specified in Observation 1. If
F \ hs is UNSAT, MINISAT will compute a conflict clause over the assumptions—the set
of assumptions that lead to failure. The true b-variables do not impose any constraints
so they cannot appear in the conflict clause. Instead, the conflict clause contains the set
of false b-variables that caused UNSAT. The core is simply the set of clauses associated

with the b-variables of the computed conflict.

Proposition 8. If F* |= (baV, ..., Vbi) for some set of b-variables {bi;}|5_,, then r =
{Ci1, ..., Ci} is a core of F.
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Proof. Assume for contradiction that s is not a core of F. Therefore, by definition
kU hard(F) is satisfiable. Let m be a truth assignment to the variables of F that satisfies
kU hard(F). We define a truth assignment 7’ to the variables of F° that extends 7 as
follows. If b; corresponds to a clause C; € k, then 7' assigns b; to false. Otherwise,
if b; does not correspond to a clause in k, 7w’ assigns b; to true. Then 7’ will satisfy
FP and falsify (b;1V, ..., Vbip). This contradicts the fact that F° = (bi1V, ..., Vbi), so by

contradiction s is a core of F. O

3.5.2 Computing a Minimum Cost Hitting Set

The hitting set problem is encoded as an integer linear program (ILP) and the MIP solver
CPLEX (version 12.2) is invoked to solve it. The minimum cost hitting set problem is
the same as the minimum cost set cover problem and standard ILP encodings exist, e.g.,
(Vazirani, 2001). The encoding used in this thesis introduces a 0/1 variable z; for each
clause C; appearing in a core; for each core there is the constraint that the sum over
the x; variables of the clauses it contains is greater or equal to 1; and the objective is to

minimize the sum of wt(C;) X x;.

m
minimize: Z wt(Cy) - x;

i=1
where: Z x> 1 for k e K

CiER

z; € {0,1} for1<i<m

3.6 Core Diversification

The number of iterations performed by MAXHS depends on the particular set of cores

found. In this section we describe the two main techniques we employ to find a better
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set of cores. Both techniques are inspired by the observation that the smallest possible
number of iterations is achieved when all of the discovered cores are disjoint, i.e., no
clause appears in more than one core. Of course, it is usually impossible to solve the
entire MAXSAT problem with disjoint cores alone. Yet it is still desirable to find cores

that intersect as little as possible.

3.6.1 Minimal Cores

The cores returned by the SAT solver are not necessarily minimal, in the sense that the

cores may include extra clauses that do not contribute to the contradiction.

Definition 15 (Minimal Core). A core k of a MAXSAT instance F is minimal if every

proper subset of k is not a core of F.

If a non-minimal core is added to the MCHS instance, the MCHS solver may choose
to put one of the superfluous clauses in the hitting set. Relaxing such clauses can not fix
the contradiction, so another core will be required to rule out this hitting set, increasing
the number of iterations required. Therefore, in order to reduce the number of iterations
we can minimize the cores returned by the SAT solver. We use a simple destructive
MUS (Minimal Unsatisfiable Subset) algorithm, as described in (Silva and Lynce, 2011),
to generate minimal cores. The MUS algorithm works as follows. Given a core k, it
iterates through the clauses in k. For each clause C' € &k, it asks the SAT solver if
{k \ {C}} U hard(F) is satisfiable, which determines if the core is still a core if C is
removed. If the SAT solver reports UNSAT, clause C is removed from x before moving
on to check the next clause in the core. Since this minimization routine runs a SAT check
for each clause in the core, we may expect that minimizing cores will be time consuming.3

However, in Section 3.7 we verify that minimizing the cores does pay off in practise.

3The problem of finding a minimal core is D”-complete (Papadimitriou and Wolfe, 1988). The class
DP contains the languages that are equal to the intersection of a language in NP and one in co-NP.
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3.6.2 Re-refuting Cores

We consider an alternative to minimal cores, that may still reduce the size of the cores
but is faster to compute. The re-refutation method tries to reduce the size of a core
returned by the SAT solver by asking the SAT solver to refute the core again. In some
cases the SAT solver will be able to find a different refutation of the core that uses a
smaller subset of its clauses. We recurse on this smaller core, asking the SAT solver to
refute it again. We continue in this way until the size of the core no longer gets smaller.
The amount that the core will be minimized using re-refutation depends on the behaviour
of the SAT solver, and there is no guarantee that the resulting core will be minimal. This
method of reducing the size of cores was used previously (Davies and Bacchus, 2011), but

we discover in Section 3.7.2 that finding minimal cores gives much better performance.

3.6.3 Disjoint Cores

When a core is discovered that is disjoint from all previously found cores, the cost of
the current MCHS is guaranteed to increase. Furthermore, solving the MCHS problem
is trivial for disjoint cores. These observations motivate finding as many disjoint cores
as possible in a preliminary phase before Algorithm 5 begins. This disjoint core phase
is shown in Algorithm 6. Experiments in Section 3.7 demonstrate that the disjoint core
phase is very beneficial. It quickly increases the known lower bound, which may be an
important factor for some applications. Changing the order in which cores are found
also means that the overall time spent solving MCHS instances is reduced, since it allows
trivial MCHS instances to be identified. The disjoint core phase can also decrease the
total number of cores required. In some rare cases, the MAXSAT instance is even solved

based on the initial set of disjoint cores alone.
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Algorithm 6: The disjoint core phase.
/* F is a MAXSAT instance. */
/* Returns a set of disjoint cores of F and a minimum cost hitting set for them.*/
DisjointCores (F)
K=1{
hs = {}

1
2
3
4 while true do
5
6
7

(sat?,k) = SatSolver(F)

if sat? then

L break
8 else
9 K = K|J minimize(x)
10 Cmin = argmin ., {wt(c)}
11 hs = hs|J{cmin}
12 F=F\k

13 return (IC, hs)

3.6.4 Other Methods

In addition to minimizing the cores and performing a preliminary disjoint core phase,
a few other simple techniques can be used that may increase the diversity of cores. As
mentioned in Section 3.5, the state of MINISAT persists from one SAT solving episode to
the next during the execution of MAXHS. However, this may adversely affect the diversity
of cores that the SAT solver produces. In order to combat this effect we experimented
with deleting the learnt clauses between iterations, and modifying the variable ordering
heuristic by either increasing the frequency of random decisions or inverting the variables’
activities so that variables with high activity from the previous SAT episode are given
low activity and vice versa. The effectiveness of these techniques in practise is reported

in Section 3.7.

A possible direction for future work is to adapt existing methods that find minimal
cores with specific properties (Ryvchin and Strichman, 2011) to find cores that are likely

to increase the cost of the MCHS.
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3.7 Experimental Evaluation

3.7.1 Experimental Setup

In this section we describe the set of MAXSAT instances that were used to evaluate solver
performance, the computing environment in which all experiments were conducted, and

the resource limits we imposed on the solvers.

Choice of MAXSAT Instances The performance of MAXHS was evaluated on all in-
stances appearing in the 2006-2012 MAXSAT Evaluations except those in the Random
category. This is the first experimental study that evaluates state-of-the-art MAXSAT
solvers on such a large and comprehensive collection of non-random instances. The
Evaluation instances have played an important role in the development of all existing
state-of-the-art MAXSAT solvers. However, it is conventional in the literature to use a
much smaller subset of these instances to evaluation new MAXSAT solvers. The different
subsets used vary greatly by both size and their restriction to particular sub-categories,
even though almost all MAXSAT algorithms are meant to be robust and general-purpose.
Therefore, the best existing comparison of MAXSAT solvers can be found in the MAXSAT
Evaluations, where all solvers are tested on the same set of instances. However, in the
most recent two MAXSAT Evaluations (2011 and 2012), the memory limit for the solvers
was less than 0.5GB (Argelich et al., 2007-2012). Given that some of the MAXSAT in-
stances themselves are close to this size, the tight memory limit probably affected the
fair comparison of different solvers. Furthermore, the state-of-the-art solver BINCD did
not participate in the MAXSAT Evaluations. Our experimental study goes a step farther,
by including all instances used in any year of the MAXSAT Evaluations, using a more
modern computing environment, and including solvers that were never entered in the

Evaluations.

The Evaluation instances represent the largest and most diverse set of MAXSAT in-

stances that is currently publicly available. However, the Evaluation instances are also
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inevitably biased because they are only a small finite set, accumulated under specific
circumstances. The natural bias is to include instances that are solvable by existing
MAXSAT solvers under reasonable resource limits. Almost by definition, if a potential
MAXSAT application is too difficult for current MAXSAT solvers, then ¢ s not a MAXSAT
application. In future work, we would like to investigate new applications for MAXSAT.
We believe that our MAXHS approach will be able to adapt to a variety of future appli-
cations because of its flexibility and power as a hybrid approach. However, for now, it is
important that we have included as many existing publicly available MAXSAT instances
as possible.

Many MAXSAT instances were used in more than one year of the 2006-2012 MAXSAT
Evaluations. In most cases, it is easy to identify such duplicated instances by hand, ac-
cording to their filenames or other clues. If an instance appeared in more than one year
of the Evaluations, only its first occurrence was kept. After the duplicates were removed,

a set of 4502 instances remained.

