
The Secret Life of Bugs:

Going Past the Errors and Omissions in Software Repositories

Jorge Aranda

Department of Computer Science

University of Toronto

10 King’s College Road

Toronto, Ontario, M5S 3G4, Canada

jaranda@cs.toronto.edu

Gina Venolia

Microsoft Research

One Microsoft Way

Redmond, WA, 98052, USA

gina.venolia@microsoft.com

Abstract

Every bug has a story behind it. The people that

discover and resolve it need to coordinate, to get

information from documents, tools, or other people,

and to navigate through issues of accountability,

ownership, and organizational structure. This paper

reports on a field study of coordination activities

around bug fixing that used a combination of case

study research and a survey of software professionals.

Results show that the histories of even simple bugs are

strongly dependent on social, organizational, and

technical knowledge that cannot be solely extracted

through automation of electronic repositories, and that

such automation provides incomplete and often

erroneous accounts of coordination. The paper uses

rich bug histories and survey results to identify

common bug fixing coordination patterns and to

provide implications for tool designers and

researchers of coordination in software development.

1. Introduction

Modern large-scale software development demands

managing huge quantities of bugs on a daily basis.

Fixing them is one of the most common and time

consuming activities of developers [16]. When bugs

number in the thousands, it is unfeasible for both team

members and researchers to keep their details present

in their minds. Abstraction becomes necessary: project

health is measured by bug counts, for instance, and

productivity by the rate of bugs closed.

Amid such abstractions it is easy to forget that every

bug has a story behind it. The people that discover and

resolve it need to coordinate, to get information from

documents, tools, or other people, and to navigate

through issues of accountability, ownership, and

organizational structure. There are awareness

requirements, inefficiencies, and opportunities for

improved productivity and quality at every step in the

process, yet these only become apparent when we go

beyond the abstracted numbers and into the rich,

detailed history of coordination in each bug.

As researchers, we often rely on repositories of

software project information as the main or only source

of evidence to extract the histories of bugs and other

work items. They are usually stored in the form of

tickets or records in a bug database. They provide a

convenient compartmentalization of work. We use

project management systems’ features such as audit

trails and data fields that keep track of ownership and

of the context of each work item. Sometimes we enrich

the histories in ticketing systems with records of

electronic communication among team members, and

with organizational structure data extracted from

human resources databases. However, to this point the

use of these electronic repositories as reliable and

sufficient accounts of the history of bugs or work items

has not been properly validated, and we do not have a

description of the common coordination dynamics

underlying bug histories.

This paper reports on a field study of coordination

activities around bug fixing that used a combination of

case study research and a survey of software

professionals. The study goes beyond the electronic

repositories of software activity by talking directly to

the key actors on the bugs to discover the patterns of

group work that are commonly used to fix bugs. It

discusses the reliability of electronic repositories as the

basis of research into the coordination of software

projects, and provides some implications for the design

of coordination and awareness tools.

2. Related Work

Research on coordination of software professionals

faces the problem of having too many possible events

and variables to observe and too limited observation

and analysis resources. The need to be selective

permeates our data collection and analysis strategies.

To address this, and as a broad generalization,

empirical studies of coordination in software

development tend to follow three approaches.

First, as discussed earlier, there are reports based

primarily on electronic traces of team activity. These

electronic traces are used as a substitute for the

observation of software development work. For

instance, Herbsleb and Mockus [11] use source code

change management system data (as well as a survey)

to model distributed software development. Cataldo et

al. [5] use automatically extracted archival data to

compute coordination requirements. Valetto et al. [20]

mine software repositories to establish a measure of the

socio-technical congruence of an organization.

Second, there are detailed, rich accounts of the

activity of one or a few software professionals. These

are usually the result of ethnographic observations and

fly-on-the-wall studies, such as the work of Chong and

Hurlbutt on coordination of programming pairs [6] and

of Ko et al. [14] on information needs of collocated

teams.

Third, there are broader, abstracted reports of a

number of software projects. These tend to be detailed

and nuanced as well, but they focus on trends and

patterns of what went right or wrong at the group or

project level. This is the case of Brooks’ classic

postmortem of the OS/360 [4], and of the identification

of cognitive, team, and organizational dynamics by

Curtis et al. [7]. Recently, de Souza and Redmiles have

used this approach to characterize the coordination of

software professionals [8].

All of these approaches are necessary, and they have

given us quite useful information about coordination in

software projects. But, to our knowledge, a work-unit-

centric approach to study coordination has not been

explored in our field.

There is precedent for the work-unit-centric study of

coordination in other disciplines. Common examples

are the studies of root cause analyses (RCA) [21],

which explore a number of process failures to uncover

and fix their root causes. Our methodology differs from

RCA in many ways; most importantly in that it is not

interested in locating the main points of failure in a

process (there does not even need to be a failure), but

in describing and characterizing the process itself.

