
Propositional logic
2019S Lecture 1

Predicate logic
2019S Lecture 2

Validity and satisfiability
(propositional formulas)

2019S Lecture 3

Validity and satisfiability
(predicate logic formulas)

2019S Lecture 4

Proofs (introduction)
2019S Lectures 5-6

Induction and well ordering
2019S Weeks 4-6

Diagonalization
2019S Week 6

Big Oh notation
2019S Week 7

Solving recurrences
2019S Week 7

Analysis of algorithms
2019S Week 8

Correctness of algorithms
2019S Weeks 8-9

Language theory (introduction)
2019S Week 10

Properties of regular languages
2019S Weeks 10-12

Grammars
2019S Week 12

Propositions
Logical operators

(NOT, AND, ...)

Truth tables

Logical equivalence
of propositions

Predicates Truth assignment

CNF and DNF
Lecture 3

SAT and P vs. NP

Quantifiers
(∀, ∃)

Logical equivalence of
predicate logic formulas

predicate logic formulas
(predicate symbol, constant symbol, variable)

valid, unsatisfiable, satisfiable

Proofs (proposition,
axiom, proof,

logical deduction)

quantified vs. unquantified/free
variables

interpretation, valuation, valid, satisfiable,
logically implies, logically equivalent

Prenex normal form
Lecture 4

Rules for writing a proof Inference rules for
propositional formulas

Additional inference rules for
predicate logic formulas

Weak induction Countable anduncountable sets

Definition of O(.), Ω(.), Θ(.)

Runtime on
a given input

Induction restricted to
subsets, e.g. even numbersStrong inductionStructural induction

Induction over
multiple variables Well ordering proofs

Loop invariant

Recursively defined sets

Recursively defined functions

Partially, totally and
well ordered sets

Guess and verify Specification
(precondition, postcondition)

Language, concatenation,
prefix, suffix, substring

Example countable setsP(natural numbers) is
uncountable

Definition: product
of sets A x B

Definition: finite binary
sequences {0,1}^*

Definition:
power set P(A)Proof by diagonalization

The halting problem
is uncomputable

The halting
problem

Properties

Upper and lower bounds Repeated substitution
and verify

Divide and conquer,
and Master Theorem

Analysis of
recursive algorithms

Solving using
transformations

Solving linear recurrences:
characteristic polynomials

Worst- and average-
case time complexity

Analysing worst-case:
basic tools

Correctness (= partial
correctness + termination)

Proving correctness of
recursive algorithms

Proving correctness of
iterative algorithms

Language operations (concatenation,
union, intersection, etc.)

Deterministic finite
state automata (DFSAs)

Regular expressions

Generalized
transition graph

Nondeterministic finite
state automata (NFSAs)

Equivalence of
DFSAs and NFSAs

Variants of NFSAs:
multiple start states;
lambda transitions

FSA-accepted languages
closed under

complement, union, etc.

The Pumping Lemma

Using closure results to
prove languages aren't regular

Theorem and partial proof:
Equivalence of regular
expressions and FSAs

Finish proof that regular expressions
and FSAs are equivalent

Regular languages closed
under reversal

Regular languages are closed
under homomorphims and
inverse homomorphisms

L is regular iff it's generated
by a right-linear grammar

Homomprihsm, inverse homomorphism

grammar

right-linear grammar
derives (⇒), ⇒^*,

language generated by a grammar,
sentential form