Computing Environment All experiments reported in this thesis were conducted us-
ing the facilities of SHARCNET (the Shared Hierarchical Academic Research Computing
Network), a High Performance Computing Consortium within Compute Canada (SHAR-
CNET, 2013). Experiments with the SAT4J solver were run on the “guppy” cluster, on
Intel Xeon 2.8GHz processors and the CentOS 5.5 operating system. All other experi-
ments were conducted on the “redfin” cluster, on AMD Opteron 6172 2.1GHz processors

and the CentOS 6.3 operating system.*

Resource Limits The time limit for each test was 1200 seconds. The memory limit was

set to 2.5GB, and this amount of memory was explicitly reserved for each process.

4We discovered after running a large number of experiments on the “redfin” cluster that SAT4J could
not be run on the “redfin” cluster for technical reasons.
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Competing Solvers We ran all experiments with the following MAXSAT solvers: wpM1
(with the latest 2012 improvements (Ansotegui et al., 2012)), WPM2 (versions 1 and
2 (Ansdtegui et al., 2010)), BINCD (msuncore-2011606-linux64 with the option “-r bin-
core-dis” (Heras et al., 2011)), wBo (Manquinho et al., 2009), MINIMAXSAT (Heras et al.,
2008), sAT4J (version 2.3.0 (Berre and Parrain, 2010)), and AKMAXSAT LS (version
1.1 (Kiigel, 2010)).

All of these solvers are able to solve MAXSAT in its most general form, i.e., weighted
partial MAXSAT, and thus have the widest range of applicability. This set of solvers
includes recently developed solvers utilizing the sequence of SAT approach (BINCD, wpPM1,
WPM2), some older ones (SAT4J and WBO), and two prominent Branch and Bound based
solvers (AKMAXSAT LS and MINIMAXSAT).

Several other MAXSAT solvers were entered in the recent MAXSAT Evaluations. These
include QMAXSAT (Koshimura et al., 2012) and PM2 (Ansétegui et al., 2009),%> which use
the sequence of SAT approach but are restricted to instances with uniform weight soft
clauses (i.e. partial MAXSAT). We omit these solvers from our experimental evaluation
because they are specialized to a small subset of the instances we are interested in solving.
We did not experiment with PWwBO (Martins, Manquinho, and Lynce, 2012a) because it
is a parallel MAXSAT solver, while all other solvers use serial algorithms.

For the case of Branch and Bound solvers, we limited our experiments to two solvers
(MINIMAXSAT and AKMAXSAT LS) to save time in running the experimental study.
The other Branch and Bound solvers (i.e. 1UT_RR (Ramezani and Mousavi, 2012),
WMAXSATZ-2009 (Li et al., 2009), INCMAXSATZ (Lin et al., 2008) and WMAXSATZ+ (Li
et al., 2007, 2010)) use lower bound techniques that are quite similar to AKMAXSAT 1.8,°
but AKMAXSAT LS solved more problems in the Random and Crafted categories of the
2012 MAXSAT Evaluation so we chose it as a representative. We included MINIMAXSAT

in our experiments even though it did not participate in the recent MAXSAT Evaluations

5See Section 2.5.2 for a description of these solvers.
6See the discussion in Section 2.5.1.
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because it uses a distinct lower bound technique. Our experimental results show that the

performance of MINIMAXSAT is still comparable to the state-of-the-art.

We also solved the MAXSAT instances with the MIP solver CPLEX (version 12.2) after
applying the following simple encoding of MAXSAT to MIP.”. First, the clauses of the b-
variable relaxation F? are encoded as linear inequalities, using the standard method where
a clause c is converted to the linear inequality >, . pj+> ;. ,.c.(1—pi) = 1. Note that
a negative literal p is encoded as (1 — var(p)) and a positive literal is encoded as var(p).
For example, the clause (z,y, -z, b;) becomes the linear inequality z+y+(1—2)+b; > 1.
Second, the objective function becomes minimizing » . wt(c;) x b;. The MIP thus tries
to find a setting for the propositional variables that satisfies all of the clauses and has

minimum bcost.

Versions of MAXHS We compare eight versions of MAXHS. All of these versions build
on the “basic” version of the original algorithm as shown in Algorithm 5, with zero or

more of the techniques described in Section 3.5 added. The eight versions are specified

in Table 3.1.

MAXHS Minimal Disjoint Invert  Delete Re-refute
Version Cores Phase  Activity Learnts Cores
MAXHS

MAXHS-min v

MAXHS-disj v

MAXHS-min-disj v v

MAXHS-min-disj-inv v v v

MAXHS-min-disj-del v v v
MAXHS-min-disj-inv-del v v v v
MAXHS-reref-disj-inv-del v v v v

Table 3.1: The eight versions of MAXHS that we evaluate in this chapter.

"The origins of this encoding are not clear. However, it is already known to most people in the field.
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3.7.2 Experimental Results

We first evaluate the performance of the different versions of MAXHS and the compet-
ing solvers in terms of the number of problems they are able to solve within the time
limit. Then, we focus on understanding the practical behaviour of MAXHS in terms of

the trade-off between the time taken by the SAT solver and CPLEX.

Overall Performance of MAXHS

The overall performance of the different versions of MAXHS and the competing solvers
is shown in a cactus plot in Figure 3.1. We observe that each of the techniques we
proposed in Section 3.5 improves the total number of problems solved by the MAXHS
approach. The greatest gains in overall performance are due to the disjoint core phase
and especially minimal cores. The tweaks to MINISAT of inverting the activities and
deleting learnt clauses, when used together, lead to significant gains as well. This can
be seen by comparing MAXHS-min-disj and MAXHS-min-disj-inv-del which solve 2891 and
2996 instances respectively. Finally, minimal cores are much superior to reducing cores
through re-refutation only (see MAXHS-reref-disj-inv-del vs. MAXHS-min-disj-inv-del).

Figure 3.1 also shows how MAXHS compares to existing MAXSAT solvers. The basic
version of MAXHS is not competitive with existing state-of-the-art solvers. However, the
improvements we proposed are very effective and the resulting version, MAXHS-min-disj-
inv-del, is well ahead of sophisticated MAXSAT solvers including AKMAXSAT LS, WBO
and WPM2. Three competing MAXSAT solvers, WPM1, BINCD and MINIMAXSAT still
outperform our solver. However, all MAXSAT solvers are outperformed by CPLEX.

The good performance of CPLEX in comparison to MAXSAT solvers on MAXSAT in-
stances is surprising since MAXSAT solvers are specialized to this domain. This observa-
tion motivates us to find ways to further exploit CPLEX within the MAXHS approach.

Tables 3.2 and 3.3 show the overall results broken down by benchmark family. The

tables divide the instances according to whether they appear in the Crafted or Industrial
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sat4j 2381

MaxHS 2495

MaxHS-disj 2558

akmaxsat 2560

who 2587

wpm2v1 2655
MaxHS-reref-disj-inv-del 2682
— wpm2v2 2751

MaxHS-min 2792
MaxHS-min-disj-inv 2871
MaxHS-min—disj 2891
MaxHS-min—disj-del 2988
MaxHS-min-disj-inv-del 2996
wpm1 3097

bincd 3106

minimaxsat 3130

cplex 3249
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Figure 3.1: Runtime results for the competing solvers and eight versions of MAXHS.
Shows how many problems were solved within each time limit. The total number of
instances solved is given in the legend after the solver’s name.

categories of the MAXSAT Evaluations. An important observation is that CPLEX does very
well on the Crafted instances, but is not among the top solvers on Industrial instances.
However, our MAXHS approach is very competitive on the Industrial instances, where
it is the second-best solver overall. This suggests that we should be able to take better
advantage of CPLEX in order to improve the performance of MAXHS on Crafted instances,
resulting in a very robust solver for MAXSAT.

Trade-offs in MAXHS

Next, we focus on understanding the practical behaviour of MAXHS and the techniques

from Section 3.5. Section 3.4 described how the MAXHS approach is affected by three
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main factors: how hard it is to find the cores, how difficult it is to solve the hitting set
problems, and how many cores are required in total. Which of these factors is responsible
for limiting the performance of MAXHS in practise? How are these factors affected by the

various techniques like core minimization?

To answer these questions, we collected some statistics from each run of our MAXHS
solver. We can think of CPLEX and MINISAT as two subroutines invoked by our algorithm,
and ask how much time is spent in each of these subroutines.® For every run of MAXHS
we recorded the number of calls to CPLEX, the total time spent in CPLEX’s solve routine,

and the total time spent in MINISAT.

We begin by examining the percentage of the total runtime that was spent in SAT
solving and in calls to CPLEX for the basic version of MAXHS. Figures 3.2a and 3.2b show
histograms for the percentage of total runtime spent in SAT solving. In Figure 3.2a,
only the instances that the basic version of MAXHS solved within the resource limits
are included. All instances that MAXHS failed to solve are included in Figure 3.2b.
Figures 3.2c and 3.2d show the corresponding histograms for the percentage of total
runtime spent in calls to CPLEX. We observe that on most instances (solved or unsolved),
the SAT solving time is a small percentage of the total runtime, while the time spent in
CPLEX calls is a very high percentage of total runtime. This explains why using more
SAT calls in order to minimize the cores pays off. These observations motivate us to
focus on reducing the time spent in solving the MIP subproblems, even if it increases the

work done by the SAT solver.