Studies of coordination in software development

have often portrayed it as an informal, complex and

context-dependent phenomenon. The prominence of

informal and undocumented coordination activities has

been mentioned several times (notably by Kraut et al.

[15], Perry et al. [18], and Herbsleb and Grinter [10]).

Documentation, a centerpiece of formal process

proposals, has been studied by Lethbridge et al., who

report that it is often out of date and rarely consulted by

developers [17]. This does not mean that developers do

not need to acquire project information constantly:

according to Singer et al. [19] search is one of the

primary kinds of developer work. Rather, as Hertzum

points out [12], engineers are interested in finding

trustworthy information, which often leads them to

their colleagues or other familiar sources rather than

documents.

Finally, previous studies on coordination around

bug repositories have studied them from different

angles. They are the main data source of the work on

automatic assignment of bug ownership by Anvik et al.

[1]. Bettenburg et al. [3] use them to improve the

quality of bug reports. And De Souza et al. [9] studied

approaches to manage interdependencies at a project at

NASA, and describe “problem reports” as boundary

objects, which are used by different groups of software

professionals for different purposes.

3. Study Design and Execution

The goal of our study is to provide a rich,

contextualized, work-item-centric account of

coordination in bug fixing tasks. We had two main

research questions:

First, how is the process of fixing bugs coordinated

in software teams? What is the lifecycle of bugs? What

are the most common patterns of coordination involved

in this work? How does their resolution play out over

time and over the socio-technical network of the teams

that work on them?

Second, do electronic traces of interaction provide a

good enough picture of coordination, or is non-

persistent knowledge necessary to understand the story

of each bug fix?

We executed a field study in two parts. The first was

a multiple-case exploratory case study [22] of bug

histories. The second aimed to validate our case study

findings with a survey of software professionals

(developers, testers, and program managers). In both

cases our data comes from software development at

Microsoft’s product divisions. The following sections

describe both parts of our study separately.

3.1 Multiple-case case study

The unit of analysis of our case study was the

history of a closed bug. We defined it as the collection

of conceptually related activities that at some point in

the life of their project were summarized as at least one

entry in a bug database. Some records in bug databases

are not bugs in the strict sense; we still treated them as

such since our teams did. Some bugs have duplicate

records; we considered all of the duplicates as part of

the same conceptual entity. Some bugs exhibit

symptoms that are initially seen as different bugs and

recorded separately; we treated them as part of the

same defect whenever possible.

Bugs do not necessarily begin their life when the

entry is created in the bug database or end when they

are marked as “Closed”. Some of them extend further

in both directions; this extended life is part of our unit

of analysis.

We selected our cases from three major product

divisions at Microsoft. Our selection criteria were:

 The bug was filed in a bug database, and some

elementary information about its nature was

posted in its data fields.

 The bug was marked as “Closed” at the start of

our observations.

 The bug was fresh (it was closed within two

weeks of the start of our observations).

Our cases were selected randomly. Other data, such

as the bug’s resolution mechanism, were not part of our

selection criteria, and we did not control for them.

To get a better picture of the path that user-reported

bugs follow, we deviated from our selection criteria in

one case: we contacted a Customer Support escalation

engineer and requested a pointer to a bug that had

come from Microsoft's escalation channels (that is, a

bug that was reported by a customer to support staff).

All of our cases followed the same methodology.

First, we queried a product division’s bug database to

find a case fulfilling our criteria. We obtained as much

information as we could from its electronic records,

including the events in its audit trail, all the bug

record’s data fields, data on its owners and on

everybody that had participated in any action related to

the bug, and links to source code repositories.

From that point, we traced backwards by contacting

the people that had last touched or were referenced by

the bug record. If they were not relevant to the history

(a common case, due to bulk edits of bugs), we kept

tracing back to find agents that were relevant for the

bug.

Once found, we interviewed them to get their

understanding of the history of the bug and of the

participants and artifacts from which they obtained

information or with which they coordinated to close it.

When we were pointed to an artifact, such as a

specification document, we analyzed it and traced back

to its creators. When we were pointed to other people,

we contacted them if possible, and repeated the process

with them. When we were pointed to a persistent

communication medium, such as an email, we obtained

a copy, analyzed it, and traced back to its originators.

In some cases this process would reach a dead end

but we knew there was more information to be found

(because, for instance, we had yet to reach the point

where the bug had been originally discovered). If that

was the case, we jumped to the next relevant

participant in the bug record and continued

reconstructing the bug history from that point. We

always made sure to reach the beginning of the story.

In other cases our inquiries would lead us to people

and artifacts so far along the chain of events that they

had little or no relevance to our bug’s history. In those

cases we made a subjective judgment call and stopped

exploring those branches.