8Note that the CPLEX and MINISAT times do not add up to the total runtime of MAXHS, which also
includes the time to parse the input and communicate between CPLEX and MINISAT.
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Figure 3.2: Histograms for the percentage of runtime spent in SAT solving and in calls
to CPLEX, for the basic version of MAXHS.

The third property of MAXHS mentioned in Section 3.4, is the total number of cores
it requires to find the MAXSAT solution. The number of cores given to CPLEX is shown
in the histograms of Figure 3.3 for the basic version of MAXHS, on solved and unsolved
instances. We observe that on instances that MAXHS is able to solve, usually the number
of cores is smaller. Many instances (621, see Figure 3.3b) can be solved without any cores

at all. This can occur, for example, if the MAXSAT instance is in fact satisfiable, or if the
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hard constraints imply via unit propagation that some set of soft clauses is falsified which
is costly enough to exceed the upper bound. However, there are many instances that find
hundreds or thousands of cores and are still solvable, as can be seen in Figure 3.3c. Yet

only very few solved instances required more than 5000 cores.

On the instances that MAXHS failed to solve within the timeout, the number of cores
found before timeout tends to be large, as can be seen in Figure 3.3d.° This suggests
that the number of iterations performed by MAXHS is the reason the algorithm failed to
solve these instances, rather than the difficulty of SAT solving or of solving the MCHS
problems. Some of these instance might be solvable if MAXHS can find a different, smaller,
set of cores that is sufficient to prove the MAXSAT solution. However, we know from the
examples in Section 3.4 that some MAXSAT instances do not have such a small set of
cores. In such cases it is important to reduce the overhead of SAT solving and calls to

CPLEX in order to allow as many cores as possible to be found.

9The unsolved instances for which the number of cores is zero are cases where the SAT solver consumed
all of the memory or time limit during the initial refutation of the MAXSAT instance.
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Figure 3.3: These histograms report the number of cores given to CPLEX by the basic

version of MAXHS.

We also compare the behaviour of different versions of MAXHS, to investigate why the

various proposed techniques pay off. The final value of the lower bound (i.e. the cost of

the last computed MCHS) indicates how much progress MAXHS has made towards the

solution, even if the time limit is reached before the MAXSAT solution is found. So we can

measure the progress made by each CPLEX call, by dividing the final LB by the number
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of CPLEX calls, to get the average increment to the LB per CPLEX call. The average time
spent by a call to CPLEX is obtained by dividing the total CPLEX time by the number of
calls to CPLEX. And by dividing the total SAT time by the number of calls to CPLEX,

we get an idea of how much time is spent finding cores for each call to CPLEX.

The following set of graphs (Figures 3.4-3.7) compares versions of MAXHS according
to four dimensions: the total runtime of the solver, the LB increment per CPLEX call,
the SAT time per CPLEX call, and the CPLEX time per CPLEX call. All 4502 instances
appear in each of these graphs. Note that since the data points often overlap each other
it sometimes appears that fewer instances are included in a graph (e.g. see Figure 3.4c¢).
In each graph, the less sophisticated version of MAXHS is on the horizontal axis, and the

more sophisticated version of MAXHS is on the vertical axis.

We first investigate the effect of using minimal cores by comparing the basic version
of MAXHS with MAXHS-min in Figure 3.4. Recall from Figure 3.1 that the overall perfor-
mance of MAXHS-min is significantly better than MAXHS. It is clear from Figure 3.4a that
minimal cores often improves the runtime by orders of magnitude. This improvement in
performance is explained by Figures 3.4b and 3.4d. Using minimal cores has a consistent
effect of increasing the increment in the lower bound per CPLEX call. Moreover, the
time required by CPLEX to solve each hitting set problem generally decreases. Thus, by
spending more time in the SAT solver to minimize the cores, we are able to give better
cores to CPLEX, which both reduce the difficulty of the hitting set instances and increase

the progress made by each CPLEX call.

However, one some instances the runtime is instead increased by using minimal cores.
This can be partly explained by the fact that the time spent in SAT solving sometimes
increases exponentially, as shown in Figure 3.4c. In the basic version of MAXHS, the SAT
time per CPLEX call is always close to zero. In a small number of cases, minimizing the

cores takes a very long time, consuming all of the 1200 second time limit.

The effect of the disjoint cores phase is shown in Figure 3.5. The benefit of the
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disjoint core phase is that it greatly increases the amount the lower bound is incremented
per CPLEX call. This is exactly as we expect, since during the disjoint core phase the
lower bound is always increased without requiring calls to CPLEX. The total runtime
is decreased because fewer calls to CPLEX are required. The disjoint core phase does
not significantly effect the time spent in SAT solving, except in a very small number
of cases where it can make the cores more difficult to find. The disjoint cores phase
generally reduces the CPLEX time per CPLEX call. MAXHS uses the incremental nature
of CPLEX, meaning that CPLEX uses information from previous solving episodes to solve
the current hitting set problem. So a possible explanation for the reduction in CPLEX
time per call is that CPLEX benefits from being initialized with the set of disjoint cores.
From Figure 3.6, we see that none of these statistics provides a convincing explanation
for the benefit of using the two tweaks to MINISAT (inverting the activities and deleting
learnt clauses). Finally, we compare the basic version of MAXHS with the best performing
version, MAXHS-min-disj-inv-del. By comparing the graphs in Figure 3.7 to the previously
discussed graphs, we can see that the behaviour of MAXHS-min-disj-inv-del appears to
be a superposition of the behaviour of each of the techniques. In particular, by spending
more time in the SAT solver to minimize the cores and find as many disjoint cores as
possible, the effectiveness of the information provided to CPLEX is generally improved.

The net effect is a significant improvement in total runtime.
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3.8 Related Work

In existing MAXSAT solvers that pose a series of decision problems, the difficulty of
solving the decision problems is the main factor that limits performance. This is the
case whether the decision problems are translated to CNF so that they can be solved
by a SAT solver, or a Pseudo-boolean solver is used to solve them natively. In contrast,
the MAXHS approach involves posing a sequence of decision problems that are no more
difficult than refuting the original MAXSAT formula. MAXHS does not add any cardinality
constraints to the SAT instance, and weighted clauses never get duplicated as in wpMm1
and WBO. Instead, the arithmetic constraints specifying that at least one clause from
every core needs to be falsified are dealt with directly by the minimum hitting set solver.

The MAXHS approach is closely related to the Implicit Hitting Set (IHS) problem
as described in (Karp, 2010; Chandrasekaran, Karp, Moreno-Centeno, and Vempala,
2011a). In IHS problems one is trying to compute a minimum cost hitting set without
knowing ahead of time the collection of sets that need to be hit. Instead, one is pro-
vided with an oracle that when given the current candidate hitting set, either declares
the candidate to be a correct hitting set or returns a new un-hit set from the implicit
collection. In the MAXHS algorithm, the cores of F form the collection of sets to be hit,
CPLEX computes candidate hitting sets, and the SAT assumption test acts as the oracle
deciding if the current candidate hitting set is correct, returning a new un-hit core if it
is not. However, the SAT assumption test may take exponential time, while the oracle in
[HS is assumed to run in polynomial time.

It would be interesting to encode IHS problems as MAXSAT instances and try solving
them with the MaxHS solver. One advantage to the MaxHS approach is that it does
not require a special-purpose polynomial time oracle to be created for each application.
Rather, the task would be to devise a MAXSAT encoding of the application, which is
conceptually simpler.

The fact that a MCHS of a set of cores is a lower bound on the MAXSAT solution
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follows from the well-known duality between minimal unsatisfiable sets (MUSes) and

maximal correction sets (MCSes) (Bailey and Stuckey, 2005).

3.9 Conclusion

This chapter introduced the MAXHS approach for solving MAXSAT. The MAXHS algorithm
decouples the satisfaction and optimization components of solving MAXSAT, by using a
SAT solver to find cores and a MIP solver like CPLEX to solve minimum cost hitting set
problems over those cores. The MAXHS approach allows the differing strengths of these
two types of solvers to be effectively exploited. The result is a MAXSAT solver, MAXHS-
min-disj-inv-del, that is comparable in performance to existing state-of-the-art MAXSAT
solvers.

Additionally, we were surprised to discover that the MIP solver CPLEX is a very effec-
tive MAXSAT solver, especially on Crafted instances. Therefore, in the following chapters
we investigate two approaches to improving MAXHS based on adding more information

to the CPLEX problems.
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Chapter 4

Constraining the Hitting Sets

Chapter 3 introduced the MAXHS algorithm, which decomposes the MAXSAT problem into
a series of SAT problems and hitting set problems. The hitting set problems are solved
by expressing them as integer programs and applying a general MIP solver. Neither
the SAT solver nor the hitting set problem alone has enough information to solve the
entire MAXSAT problem. The SAT solver does not have any information about the clause
weights, and the MIP solver knows nothing about the original variables and clauses. In
this chapter we consider two ways of strengthening the information available to the MIP
solver. The main observation is that there are additional constraints that the hitting
sets must satisfy in order to really correspond to the MAXSAT solution. By enforcing
these additional constraints on the hitting set, many minimal hitting sets can be ruled
out without requiring the SAT solver to find cores to rule them out. It is hoped that
constraining the hitting set problems will both make the MCHS problems easier to solve,

and reduce the total number of iterations.