Our methodology was theoretically inspired in the

focus on people, artifacts, and information flow of

Hutchins' Distributed Cognition framework [13].

However, as we had expected [2], we found so many

instances of information flow that executing our case

studies at the computational and representational level

of Hutchins’ studies was not feasible. We tried to strike

a balance between richness and contextual detail on

one hand, and replication and generalization power on

the other. We stopped collecting data on a chain of

events when we had reconstructed it in full, or when we

had reconstructed it partially, but proceeding further

was unfeasible due to a lack of participation from some

of its actors or due to our time constraints.

Our data collection was semi-structured. For each

case we collected the following information:

 A list of primary and secondary actors in the

history and their contributions.

 A list of relevant artifacts and tools.

 A chronological list of the information flow and

coordination events in the bug’s history.

 Pieces of evidence as required by the

particularities of each case.

 The history of the bug as reconstructed by its

record in the bug database.

 The history of the bug as reconstructed by the

full collection of electronic traces we obtained

 The history of the bug as reconstructed from

making sense of all available evidence,

including our interviews with participants.

Table 1 – Cases Summary

Case Type of Case

How

Found Resolution

Direct

Agents

Indirect

Agents

Other

Listeners

Lifespan

(days)

Days

w/Events Events

C1 Documentation Ad-hoc test Fixed 6 4 179 320 12 19

C2 Code (security) Ad-hoc test Fixed 21 6 3 408 49 138

C3 Build test failure Automated Fixed 42 8 291 59 21 141

C4 Code(functionality) Ad-hoc test Fixed 6 1 0 7 5 16

C5 Code (install) User (Beta) By Design 2 3 0 2 2 12

C6 Code(functionality) Automated Fixed 2 4 11 29 6 20

C7 Build test failure Automated Fixed 6 7 197 14 6 34

C8 Code(functionality) Dog food Won’t Fix 2 7 0 2 2 5

C9 Code(functionality) Automated Not Repro 5 2 1 2 2 12

C10 Code(functionality) Escalation Fixed 23 18 13 35 20 220

In total, we studied ten bugs (including the

escalation case). We interviewed 26 people. A brief

summary of our cases is provided in Table 1. Direct

Agents are those who executed tasks in the process of

resolving the bug; Indirect Agents were addressed by

Direct Agents, but did not intervene.

3.2 Survey

We validated our case study results with a 54-

question survey of software professionals at Microsoft.

We sent it to 1,500 randomly selected Microsoft

employees divided evenly between developers, testers,

and program managers. We offered participants a

chance to win a $500US gift card. We received 110

responses (7.3% response rate); all responses were

optional but for all questions we received at least 100

responses. We did not control for the product division

of the respondents or for demographic criteria.

The survey asked each respondent about the history

of the last recently closed bug that they had played a

primary role in resolving. It asked them to go over the

corresponding record in the bug database and to bring

up and re-read any emails pertaining to the bug, so as

to have the history of the bug fresh in their minds.

The survey had three main parts. In the first,

respondents gave us general data about the bug in

question. In the second we questioned about the

coordination patterns that we will present in Section 5.

In the third, we probed the extent to which the record in

the bug database told the full story of their bug.

Results from some of the general data questions

appear in Figures 1-3. Although it is not appropriate to

compare the case studies with the survey responses

using statistical means, the two are mostly in

agreement, with one exception: the number of direct

agents identified in the case studies versus those

reported in the survey. The quartiles for directly

involved agents in the survey are 3 (25%), 4 (50%), 6

(75%) and 15 (100%). In contrast, three of our ten

cases had more than 15 directly involved agents. We

believe the difference suggests that our investigation

revealed a much bigger bug footprint than our

respondents perceive.

Figure 1 - How was this bug found?

Figure 2 - Kind of bug

Figure 3 - How was this bug closed?

4. Errors and Omissions

The most striking lesson from our cases is the deep

unreliability of electronic traces, and particularly of the

bug records, which were erroneous or misleading in

seven of our ten cases, and incomplete and insufficient

in every case. In fact, even considering all of the

electronic traces of a bug that we could find

(repositories, email conversations, meeting requests,

specifications, document revisions, and organizational

structure records), in every case but one the histories

omitted important details about the bug.

Before discussing the errors and omissions in these

cases, we need to note that we believe this problem is

not a consequence of a carelessness or lack of

discipline particular to Microsoft. The repositories and

documents we reviewed seem to be as thorough as

those of comparable companies, or more. We discuss

this in greater detail in our Limitations section.