In Section 4.1, we define a realizability condition that the hitting sets must satisfy.
However, the MIP solver is ill-suited to enforcing the realizability condition. Then, in
Section 4.2, we show how the b-variable relaxation can be extended with equivalences so

as to allow the SAT solver to produce general clausal constraints, rather than just cores,
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over the b-variables. We find that this is a more promising approach to constraining the

hitting set problems, because it takes better advantage of the MIP solver.

4.1 Realizable Hitting Sets

Any complete truth assignment partitions the soft clauses of a MAXSAT instance into two
sets: those that it falsifies and those that it satisfies. The goal of solving the MAXSAT
instance is to find the truth assignment that minimizes one side of this partition: the
set of falsified soft clauses. The hitting sets returned by the MIP solver can be thought
of as proposing candidate partitions: the clauses in the hitting set should be falsified,
and the rest should be satisfied. However, the MIP solver is working with incomplete
information, so the partition it proposes may not be achievable by any truth assignment.
For example, if two clauses in the hitting set hs turn out to contain conflicting literals,
no truth assignment will be able to falsify every clause in hs, and therefore this hitting
set can not correspond to a MAXSAT solution. However, the MIP solver in Algorithm 5
(page 41) does not know about the literals contained in each clause, so it can return
hitting sets with this flaw.

This section shows how more information can be added to the hitting set problem,
in order to prevent hitting sets being generated and obviously can’t correspond to a
MAXSAT solution. This allows some hitting sets to be ruled out without requiring a core
to be produced to rule them out. Experiments show that this can greatly reduce the
total number of cores needed to solve the MAXSAT instance, and also significantly reduce
the total runtime of the MAXSAT solver.

The hitting set that causes MAXHS to terminate will have the property that it is
possible to falsify every clause in it, while also satisfying all of the hard clauses. A

hitting set that meets these two requirements is called realizable.

Definition 16 (Realizable). A hitting set hs is realizable in a MAXSAT problem F if
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Algorithm 7: An algorithm for solving MAXSAT using constrained hitting sets.

1 MAXHS-realizable (F)
2 Identical to Algorithm 5 except replace

3 hs = FindMinCostHittingSet (K)

4 by

5 hs = FindMinCostRealizableHittingSet (k)

there exists a truth assignment T such that (a) for each clause ¢ € hs, T = ¢, and (b)

T |= hard(F). Otherwise hs is said to be unrealizable.

An example of an unrealizable hitting set is one that contains clauses ¢, co with a
variable x € ¢; and —x € ¢y, since all truth assignments satisfy either ¢; or cs.
Any time the MCHS solver returns an unrealizable hitting set, at least one more

iteration will be required before MAXHS terminates, as shown by the following corollary.

Corollary 1 (Of Theorem 3 on page 40). Let K be a set of cores of F and hs be a

minimum cost hitting set of IC. If hs is unrealizable, then F \ hs is unsatisfiable.

Proof. For contradiction, suppose m = F \ hs. Then 7 = hard(F) and since hs is
unrealizable, 7 satisfies some clause in hs. So F the set of clauses falsified by 7 (a) is
a strict subset of hs and (b) is a hitting set of IC. But then cost(F,) < cost(hs) which

contradicts the fact that hs is a minimum cost hitting set of /. O

Therefore the MAXHS algorithm does not gain anything by encountering such unre-
alizable hitting sets. We can modify Algorithm 5 (page 41) to only use minimum cost
realizable hitting sets, as shown in Algorithm 7. Theorem 3, upon which the correctness
of MAXHS is based, still holds if minimum cost realizable hitting sets are computed rather

than unconstrained minimum cost hitting sets.

Theorem 4. If K is a set of cores for the MAXSAT problem F, hs is a realizable hitting
set of IC that has minimum cost among all realizable hitting sets of K, and 7 is a truth

assignment satisfying F \ hs then mincost(F) = cost(m) = cost(hs).
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Proof. mincost(F) < cost(m) < cost(hs) by exactly the same argument as for Theo-
rem 3 on page 40. Furthermore mincost(F) > cost(hs). Suppose for contradiction that
mincost(F) < cost(hs) and let 7 be a solution to F. Let F, be the set of clauses falsified
by m. Then F, must be a hitting set of IC and since there is a truth assignment 7 that
falsifies every clause in F, while also satisfying hard(F), F, is a realizable hitting set.
But cost(F;) = mincost(F) < cost(hs). This is a contradiction since hs is the realizable

hitting set of minimum cost. m

Observation 2. Algorithm 7 correctly returns a solution to the inputted MAXSAT problem

F.

Proof. The proof that Algorithm 5 is correct applies using Theorem 4 in place of Theo-
rem 3. [

Realizability and Disjoint Cores Like in our basic MAXHS solver, we use a disjoint
core phase before applying Algorithm 7. However, we do not enforce the realizability
condition during the disjoint phase, because it is nontrivial to compute a minimal cost
realizable hitting set even if the cores are disjoint. To see this, note that the realizability

condition involves a SAT test over the hard clauses of the MAXSAT formula.

4.1.1 Implementing Realizability

In order to implement Algorithm 7, the realizability condition must be enforced by the
hitting set solver. However, the realizability condition involves performing a SAT test to
see if there is a truth assignment that falsifies all clauses in the hitting set and satisfies
the hard clauses. We believe that a SAT solver is likely to outperform a MIP solver
on this kind of problem, since it involves many logical constraints. We considered three
possible approaches to implementing a search for realizable hitting sets. First, we could
write our own realizable hitting set solver, based on Branch and Bound and incorporating

SAT techniques. Second, we could augment the MIP model of the hitting set problem,
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by introducing the original literals and clauses and relating them to the variables of the
MIP model. Third, we could investigate using the callback interface of CPLEX so that the
MIP model of the hitting set problem would remain unchanged, but as CPLEX progressed

we could receive callbacks and verify the realizability condition using SAT techniques.

The second approach involves making the following changes to the CPLEX model to
enforce the realizability condition. A new 0-1 variable is added to the MIP model for each
of the original variables of F (assume they have the same names as in F). Let z; be the 0-
1 variable of the MIP model that represents soft clause C; € F, as defined in Section 3.5.
We add to the MIP model the clauses {(—z; V =¢;;) : ¢;; € C;}, translated to linear
constraints as specified before. Together, these constraints say that if z; is set to one,
then the clause C; is falsified. Finally, we translate all hard clauses to linear constraints
and add them to the MIP model. A solution to the resulting MIP will be a minimum cost
realizable hitting set. However, we point out a potential disadvantage of this approach,
which is that it involves adding all of the original hard clauses of the MAXSAT instance to
the CPLEX model. We observed in Section 3.7.2 that CPLEX has difficulty solving many
MAXSAT instances especially in the Industrial category, so we believe that adding these

logical constraints to CPLEX will degrade the overall performance of MAXHS.

Of the three possible approaches to enforce the realizability condition, we begin by
trying the first option, which is to implement a special-purpose Branch and Bound search.
We do not investigate either of the other two proposed methods. However, as we will
see in the following sections, in addition to realizability we pursue an alternative idea to
constrain the hitting sets. This alternative approach leads to a very robust version of
MAXHS. Therefore, we believe that returning to the question of how realizability should

best be implemented is unlikely to be an interesting direction for future work.

We implemented a special-purpose Branch and Bound solver for the “FindMinCostRe-
alizableHittingSet” function in Algorithm 7. The Branch and Bound solver searches for

a minimum cost realizable hitting set by branching on whether or not a clause appears



CHAPTER 4. CONSTRAINING THE HITTING SETS 80

in the hitting set. Each node corresponds to a partial hitting set. The cost of the best
realizable hitting set found so far is maintained as the upper bound. At each node, some
reasoning is performed to determine whether a better cost realizable hitting set can exist
below the current node or if instead it is possible to backtrack. The realizability condition
is checked whenever a leaf node is visited, and if the hitting set is realizable it becomes
the new incumbent solution.

Dancing Links The Branch and Bound solver represents the current set of cores K
using the dancing links data structure, which Knuth introduced to solve the Exact Cover
problem! (Knuth, 2000). As the Branch and Bound search progresses (e.g. adding clauses
to hitting set, hitting cores, and banning other clauses from the hitting set), the dancing
links structure is easily updated and backtracked to represent the current subproblem.
The main advantage of dancing links is that the effective size of the data structure changes
in concert with the size of the current subproblem, so that near the leaves the hitting set
representation is much smaller than it is at the root of the search tree. This means that
any reasoning that needs to be performed on the current hitting set problem becomes
cheaper as the search descends deeper, which can significantly reduce the total runtime
since the deepest nodes are also the most numerous.