4.1 Levels of data collection and analysis

We found there are several levels at which one can

investigate the history of bugs, roughly corresponding

to the amount of time one needs to invest in each of

them. Each level incorporates all of the information

acquired in the previous, plus additional findings from

a deeper analysis:

 Level 1: Automated analysis of bug record data. At

the first level, one can use automation to obtain a list of

agents that were involved in a bug’s history, as well as

information such as a bug’s lifespan, its resolution, its

changes of state, how was it found, who were its

owners, which code change-sets correspond to the bug,

and a chronological list of its events.

Level 2: Automated analysis of electronic

conversations and other repositories. Traces of

electronic conversations can be used to construct a

social network of electronic interaction, and assume

that it corresponds in structure and intensity to the real

communication events of the participants. These data

can be filtered by participants, keywords and

timestamps to locate the electronic interactions that are

(probably) related to the bug in question.

Level 3: Human sense-making. Automation is still far

short of a human’s capability to infer every connection

in the data and reason about the evidence.

First, there is often a wealth of information in the

electronic repositories described above, but it is not

formally linked–discovering it requires a semantic,

unstructured analysis of the evidence. For instance, a

note by person A in a bug record could state that a fix

“will not address group X’s performance concerns,

which will be filed in a separate bug”. An adequately

motivated human could conclude that there probably

was a discussion between A and representatives of X,

extract the list of people that are part of group X from a

different database, match it with email records to

identify the relevant conversation and agents involved,

and, through trial-and-error queries (since no bug ID is

provided), locate the follow-up bug in the database.

Second, and posing an even greater challenge for

automation, if we want to understand and improve

coordination dynamics we need our bug histories to

include the social, political, and otherwise tacit

information that is also part of the bread and butter of

software development. This is often subtle, not always

apparent, and it must be read between the lines of the

evidence collected.

Level 4: Direct accounts of the history by its

participants. Interviewing the participants of a bug

history seems to be the best gateway to obtain the

information that was not documented, or it is

disconnected, or erroneous. Interviews enrich

significantly the data of the previous levels, as long as

they take place before the history of the bug is

forgotten. Although they are not guaranteed to provide

us a complete account of the bug’s history, they allow

us to validate earlier conclusions, and to detect events

that are not stored in the records, but that are essential

to understand it.

4.2 The levels in practice

We conducted our case study at the last of the four

levels we listed. However, throughout its execution, we

kept parallel bug histories corresponding to every

previous level of analysis of the evidence, in an effort

to determine how much of the real histories of bugs is

gained or corrected at each level.

The differences between levels were stark,

quantitatively and qualitatively. The following tables

help to contrast them. Table 2 shows the number of

events we could log, for each level, in the bug histories.

Similarly, Table 3 shows the total number of agents

(direct and indirect) found at each level.

Table 2 – Events

Case Level 1 Level 2 Level 3 Level 4

C1 8 16 17 19

C2 11 11 138 138

C3 19 119 119 141

C4 11 14 15 16

C5 8 11 11 12

C6 12 18 19 20

C7 6 33 34 34

C8 4 4 5 5

C9 7 11 12 12

C10 17 78 149 220

Table 3 – Agents

Case Level 1 Level 2 Level 3 Level 4

C1 7 9 9 10

C2 5 5 27 27

C3 12 38 38 50

C4 5 5 7 7

C5 4 5 2 5

C6 7 7 5 6

C7 7 14 12 13

C8 6 6 15 9

C9 6 7 7 7

C10 8 25 41 41

Although the numbers support our claims, they

cannot show the extent to which the bug histories

diverge among levels. It is not just that higher levels

produce longer stories; rather, they change qualitatively

in ways that are deeply relevant to the study of

coordination. The following paragraphs describe the

most important kinds of divergence that we observed.

4.2.1 Erroneous data fields. Basic data fields in bug

records were sometimes incorrect. C9 was a Test bug,

but it was marked as a Code bug. Some duplicates of

C2 and of C4 had the wrong Status (they were still

marked as “Resolved” when their duplicates had been

marked as “Closed”). C8 was resolved as “Won’t Fix”,

when it should have been resolved “By Design”.

Our survey asked participants regarding about the

Resolution field of their bugs, and their responses

support our finding. 10% of the respondents stated that

the Resolution field of their bug was inaccurate.

4.2.2 Missing data in bug record. Among the

important bits of data missing from bug records were

links to the source code repository in C7 and C10, links

to duplicate and related records of bug C2, links to a

bug that was found in the process of resolving the

original in C9, any links to specification documents

(especially for case C5, resolved By Design),

reproduction steps (C3), a statement of the corrective

actions taken to fix the bug (C2, C4, C7), and a

statement of the root cause of the bug (C7, C9).

The missing link to source code change-sets is one

of the most problematic omissions. For the last bug of

70% of our survey respondents, the fix involved

committing code to a repository. But 23% of those

cases had no link from the bug record to the source.

The survey supports the rest of our findings too.

Reproduction steps were marked as incomplete,

inaccurate, or missing, 18% of the time. Corresponding

percentages for the root cause of bugs and the

corrective actions taken are 26% and 35%.

4.2.3 People. Obtaining the lists of primary and

secondary participants in a bug’s history was a constant

source of errors and omissions. People that took

actions concerning the bug were often not mentioned in

the record or in email communications (C2, C3, C7,

C9, C10). The purported owners of a bug sometimes

had no activities or stake in its resolution (C6, C7, C8,

C9). The extent of a participant’s contribution was easy

to misjudge based on electronic traces: high frequency

and intensity of interaction did not imply high level of

contribution. And in at least two occasions, the

geographic location of our interviewees was incorrect

in the employee database.

In the survey, the people marked as “owners” of the

bug were driving its resolution only in 34% of the time.

In 11% they had nothing to do with the bug.

Furthermore, according to our responses, in 10% of

the time the primary people that worked on a bug are

not easy to spot by looking at the bug record, and in

10% they do not even appear in the record. The list of

people that edited the bug’s fields and history includes

only some of its primary participants 40% of the time,

and none of them 4%. Corresponding numbers for

secondary participants are 39% and 38%. All of the

people in the bug’s history and fields are fully

irrelevant in 7% of the cases.

4.2.4 Events. It is unrealistic to expect all events

related to a bug to be found in its record or through its

electronic traces. Naturally, most face-to-face events

left no trace in any repository. But in some occasions,

the key events in the story of a bug had left no

electronic trace; the only way to discover them was

through interviews with the participants. At the same

time, some events logged in the bug records of all of

our cases were noise or junk (for instance, bulk edits

and mistakes with their later corrections). The

chronological order of events was also problematic:

Bugs were sometimes resolved even before their record

had been created (C7), or closed long after they had

been resolved because they’d been forgotten by the

person that needed to close them (C2, C4).

In the survey, 3% of the bugs had been discussed at

least a month before they were first filed, and an

additional 6% at least a week before being filed.

4.2.5 Groups and politics. As we moved further from

the raw data and into broader patterns of coordination,

we saw that most of the important information at the

team and division levels could only be found through

higher levels of analysis. In C4 we found a pocket of

people with a culture and practices different than those

of their division, in the process of assimilation after an

acquisition. The status of a group with respect to

milestones and releases bore significant consequences

to the kind and speed of the decisions made as new

bugs were found (for instance, for C5 the team was

undergoing a “bug bash” and having face-to-face triage

meetings daily; most bugs were only given a minute of

air time or less). Sometimes, as in C3 and C7,

ownership of a bug falls in a gray zone, and inter-team

or inter-division struggles to determine ownership and

accountability ensue. These issues usually impact the

history of bugs considerably, yet we could not have

learned about them without interviewing its participants

and paying close attention to the details in the

electronic record.

4.2.6 Rationale. Probably the hardest questions to

answer without human sense-making and participant

collaboration were the “why” questions: In C4, why did

a developer choose another as a required code

reviewer, but a third as an optional reviewer? In C10,

why was there no activity in a bug record for weeks

after a few bouts of minute-by-minute updates and

frantic emails? Why were the Status or Resolution

fields in C2, C4, and C8 incorrect? Why in C5 did a

triage group conclude that the bug would not be fixed?

Why did a tester file a bug, C9, even though she

suspected the failure was most likely a false alarm?

We found that the answers to these questions,

discovered during interviews, would often unlock the

whole explanation of the events in the history of a bug.

4.2.7 Miscellaneous. Other facts that could only be

found at higher levels of analysis resist categorization,

but still tend to be at the heart of a bug’s history. In C6,

a bug was found independently by a tester and a

developer in different groups; the developer produced a

fix without knowledge that the bug had been already

documented. In C4, a developer committed hundreds of

new lines of code to fix a bug shortly after it was

found; he did not write them all at a blazing speed, but

rather copied them from the code of his old company,

now acquired by Microsoft, and “stitched it” to the

relevant interfaces. In two cases (C3 and C7), early and

correct diagnoses were promptly ignored in a flurry of

emails to get an urgent bug resolved. In general, the

bugs in our case pool had far richer and more complex

stories than would appear by automatically collecting

and analyzing their electronic traces.

5. Coordination Patterns

In the end, our bug histories were rich, varied, and

context dependent. They did not follow a uniform path

or lifecycle. This posed a problem: our first research

goal was, precisely, to describe the lifecycle of bugs

and the process of fixing them.

Instead of attempting to formulate a process for all

bug histories, we chose to describe the menu of

coordination patterns that we observed. We selected

the patterns that seemed to be the most recurrent and

those that occurred rarely but had a great impact in the

history of a bug. Table 4 lists them.