Subsumptions There are two well known simplification rules for the MCHS problem,
that reduce the size of the problem while preserving at least one of the solutions (Weihe,
1998). The first rule removes a set x if it supersets another set ', since hitting &’ will
also necessarily hit x. The second rule says that an element ¢ can be removed if there is
another element ¢’ such that wt(c) > wt(c’) and every set containing ¢ also contains ¢'.
The first rule is still sound for the problem of finding the minimum cost realizable hitting
set, and so we apply this rule at every node of the Branch and Bound search in order to
simplify the remaining problem. However, it is not sound to apply the second rule when

enforcing the realizability condition, since it is no longer possible to know whether clause

!The Exact Cover problem is equivalent to the MCHS problem, except that each set can only be hit
once.
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c is just as good as clause ¢, since realizability depends on the literals occurring in the

clauses.

Lower Bound Branch and Bound search uses a lower bound calculation to perform
lookahead and possibly prune the subtree below the current node. We use CPLEX to
calculate the cost of a linear relaxation of the hitting set problem, ignoring the realizability
condition. The linear relaxation is usually efficient to compute, and provides a good
quality bound. This method provides a sound lower bound on cost of any minimum cost
realizable hitting set extending the current partial hitting set. To see this, first recall
that the cost of the linear relaxation of a MIP minimization problem is a lower bound
on the cost of the optimum. We can ignore the realizability condition because the cost

of a MCHS is always less than or equal to the minimum cost realizable hitting set.

SAT Checks As the Branch and Bound solver searches over partial hitting sets, it
interacts with a SAT solver to check if the realizability condition is violated by the
current hitting set. The SAT solver is initialized with just the hard clauses of the original
MAXSAT formula, hard(F), before Branch and Bound begins. When Branch and Bound
adds a clause to the current hitting set, the negations of its literals are assigned in the
SAT theory. Thus as Branch and Bound adds clauses to the partial hitting set, a partial
assignment 7 is built up in the SAT solver. This is accomplished by enqueuing the literals
at decision level zero in the SAT solver. Note that if the clauses in the hitting set can
not all be falsified at the same time, then this will be caught immediately since it must

be the case that some literal x has been assigned as well as its negation —z.

At each node of Branch and Bound, we use the following procedure to allow early
detection that the hitting set is unrealizable. We ask the SAT solver to perform unit
propagation, which will find some consequences of the partial assignment 7 that are
implied by hard(F). If unit propagation generates a conflict, it means that there is
no realizable hitting set extending the current partial hitting set. Therefore, if unit

propagation fails the Branch and Bound search can backtrack.
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If the Branch and Bound search reaches a leaf node, all cores have been hit. We know
that the clauses in the hitting set can all be falsified because of the unit propagation
checks that have been performed at each node along the current path. However, we are
not sure that the current assignment 7 can be extended to a solution of hard(F), since
only unit propagation has been applied and not a full SAT check. So at each leaf node,
we ask the SAT solver to solve the hard clauses, by extending the partial assignment 7. If
the SAT solver finds a solution, it shows that the hitting set is realizable, and otherwise
the hitting set is unrealizable.

Future Work There are still a number of possible improvements to the Branch and
Bound search that could be implemented, such as OR-Decomposition (Kitching and
Bacchus, 2008), caching, and alternate lower bounding techniques like Lagrangian relax-

ation (Wolsey, 1998).

4.1.2 Experiments with Realizability

Our Branch and Bound hitting set solver is much slower than CPLEX. However, on some
problems the ability to enforce the realizability condition makes up for the inefficiency
of our implementation. We report interesting results obtained from some experiments
on instances from the 2009 MAXSAT Evaluation. We found four benchmark families for
which enforcing the realizability condition paid off. In particular, Algorithm 7 solves
44 instances that Algorithm 5 can not solve. These instances are shown in Table 4.1,
which lists the number of instances solved by Algorithm 7 (column ‘#’), the average
cost of their optima (column ‘Avg OPT’), the average number of iterations Algorithm 5
performed before the timeout of 1200 seconds, and the number of iterations and runtime
for Algorithm 7. Observe that the number of iterations that Algorithm 7 requires to
solve the problem is usually significantly fewer than Algorithm 5 performs, even though
Algorithm 5 fails to solve these instances. This demonstrates that constraining the hitting

sets to be realizable can sometimes reduce the number of iterations enough to significantly
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Avg |Alg. 5| Alg. 7
Family | # | OPT | Iter |Iter|Time

ms/Sean | 4 1 13 67 | 434
pms/bep-msp |26 | 99 460 | 121 | 204
pms/bep-mtg | 13| 8 2198 | 757 | 258

pms/bep-syn | 1 6 80 53 | 295

Table 4.1: Results on instances Algorithm 7 can solve within 1200 s but Algorithm 5
cannot.

improve the total runtime required to solve the problem.

In Table 4.2, more detailed results are presented on 13 instances from the Industrial
partial MAXSAT family bep-syn. These MAXSAT instances share a common structure: all
of their hard clauses contain only positive literals, and all of their soft clauses are unit
clauses containing negative literals. Thus, the original MAXSAT instances themselves
represent MCHS problems. These problems have reasonably large optima, requiring
between 17 and 287 clauses to be relaxed. None of the existing MAXSAT solvers we
experimented with (i.e., the set used in Section 3.7) could solve these problems within
the timeout, and furthermore these instances were not solved by any solver in the 2009
and 2010 MAXSAT Evaluations. However, CPLEX is able to solve each of these problems
quite quickly, as shown in column “cPLEX Time”. The table also shows the results of
using MAXHS with and without the realizability condition. Algorithm 7 as described in
Section 4.1.1 is shown in columns “Alg. 7 - B&B”, and Algorithm 5 with CPLEX for the
hitting set solver is shown in columns “Alg. 5 - CPLEX”. We also experimented with a
version of our Branch and Bound solver that does not enforce the realizability condition,
and the results are shown in columns “Alg. 5 - B&B”. For each version of the algorithms,
and each instance, the number of iterations, the average time to solve the hitting set
problems (columns ‘HS’), and the total runtimes are given in the table. The table also
shows some information about the size of the hitting set problems encountered. Column
‘|Core|” reports the average number of clauses in the cores. Column ‘MxN’ reports the

average dimensions of the hitting set problem given to CPLEX after the subsumption
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rules (defined in Section 4.1.1) have been applied. The value ‘M’ is the average number
of cores in the hitting set problems, and ‘N’ is the average size of the cores in the hitting
set problems. The ‘Nodes’ columns give the average number of nodes searched by B&B
while solving the hitting set problems. The time the SAT solver takes to generate each

core is always less than 0.02 seconds, so this time is not included in the table.

We can observe that the MAXHS approach is better suited to the structure of the
MCHS problem than any existing MAXSAT solvers. The cores of a MCHS problem cor-
respond to the sets to hit. That is, every set to hit x is specified by a hard clause in the
MAXSAT instance. So if the MAXSAT instance contains a hard clause (x,y, z) representing
set k, then the soft clauses {(—z), (—y), (—z)} are a minimal core corresponding to x. The
SAT solver will discover these cores one at a time and pass them to CPLEX. Eventually,
the CPLEX model will grow to encompass the entire original MCHS problem, at which
point the hitting set returned by CPLEX will correspond to the MAXSAT solution. The
number of cores that must be passed to CPLEX should be no more than the number of
sets to hit in the original MCHS problem, i.e. the number of hard clauses. So the number
of iterations of MAXHS should only be linear, and each iteration will be efficient if CPLEX
performs well on the original hitting set problem. We can see from Table 4.2 that the
number of cores required by MAXHS is always less than the number of hard clauses in

each instance (column “# Hard”), as expected.?

However, the realizability condition does not have any affect on these MAXSAT prob-
lems that encode MCHS. This is because every hitting set is realizable: falsifying the
clauses in the hitting set only sets variables to true, and such an assignment can always
be extended to a solution to the hard clauses since the hard clauses only contain positive
literals. This explains why Algorithm 7 does the worst of the three MAXHS algorithms on

the set of instances in Table 4.2; there is no compensation for the overhead of checking

2Note that in an instance of the MCHS problem, it may be possible to remove some of the sets to hit
without changing the solution to the MCHS instance. This explains why the number of cores required
by MAXHS can be significantly less than the number of hard clauses in the MAXSAT instance.
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CPLEX Alg. 5 - CPLEX Alg. 5 - B&B Alg. 7 - B&B
Instance | # Hard | OPT | Time |Iter |Core] MxN HS Time |Iter Nodes HS Time |Iter Nodes HS Time
saucier.r | 116 6 219 | 80 2885 40x2167 15 - 3 1195 - 53 5 5 295
300_10_20| 100 17 4 96 14 48x147 1 148 | 94 14 1 142 | 97 17 1 152
300_10_14| 100 19 0 93 11 46x130 0 35 | 89 12 0 46 | 88 16 0 37
300_10_15| 100 19 4 99 12 49x144 0 62 | 95 13 1 106 | 96 17 1 134
300_10_10| 100 21 0 95 9 47x119 0 13 | 95 14 0 47 | 95 18 0 42
ex5.r | 690 37 3 285 28 132x294 0 116 | 281 24 4 1187|260 46 5 -
ex5.pi| 718 65 3 304 25 137x267 0 72 |301 23 3 924 | 271 50 2 511
testl.r | 305 110 0 278 6 119x176 0 31277 9 0 17 | 271 85 0 67
benchl.pi| 364 121 0 330 8 149x290 0 25 |331 28 1 298 328 113 1 264
max1024.r | 964 245 2 747 5 323x377 0 153 | 734 28 1 1016 [635 179 2 -
max1024.pi | 978 259 3 724 5 310x358 0 200 |720 25 2 - |663 187 2 -
prom2.r | 1610 278 0 935 6  385x498 0 61 |968 21 0 717 | 733 225 2 -
prom2.pi | 1619 287 0 914 6 372x484 0 40 | 966 26 1 846 | 747 249 2 -

Table 4.2: Detailed results on 13 instances from the industrial PMS bcp-syn family. -’
in the Time columns indicates timeout after 1200 seconds.

the realizability condition.