Some of the patterns have negative implications. For

instance, we saw several cases of “snowballing

threads” and “rapid fire email in public” that were

clearly inefficient, yet they seemed to be routine for our

participants. The only “summit” we observed

corresponded to a bug (C3) that was described to us as

“very important” and “threatening to move our ship

date” by the release manager in charge. We added one

pattern for completeness (video conferences), though

we observed no instances of it. Another pattern,

“forgotten”, was pointed to us by one of our survey

respondents; it was not included in our original list.

We asked our survey respondents whether those

patterns had occurred for their last bug, and if so,

whether they had been essential for the resolution of

the bug. Figure 4 provides their responses. The last

column represents the perceived usefulness of a pattern

in relation to its frequency.

Table 4 - Coordination patterns

Communication media

Broadcasting emails
Sending a manual or automatic notification to a number of mailing lists to inform their members

of an event.

Shotgun emails
Sending an email to a number of mailing lists and individuals in the hope that one of the

recipients will have an answer to the current problem

Snowballing threads Adding people to an ever-increasing list of email recipients.

Probing for expertise
Sending emails to one or few people, not through the “shotgun” method, in the hope that they will

either have the expertise to assist with a problem or can redirect to somebody that will.

Probing for ownership
Sending emails to one or few people, not through the “shotgun” method, requesting that they

accept ownership of the bug or can redirect to somebody that will.

Infrequent, direct email Emails sent privately and infrequently among a handful of people.

Rapid-fire email Bursts of email activity in private among a few people in the process of troubleshooting the issue.

Rapid-fire email in public
Like the above, but with tens or hundreds of people copied as recipients of the email thread, most

of them unconnected to the issue.

IM discussion Using an instant messaging platform to pass along information, troubleshoot, or ping people.

Phone Phone conversations used to pass along information, troubleshoot, or ping people.

Bug database

Close-reopen
A bug that is reopened because it had been incorrectly diagnosed or resolved, or because there is

disagreement on its resolution or on the team's ability to postpone addressing it.

Follow-up bugs filed
Other bugs were found and filed in the process of fixing this one, or a piece of this bug was filed

in a different record as follow-up.

Forgotten A bug record that goes unnoticed and unattended for long periods.

Working on code

Code review The fix for this bug was reviewed and approved by at least one peer.

Two birds with one stone The fix for this bug also fixed other bugs that had been discovered and filed previously.

While we’re there The fix for this bug also fixed other bugs that had not been discovered previously.

Meeting

Drop by your office
Getting a piece of information, or bouncing some ideas regarding the issue, face to face informally

with a coworker in a nearby office.

Air time in status meeting The issue was discussed in a regular group status meeting.

Huddle The issue called for a team meeting exclusively to discuss it.

Summit The issue called for a meeting among people from different divisions exclusively to discuss it.

Meeting with remote

participants

Any meeting where at least one member is attending remotely (could be a huddle or summit

meeting).

Video conferences
Any meeting where video was used to communicate with at least one attendee (could be a huddle

or summit meeting.

Other patterns

Ignored fix/diagnosis A correct diagnosis or fix that was proposed early on and was temporarily ignored by the majority.

Ownership avoidance Bouncing ownership of the bug or code.

Triaging Discussing and deciding whether this is an issue worth addressing.

Referring to the spec
At least one concrete and specific reference to a spec, design document, scenario, or vision

statement, to provide guidance to solve or settle the issue.

Unexpected contribution New information or alternatives that come from people out of the group discussing the issue.

Deep collaboration
Two or more people working closely (face to face or electronically) and for a sustained period to

unravel the issue.

Figure 4 - Usefulness and frequency of patterns

We do not claim that our list of patterns is

comprehensive. But using them to characterize bug

histories may provide enough relevant information

about their coordination events while ignoring

irrelevant details. Furthermore, as we discuss in the

next section, some of them could be supported (or in

the case of negative patterns, prevented) by software

tools.

6. Implications

6.1 For tool designers

Although the set of states commonly used in bug

databases (Active, Assigned, Resolved, etc.) may be

helpful to manage software development, our data

shows that they are poor approximations of the true

lifecycle of a bug. We believe it is more useful, for

understanding coordination and for designing tools for

developers, to think of bug fixing activities not as

belonging to a stage of a bug’s life or a workflow, but

as striving for the satisfaction of one or several goals.

We formulated a list of goals based on the activities

of the people in our case study. Table 5 describes them.

Not all of the goals occur for every case, and they do

not occur strictly sequentially.

These goals provide a framework to analyze the

effectiveness of coordination and project management

tools and practices. For instance, Assignment of

Ownership is often problematic, especially if there is

no clear owner of the seemingly buggy code. In the

case study this happened more often with test scripts

than with feature code, and with developers leaving

their posts without tying loose ends. Tools and

practices that ensure that every artifact has an active

owner would reduce this problem.

Search is another problematic area. In our cases it

often resulted in “snowballing threads” and “shotgun

emails,” which sometimes succeed in finding the

people or piece of knowledge necessary, but can be

extremely inefficient if one considers the person-hours

needed by hundreds of email recipients to parse

numerous messages that, more often than not, have no

relevance for them.

For coordination purposes, Awareness was the area

most in need of improvement. However, it is not easy

to figure out how to provide the right level of

awareness in very large companies with interconnected

products. Awareness seems to be most needed not at

the team level, but among the primary and secondary

agents that form the social network around a work item.

Tools that (partially) detect work networks and allow

for their members to be aware of the activities of their

peers should help address this issue.

6.2 For researchers

Our case study and survey results point in the same

direction: Electronic repositories hold incomplete or

incorrect data more often than not. We base this

conclusion on our exploration of bug databases and

email communications; source code repositories are

even more at fault than these data sources as they are

blind to the networks of testers, program managers,

usability experts, and users that are also primary agents

in coordination phenomena.

Some of the concrete discrepancies we found might

be acceptable for large-scale automated analyses of

coordination. Others, such as most of the People issues

in 4.2.3 and the missing links from bug records to

source code change-sets, are far more serious.

Table 5 – Stakeholders’ goals during the lifespan of a bug

Discovery
Detecting a difference between reality and expectation. The essential first step to record the

unexpected behavior as a bug.

Diagnosis
Understanding the nature, cause, and impact of the bug, as well as the actions that will be taken as

a result. We believe it happens in every case, though often tacitly.

Assignment of Ownership
Determining who will be responsible and accountable for the resolution of a bug, both at the

group and individual levels.

Search

Finding the appropriate knowledge, resources, and skills. It seems to be often meshed with

Assignment of Ownership activities, so that the expert is the owner of the bug –but even the

owner may need to reach out for other, more specific bits of expertise and knowledge.

Correction
What we usually think of as “fixing a bug”. Correcting relevant lines of code, changing

documentation, scripts, or other artifacts so that reality and expectation match again.

Closure
Determining that the organization is willing to live with the current state of things as related to the

bug.

Awareness
Communicating status to relevant participants. It stretches through the whole history of almost

every bug.

One could take several actions to reduce the

problems posed by electronic repositories. An essential

first step is to connect them. Also important would be

to provide some elementary intelligence to automation

tools to detect and ignore noise activity and bulk edits.

Finally, studying the standard operations of the

participating organization can help researchers

determine whether most coordination events leave

minable electronic traces or not.

But even if all of the above were taken care of,

reaching conclusions about coordination dynamics

exclusively through automation runs the risk of failing

to perceive the personal, social, and political factors of

large scale software development, and thus of missing

the essence of each of the interactions that constitute a

software product.

7. Limitations

During our analysis we worked with several

concepts that do not yet have a consistent definition in

the literature. In particular, one could argue that our

coordination patterns and goals are subjective and have

blurry boundaries–we never specified, for instance, the

difference between “rapid-fire” and “infrequent”

emails. Although this is a valid criticism, our constructs

are a first iteration given the data we collected.

Additional data and further iterations should refine

these constructs, and add others that help convey the

underlying concepts more clearly.

Our data come exclusively from Microsoft, and the

extent to which our results are valid for other

companies is not clear without replications. As is well

known, Microsoft has tens of thousands of employees,

millions of daily users, and many interconnected

products. These are all forces that shape coordination

dynamics. However, the use of software repositories

and communication media at Microsoft seems to be

similar to that of comparable companies. The clearest

finding in our study, the difference between the

minable version and the true version of a bug’s history,

should not be Microsoft-specific, as it depends not on

corporate culture but on the amount and quality of the

information that can be economically and efficiently

captured electronically.

It is possible that for some software development

environments, particularly open source, in which all or

most information is communicated electronically and

persistently, this is less of a problem. Replications of

this study would help resolve that question.

8. Conclusions

This field study found that the histories of even

simple bugs are strongly dependent on social,

organizational, and technical knowledge that cannot be

solely extracted through the automated analysis of

software repositories. Automatically extracted histories

provide factual errors and incomplete and erroneous

accounts of coordination. The paper discusses some

strategies to mitigate this problem.

The study also used rich bug histories to discover a

number of coordination patterns of bug fixing, which

were validated through a survey of software

professionals. From an analysis of the underlying

purpose of the people that engage in these patterns, we

derived eight goals for bug fixing that are useful as a

framework to design better tools and practices.