4.2 Non-Core Constraints

In this section we propose an alternative paradigm for constraining the hitting sets used
by MAXHS. In the previous section we observed that the logical structure of the soft
and hard clauses of the original MAXSAT formula impose many constraints on how the
soft clauses can be falsified. Section 4.1 introduced the realizability condition to express
such constraints. However, we will show that the realizability condition does not capture
all of the possible constraints on the hitting sets. In this section we show how more of
these constraints can be learned by the SAT solver, and enforced by the MIP solver. In
contrast to the realizability condition, the constraints we introduce in this section are
efficiently handled by cPLEX. Unlike the constraints discovered by the SAT solver in
Chapter 3, these constraints do not correspond to cores; hence we will call the additional
constraints non-core constraints. It can be noted that core constraints always contain

only positive b-variables, indicating that at least one of the corresponding soft clauses
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must be falsified. In contrast, non-core constraints will be clauses over the b-variables
that contain at least one negative b-variable.

Recall that MAXHS uses b-variables with the assumption mechanism of the SAT solver
to generate cores, and the b-variables are also used by the MIP model to represent the
hitting set problem. The technique we propose relies on strengthening the relationship
between the b-variables and the original clauses they relax, to capture the full meaning
of the b-variables: setting one to true is equivalent to falsifying its corresponding clause.
By augmenting the b-variable relaxation with these equivalences, the SAT solver can
be utilized to learn more general conditions on how the soft clauses can be falsified,

conditions that are not expressible using core constraints or realizability alone.

4.2.1 b-variable Equivalences

Many sound constraints exist over the b-variables that do not take the form of core

constraints, as illustrated by the following example.

Example 5. Let F = {(x), (—z), (z,v), (-y), (—z,2), (—z,y)} where each clause has
weight 1. F° is therefore the set of clauses {(by, z), (by, =), (b3, x,5), (bs, ), (bs, T, 2),
(bs, —z,y)}. Suppose that the three cores k1 = {(z), (-x)}, Ky = {(—2), (x,y), (—y)},
and k3 = {(x,y), (-y), (0x, z), (—-z,y)} have been found. These cores correspond to the
core constraints K = {(by, ba), (ba, b3, by), (b3, by, bs,b6)}. We see that to satisfy these core
constraints at least two b-variables must be set to true, and at least two soft clauses will
be falsified by the MAXSAT solution. When CPLEX searches for a MCHS of K, as soon
as by is assigned, —by could be inferred because it is impossible to falsify both (x) and
(—x) at the same time. Similarly, whenever —by is assigned we could obtain —x and by
by unit propagation in F° U K. However, we do not detect that —bs must hold as well
since its soft clause is now satisfied. These two examples demonstrate that in addition
to the core constraints K, F° also implies the constraints (—=by,—bs) and (by, —bs). If

these constraints could be discovered automatically, then the search for a MCHS could be
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further constrained and potentially made more efficient.

This example shows that the realizability condition does not capture all sound con-
straints over the b-variables. Although the realizability condition would enforce the first
non-core constraint in Example 5, (—by, —bg), it would not capture the second, (by, —bs).
Therefore, we must look beyond the realizability condition for techniques to discover
non-core constraints that the b-variables must satisfy.

Example 5 indicates that although the b-variables of F° are intended to represent
the soft clauses of F this correspondence is not strictly enforced by F°. That is, F°
admits models (satisfying truth assignments) that unnecessarily set b-variables to true
even when the corresponding soft clause is satisfied. Proposition 7 shows, however, that
minimum cost models of F? do obey a stricter correspondence of equivalence between
the b-variable settings and the soft clauses satisfied. Since MAXSAT solving involves
searching for minimum cost models, a natural and simple modification to F? is to force

the b-variables to be equivalent to the negation of their corresponding soft clauses.
Definition 17 (F7,). Let F be a MAXSAT formula. Then
Foo=Fu |J {(-bi,~0):lec}
c; €soft(F)
is the relazed SAT instance of F with b-variable equivalences.

It is possible to define a correspondence between the truth assignments for F and the

truth assignments for 77, .

Definition 18 (7°). If 7 is a truth assignment to the variables of F, w° is the truth

assignment to the variables of ]-"é’q, where
™ =nU{=b 7= ¢, € soft(F)YU{b; : m W~ ¢, ¢ € soft(F)Y.

If 7 is a truth assignment to the variables of ]—"é’q, then m denotes the truth assignment
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to the variables of F that is w° restricted to the variables of F.

b is constructed so that it assigns each b-variable a truth value

In this definition 7
equivalent to the negation of the truth value 7 assigns to the corresponding soft clause.
Thus 7° models the b-variable equivalences. Under this mapping there is a 1-1 correspon-

dence between the models of 77, and the models of hard(F).

Proposition 9. Let 7 be a truth assignment to the variables of F. Then m = hard(F)
if and only if ™ = ]-'qu.

Proof. Suppose m = hard(F). Consider a clause in JF¢

eq» We show that it is satisfied by

7°. There are two cases depending on whether the clause also appears in F° or if it is
one of b-variable equivalence clauses. If the clause also appears in F?°, and it does not
contain a b-variable, then it is an original hard clause and is therefore satisfied by 7 and
by 7. Otherwise, the clause is of the form C;U{b;} and either it is satisfied by 7° because
7 = G, or if m ¥ Cy, then it is satisfied by 7° because by the definition of 7° if = ¥ C;
then 7° assigns b; to true. In the second case, the clause in ]—"fq is of the form {—b;, =}
for some original literal £ € C;. Suppose that {—b;, =¢} is falsified by 7°. Then 7 assigns
b; to true, and by the definition of 7° it must be the case that 7 ¥ C;. But then 7 =
which satisfies the clause and thus we have reached a contradiction. So in every case, we
have shown that 7” satisfies the clause of F7,. Therefore 7 |= F7,.

On the other hand, if n |= F., then we immediately have that 7 |= hard(F) since

hard(F) C F?,. So we have proven that 7 |= hard(F) if and only if ©° = F? . O

Proposition 10. Let © and 7° be two truth assignments defined according to Defini-

tion 18. If n° |= F?, then cost(m) = beost(n®).

Proof. The sum of the weights of the clauses corresponding to the b-variables set to true
in 7 make up beost(n’). Since 7’ |= F.,, by Proposition 9 we know that 7 |= hard(F)

and therefore cost(r) is equal to the sum of the weights of the soft clauses of F falsified
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by 7. By Definition 18, the b-variables set to true by 7° are exactly those that correspond

to the soft clauses of F falsified by m. Therefore, cost(m) = bcost(n?). O

Proposition 11. 7 is a solution for the MAXSAT formula F if and only if ©° achieves

minimum bcost over all satisfying truth assignments for F°

Proof. This follows immediately from Proposition 10. Every satisfying assignment for
fb gives an assignment for F that has equal cost. Thus the MAXSAT solution has cost at
most the cost of the minimal bcost assignment for ]—"b On the other hand, the MAXSAT
solution can not have strictly smaller cost than this, since if it did then the MAXSAT

solution could be extended to a satisfying assignment of F_, b with equal bcost. [

Proposition 11 shows that the MAXSAT instance F can be solved by searching for a

bcost minimal satisfying assignment to . b

4.2.2 MAXHS with Non-Core Constraints

The extension of Algorithm 5 (page 41) to utilize non-core constraints is conceptually
simple. The encoding F7, is simply substituted for the weaker encoding F°. Now since
in Fé’q the b-variables are no longer pure, the SAT solver can return both core and non-
core constraints. Each constraint is passed to the MIP solver which operates as before.
(A copy of the learnt constraint is also kept by the SAT solver because it should help
the SAT solver to prune the search space in future invocations). The resulting modified
version of Algorithm 5 is shown in Algorithm 8.

Initially, the set of b-variable constraints (clauses), I, is empty (line 2). The objective
function is defined on line 3 as the sum of the clause weights for b-variables that are
assigned true. On line 5, an assignment to the b-variables, A, is calculated that satisfies
the current constraints K and minimizes the value of the objective function obj. This
setting of the b-variables is passed as the set of assumptions to the SAT solver on line 6,

along with the SAT instance ]—'b If the SAT solver returns UNSAT, ~ will be a clause
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Algorithm 8: A MAXSAT algorithm that exploits non-core constraints.

1 MAXSAT-solver (F)

2 K=10

3 0obj = wt(c;) xb; + ...+ wt(cy) * by

4 while frue do

5 A = Optimize(/C,0bj)

6 (sat?,x) = AssumptionSatSolver(F? , A)

; // If SAT, k contains the satisfying truth assignment.
: // If UNSAT, K contains a clause over b-variables.

7 if sat? then

L break ; // Finished, k is a MAXSAT solution.

// Add new constraint to the optimization problem
9 K=KU({k}

// And to the SAT formula for better performance
10 Fb, = Fb U{r}

11 return (k, beost(k))

over negated literals from A. This constraint is added to I on line 9 and the process

iterates until the SAT solver reports a solution.
Theorem 5. Algorithm 8 returns a solution to the inputted MAXSAT problem F.

Proof. First, observe that if the x returned by the SAT solver at line 6 is a clause then
Fl, |= k. Furthermore, if  is a satisfying assignment then bcost(k) is equal to the
sum of the costs of the true b-variables in A, the solution returned by the optimizer at
line 5. This follows from the fact that x extends A which has already set all of the
b-variables. Let k be the satisfying truth assignment causing the algorithm to terminate.
All satisfying assignment of Fé’q satisfy the constraints in I as each of these is entailed
by ]-"é’q. Furthermore, bcost(k) is equal to the cost of an optimal solution to these con-
straints, thus x achieves minimal bcost over all satisfying truth assignments for ]-"é’q, and
by Proposition 11 & restricted to the variables of F is a MAXSAT solution for F.
Second, observe that each iteration except the final one adds a constraint to IC that

eliminates at least one more setting of the b-variables. Since there are only a finite number

of different settings, the algorithm must eventually terminate. O
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The key difference with Algorithm 5 is that the optimizer no longer deals with pure hit-
ting set problems as the constraints can now contain negative b-variables. This means that
non-core constraints change the paradigm of MAXHS from an implicit hitting set problem.
[t now becomes more like a logic based Benders decomposition approach (Hooker, 2007).
In particular, the optimization problem is being solved only over the b-variables while the
SAT solver is being used to add additional constraints to the optimization model until
the solution also satisfies the feasibility conditions. Although CPLEX is no longer solving

a hitting set problem, it remains very effective in the presence of non-core constraints.

4.2.3 Seeding CPLEX with Constraints

Each call to CPLEX’s solve routine incurs some overhead so it is desirable to reduce the
number of calls to CPLEX. One way to accomplish this is by “seeding” the MIP model with
a number of initially computed b-variable constraints. In this way each candidate solution
(setting of the b-variables) returned by CPLEX is more informed about the constraints of
the problem and thus more likely to be a true solution. We perform seeding after the
disjoint core phase, but before the iterations of Algorithm 8 begin. Below, we describe

several techniques to cheaply identify such additional b-variable constraints.

Equivalence Seeding: In ]-"fq, literals that appear in soft unit clauses of F are actually
logically equivalent to their b-variables. To see this, recall that if ¢; = (z) € soft(F) is
a soft unit clause, then F?, will contain clauses (z,b;) and (—b;, ~x). These two clauses
together imply that b; = —z. For a clause c of F?, if each variable in ¢ has an equivalent b-
variable (or is itself a b-variable), then we can derive a new constraint from ¢ by replacing
every original variable by its equivalent b-variable. This constraint is a clause over the

b-variables that can be added to CPLEX.

Example 6. In Fzample 5, by = —x due to the soft unit clause (x) and its relazation by

bi. Similarly, by = y. Therefore, from the relazed clause (bs,z,y) € F* we can obtain the
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b-variable constraint (bs, by, by) by simply substituting the equivalent b-variable literals

for the original literals.

Implication Seeding: In F?

eqr €ach of the b-literals may imply other b-literals. We

perform a trial unit propagation on each b-literal b; in order to collect a set of implied
b-literals imp(b;) = {b},...,bF}. This represents a conjunction of k binary clauses b; — b’
(1 < j < k) over the b-variables. Although these k clauses could be individually added
to CPLEX we can in fact encode their conjunction in a single linear constraint that can
be given to CPLEX:

kX bbb >0

Note that these are b-literals, so as is standard a negative literal b is encoded as (1—wvar(b))
and a positive literal is encoded as var(b) (Section 3.7). To understand this constraint
note that if b; is true (equal to 1) then all of the b literals must be 1 to make the sum

non-negative.

Implication+Reverse Seeding: During the trial unit propagation of each b-literal
b;, we can also keep track of every original literal that is found to be implied by b; in
order to obtain sets of reverse implications: rev(z) C {b; : F., Ab; = x}. Then, for each
clause ¢; € F°, we check if each of its original literals 2 € ¢; has a non-empty rev(—x).
If so, a b-literal b, € rev(—x) is chosen for each x and its negation —b_, is substituted
for x in ¢;. The result is a new clause containing only b-variables that can be added to

CPLEX. It is easy to see that this clause is sound by considering the following example.

e

Example 7. Suppose that (x,y,b1) € .7-"bq where x,y are original variables and by s a
relazation variable. Suppose that b, € rev(—x) and b, € rev(—y). This means that
clauses (—b-, ~x) and (—b-,,—y) are implied by F.,. Therefore (mb-y, =b-y, b1), which

can be obtained in two resolution steps, 1s also implied by ]—"é’q and can be added to CPLEX.

Since the b-literal implications imp(b;) are also available, we can add the Imp-Seeding
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constraints as well if we are computing the Rev-Seeding constraints. Note that if b = =z,
as in Eq-Seeding, we obtain at least as many seeded constraints as would be obtained
by Eq-Seeding. If rev(—x) contains more than one b-literal, we could choose any one of
them to form the new clause. We simply use an equivalent b-literal if one exists, and
otherwise we choose the first b-literal that was found to imply —z. In future work we
could investigate different ways of choosing the member of rev(—x), or methods for using

them all.

4.2.4 Implementation

The implementation of Algorithm 8 is based on the implementation of Algorithm 5. Here,
in the initial disjoint core phase (see Section 3.5), the SAT solver considers only F° and
can ignore the b-variable equivalences. After the disjoint core phase, the b-variable equiv-
alences are added to the SAT instance to obtain F7,. After the b-variable equivalences
are added to the SAT formula, CPLEX is seeded with any b-variable constraints obtained

from the input clauses (Section 4.2.3).

4.2.5 Experimental Results

In this section we examine the empirical behaviour of Algorithm 8 and the various kinds of
seeding described in Section 4.2.3. The experimental setup is the same as in Section 3.7.
All of the techniques introduced in this chapter were implemented on top of the best
version of MAXHS from the previous chapter, MAXHS-min-disj-inv-del. Therefore, we will
omit the designations “min-disj-inv-del” when naming the versions of MAXHS that include
techniques from the current chapter. We report results with five versions of MAXHS that
use Algorithm 8 and different types of seeding described in Section 4.2.3. The five versions
are listed in Table 4.3.

Overall Performance

We compare the overall performance of the different solvers in terms of the number of
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MAXHS Min Disjoint Invert Delete | Non-Cores Equiv Implication Reverse
Version Cores Phase Activity Learnts| (Alg.8) Seeding Seeding Seeding
MAXHS-noncore v v v v v

MAXHS-noncore-eq v v v v v v

MAXHS-noncore-imp v v v v v v
MAXHS-noncore-rev v v v v v v
MAXHS-noncore-imp-rev | v v v v v v v v

Table 4.3: The five versions of MAXHS that we evaluate in this chapter.

problems they solve within the time limit. The overall results are shown in two cactus
plots. The first plot, Figure 4.1, compares the competing solvers and the best version
of MAXHS from the previous chapter with the best version of MAXHS from this chapter,
MAXHS-noncore-eq. The second plot, Figure 4.2 shows the results for each of the five
new versions of MAXHS, and the best version of MAXHS from the previous chapter for
reference.

We observe that seeding CPLEX with constraints is very beneficial to the performance
of MAXHS. Indeed, the best version, MAXHS-noncore-eq, outperforms CPLEX and all other
MAXSAT solvers, as shown in Figure 4.1. The techniques introduced in this chapter move
the overall performance of the MAXHS approach from behind the top three MAXSAT
solvers to well in front of them. These results confirm that giving more information
to CPLEX allows MAXHS to benefit from the excellent performance of CPLEX on some
MAXSAT instances that was observed in Section 3.7.2.

The results in Figure 4.2 show the overall performance of the various seeding poli-
cies. It appears that Algorithm 8 is actually slightly less robust than Algorithm 5 from
Chapter 3. The boost in performance only occurs when some type of seeding is also em-
ployed. Among the four different types of seeding, we see that in general the policies that
identify more constraints to seed CPLEX with work better. That is, MAXHS-noncore-imp-
rev solves more problems than MAXHS-noncore-rev or MAXHS-noncore-imp. However,
MAXHS-noncore-eq is even a bit better than MAXHS-noncore-imp-rev, even though the
seeding performed by MAXHS-noncore-imp-rev should subsume that done by MAXHS-

noncore-eq as explained in Section 4.2.3.
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Figure 4.1: Runtime results for the competing solvers, the overall best version of MAXHS
from Chapter 3 (MAXHS-min-disj-inv-del) and the overall best version of MAXHS with
non-cores and seeding (MAXHS-noncore-eq). Shows how many problems were solved
within each time limit. The total number of instances solved is given in the legend after
the solver’s name.
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Figure 4.2: Runtime results for the overall best version of MAXHS from Chapter 3
(MAXHS-min-disj-inv-del) and five versions of MAXHS with non-cores and seeding. Shows
how many problems were solved within each time limit. The total number of instances
solved is given in the legend after the solver’s name.