Although we initially considered studying

coordination for feature development along with bug

fixing, a pilot feature case (not reported in this paper)

proved to belong to an entirely different domain, and

we chose to focus on bug fixing exclusively. We plan

to explore the differences and interactions between

both kinds of development activities in future work.

Acknowledgements

We thank the HIP team at Microsoft Research, our

anonymous reviewers, and Steve Easterbrook, Greg

Wilson, and Jeremy Handcock for fruitful discussions

throughout the study. We also thank the software

professionals that participated in our study for their

time. The first author was an intern at Microsoft

Research during the summer of 2008.

References

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix

this bug? In ICSE’06: Proceedings of the 28th International

Conference on Software Engineering, pages 361-370,

Shanghai, China, 2006.

[2] J. Aranda and S. M. Easterbrook. Distributed cognition in

software engineering research: Can it be made to work? In

First workshop on Supporting the Social Side of Large Scale

Software Development (SSSLSSD), Banff, Canada, 2006.

[3] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj,

and T. Zimmermann. What makes a good bug report? In

Proceedings of the 16th International Symposium on

Foundations of Software Engineering (FSE 2008), Atlanta,

GA, USA, November, 2008.

[4] F. P. Brooks. The Mythical Man-Month. Addison

Wesley, 1995.

[5] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.

Carley. Identification of coordination requirements:

Implications for the design of collaboration and awareness

tools. In CSCW’06: Proceedings of the 20th conference on

Computer Supported Cooperative Work, pages 353-362,

Banff, Canada, 2006.

[6] J. Chong and T. Hurlbutt. The social dynamics of pair

programming. In ICSE’07: Proceedings of the 29th

International Conference on Software Engineering, pages

354-363, Minneapolis, MN, USA, 2007.

[7] B. Curtis, H. Krasner, and N. Iscoe. A field study of the

software design process for large systems. Communications

of the ACM, 31(11): 1268-1287, 1988.

[8] C. R. B. de Souza and D. F. Redmiles. An empirical

study of software developers’ management of dependencies

and changes. In ICSE’08: Proceedings of the 30th

International Conference on Software Engineering, pages

241-250, Leipzig, Germany, 2008.

[9] C. R. B. de Souza, D. F. Redmiles, G. Mark, J. Penix, and

M. Sierhuis. Management of interdependencies in

collaborative software development. In ISESE 2003:

Proceedings of the 2003 International Symposium on

Empirical Software Engineering, pages 294-303, 2003.

 [10] J. D. Herbsleb and R. E. Grinter. Splitting the

organization and integrating the code: Conway’s Law

revisited. In ICSE’99: Proceedings of the 1999 International

Conference on Software Engineering, pages 85-95, Los

Angeles, CA, USA, 1999.

[11] J. D. Herbsleb and A. Mockus. An empirical study of

speed and communication in globally distributed software

development. IEEE Transactions on Software Engineering,

29(6):481-494, 2003.

[12] M. Hertzum. The importance of trust in software

engineers’ assessment and choice of information sources.

Information and Organization, 12(1): 1-18, 2002.

[13] E. Hutchins. Cognition in the Wild. MIT Press, 1995.

[14] A. J. Ko, R. DeLine, and G. Venolia. Information needs

in collocated software development teams. In ICSE’07:

Proceedings of the 29th International Conference on

Software Engineering, pages 344-353, Minneapolis, MN,

USA, 2007.

[15] R. E. Kraut and L. A. Streeter. Coordination in software

development. Communications of the ACM, 38(3): 69-81,

1995.

[16] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining

mental models: A study of developer work habits. In

ICSE’06: Proceedings of the 28th International Conference

on Software Engineering, pages 492-501, Shanghai, China,

2006.

[17] T. C. Lethbridge, J. Singer, and A. Forward. How

software engineers use documentation: The state of the

practice. IEEE Software, 20(6): 35-39, 2003.

[18] D. Perry, N. A. Staudenmayer, and L. G. Votta. People,

organizations, and process improvement. IEEE Software,

11(4): 36-45, 1994.

[19] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil.

An examination of software engineering work practices. In

CASCON’97: Proceedings of the 1997 Conference of the

Centre for Advanced Studies on Collaborative Research,

Toronto, ON, Canada, 1997.

[20] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M.

Wegman, and C. Williams. Using software repositories to

investigate socio-technical congruence in development

projects. In MSR’07: Fourth International Workshop on

Mining Software Repositories, Minneapolis, MN, USA,

2007.

[21] P. F. Wilson, L. D. Dell, and G. F. Anderson. Root

Cause Analysis: A Tool for Total Quality Management. ASQ

Quality Press, 1993.

[22] R. K. Yin. Case Study Research: Design and Methods

(3rd Edition). Sage, 2003.