Tables 4.4 and 4.5 show the number of problems solved broken down by benchmark
family and Crafted vs. Industrial categories. We obhserve that seeding helps on both
Crafted and Industrial instances, and that the MAXHS approach is usually able to solve
a good number of instances in every benchmark family. Thus the MAXHS approach with
non-core constraints and seeding appears to work well on many different types of prob-
lems. These results also show that the best method of seeding varies considerably for
different problems. This suggests that it is possible to develop even better techniques to

determine which constraints to seed CPLEX with, and how many.
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Trade-offs in MAXHS

Next, we focus on the behaviour of MAXHS when the techniques of non-core con-
straints and seeding are employed. As described in Section 3.7.2, we collected statistics
from the runs of each version of our solver on each instance, including the number of calls
to CPLEX’s solve routine, the total time spent by CPLEX in calls to its solve routine, the
total time spent in MINISAT, and the cost of the last lower bound. In Figures 4.3-4.8,
we compare versions of MAXHS along four dimensions: the runtime on each instance, the
CPLEX time per CPLEX call, the SAT time per CPLEX call, and the increment in the cost
of the lower bound per CPLEX call. All 4502 instances appear in each of these graphs,

although the number of data points sometimes appears to be fewer because they overlap.

The main observation from these graphs is that the effect of seeding is to significantly
increase the increment in the lower bound per call to CPLEX. We see in Figures 4.4- 4.6(b)
that the lower bound increment per CPLEX call is always above the 45° line. This means
that the constraints we seed CPLEX with are actually very informative, as we hoped. The
seeded constraints help to immediately rule out many lower cost assignments that CPLEX
would otherwise return. However, the size of the CPLEX models is also significantly larger
due to the initial seeding, and as might be expected, this does increase the time to solve
each CPLEX problem (see Figures 4.4-4.8(d)). Yet the amount of time spent in SAT
solving is not significantly affected either by using non-core constraints, or by seeding

(Figures 4.3-4.8(c)).

Overall, these results show that our method of seeding CPLEX with constraints allows
very informative constraints to be added to the CPLEX problem, without requiring ad-
ditional calls to the SAT solver. Even though the CPLEX problems get harder to solve,
fewer calls to CPLEX are necessary because the seeded constraints rule out many low-cost

assignments immediately. These results also show that seeding tends to make the CPLEX
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models harder to solve, and sometimes a previously solvable instance becomes impossi-
ble to solve within the time limit (although the opposite occurs more frequently). This
explains in part why the weakest type of seeding (Equivalence seeding, implemented in
MAXHS-noncore-eq) ends up solving slightly more problems overall than the most exten-
sive form of seeding (Implication+Reverse seeding, implemented in MAXHS-noncore-imp-
rev). Clearly, in future work better methods for deciding which level of seeding to apply

on an instance specific basis could result in considerable performance gains.

4.3 Conclusions

In this chapter we were motivated by observing that the MAXSAT problem imposes many
additional constraints on the solutions to the hitting set problems. These constraints
no longer take the form of cores, so we showed how MAXHS can learn such non-core
constraints via a natural modification to the SAT formulas. By adding more of these
constraints to the CPLEX model, many low-cost assignments that CPLEX would otherwise

return are eliminated.

Furthermore, we showed how to use the logical relationship between the relaxation
variables and the original clauses in order to quickly identify many non-core constraints
that we can use to seed the CPLEX model. This technique leads to dramatic performance
improvements. The resulting version of our solver, MAXHS-noncore-eq, solves more prob-
lems than any other MAXSAT solver including CPLEX itself. The robustness of the MAXHS
approach is also significantly improved.

The ideas proposed in this chapter raise one main open question. The use of b-
variable equivalences and more general clausal constraints over them sets the stage for
an investigation into how the two solvers (MIP and SAT) should best be combined. For
example, in the current algorithm, the two solvers communicate over a restricted shared

language consisting of only the b-variables, but we could consider expanding this language
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to include some or all of the original variables. Another example is that in the current
algorithms, the CPLEX model contains mostly clausal constraints (except if seeding is
used). Investigating ways to further exploit the ability of the MIP solver to handle
general linear constraints could lead to a more powerful hybrid optimization solver.

In addition, non-core constraints with b-variable equivalences bring the MAXHS solver
much closer to a Benders Decomposition approach. This gives rise to a number of ques-
tions about exactly where the division of labour should lie between the optimization
solver and the feasibility solver. Future work may investigate other ways of dividing the

work between these two solvers with the aim of improving overall performance.
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Family # |mini| MAXHS || MAXHS | MAXHS | MAXHS | MAXHS | MAXHS
ch3 || noncore | noncore | noncore | noncore | noncore

imp eq rev imp

rev
ms/spinglass/ 20 | 20 0 0 0 0 0 0
wms/kexu/frb-wenf/ 35 | 15 10 10 10 20 20 18
pms/csp/sparseloose 20 20 20 11 10 11 10 10

wpms/pb/factor/ 186 | 186 186 186 186 186 186 186
pms/csp/denseloose 20 20 10 0 0 0 0 0
KnotPipatsrisawat 350 | 117 61 53 69 52 41 64
pms/queens 7 7 5 3 3 3 3 3
wpms/aucregions 84 84 35 35 84 84 84 84
ms/cut/spinglass 5 3 1 1 1 1 1 1
pms/jobshop 4 2 4 4 4 3 4 4
wpms/planning 71 71 69 71 71 71 71 71
pms/maxone/struc = 60 | 60 46 55 55 60 58 60
ms/ramsey 48 35 34 34 33 34 34 33
pms/clique/rand 96 96 4 4 96 96 96 96
wms/cut/spinglass 5 1 1 1 1 1 1
wpms/pb/miplib 16 5 7 7 7 7 7 7
wms/ramsey 48 37 34 35 34 35 35 34
ms/cut/dimacs 62 | 48 4 4 4 4 4 4
wpms/aucsched 84 | 84 81 82 84 84 84 84
ms/bip-cut-140-630 100 83 0 0 0 0 0 0
wpms/min-enc/warehouses 18 2 1 2 18 18 18 18
pms/min-enc/kbtree 54 | 22 12 11 11 15 16 15
wpms/aucpaths 88 88 88 88 88 88 88 88
pms/csp/sparsetight 20 20 0 0 0 0 0 0
wpms/spotblog 21 4 6 6 6 6 6 6
pms/maxone/3sat 80 80 25 35 34 80 80 80
wms/cut/rand 40 | 40 0 0 0 0 0 0
wpms/QCP 25 20 25 25 25 25 25 25
pms/clique/struc 62 | 36 10 10 33 29 33 32

wms/cut/dimacs 62 55 3 3 3 3
ms/cut/rand 40 | 40 0 0 0 0

wpms/min-enc/planning 56 56 54 56 56 56 56 56
pms/frb 25 5 0 0 5 8 9 10
wpms/spotbdir 21 3 6 6 6 6 6 6
pms/csp/densetight 20 20 0 0 0 0 0
pms/pb/garden 7 5 5 5 6 6 6

Total 1960 | 1493 | 847 843 1042 1092 1085 1105

Table 4.4: Crafted instances:

family, the number of instances in the family is shown in column ‘#’.

results for the best competing solver on Crafted instances
(MINISAT), the overall best version of MAXHS from Chapter 3 (MAXHS-ch3 which is
MAXHS-min-disj-inv-del), and five versions of MAXHS with non-core constraints and seed-
ing. The table shows the number of instances solved in each benchmark family. For each

The name of

the family begins with either ‘ms’, ‘pms’, ‘wms’ or ‘wpms’ which indicates whether or
not the instances contain hard clauses (‘p’) and whether or not their soft clauses have
non-uniform weights (‘w’). The solvers are ordered by the total number of problems they

solve.
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Family # |bincd | MAXHS || MAXHS | MAXHS | MAXHS | MAXHS | MAXHS
ch3 noncore | noncore | noncore | noncore | noncore
imp rev imp eq
rev
haplo-ped 100 23 46 29 29 28 29 28
pb-nencdr 128 116 109 106 106 103 106 104
pms/bep-mtg 215 | 215 214 212 212 212 212 212
wpms/up-u98 80 79 80 80 80 80 80 80
ms/Safar 112 | 71 34 14 0 34 13 33
pms/pb/primes 86 76 74 76 79 76 80 80
pms/bep-syn 74 45 67 65 71 66 71 71
pms/circtracecomp 4 4 0 0 0 0 0 0
pms/hap-asmbly 6 0 5 5 5 5 5 5
pb-nlogencdr 128 128 118 111 109 111 109 111
pms/bep-fir 59 55 18 18 18 18 18 18
pms/pbo-rout 15 15 15 13 13 13 13 13
pms/