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Abstract 
 

Every bug has a story behind it. The people that 

discover and resolve it need to coordinate, to get 

information from documents, tools, or other people, 

and to navigate through issues of accountability, 

ownership, and organizational structure. This paper 

reports on a field study of coordination activities 

around bug fixing that used a combination of case 

study research and a survey of software professionals. 

Results show that the histories of even simple bugs are 

strongly dependent on social, organizational, and 

technical knowledge that cannot be solely extracted 

through automation of electronic repositories, and that 

such automation provides incomplete and often 

erroneous accounts of coordination. The paper uses 

rich bug histories and survey results to identify 

common bug fixing coordination patterns and to 

provide implications for tool designers and 

researchers of coordination in software development. 

 

1. Introduction 
 

Modern large-scale software development demands 

managing huge quantities of bugs on a daily basis. 

Fixing them is one of the most common and time 

consuming activities of developers [16]. When bugs 

number in the thousands, it is unfeasible for both team 

members and researchers to keep their details present 

in their minds. Abstraction becomes necessary: project 

health is measured by bug counts, for instance, and 

productivity by the rate of bugs closed. 

Amid such abstractions it is easy to forget that every 

bug has a story behind it. The people that discover and 

resolve it need to coordinate, to get information from 

documents, tools, or other people, and to navigate 

through issues of accountability, ownership, and 

organizational structure. There are awareness 

requirements, inefficiencies, and opportunities for 

improved productivity and quality at every step in the 

process, yet these only become apparent when we go 

beyond the abstracted numbers and into the rich, 

detailed history of coordination in each bug. 

As researchers, we often rely on repositories of 

software project information as the main or only source 

of evidence to extract the histories of bugs and other 

work items. They are usually stored in the form of 

tickets or records in a bug database.  They provide a 

convenient compartmentalization of work. We use 

project management systems’ features such as audit 

trails and data fields that keep track of ownership and 

of the context of each work item. Sometimes we enrich 

the histories in ticketing systems with records of 

electronic communication among team members, and 

with organizational structure data extracted from 

human resources databases. However, to this point the 

use of these electronic repositories as reliable and 

sufficient accounts of the history of bugs or work items 

has not been properly validated, and we do not have a 

description of the common coordination dynamics 

underlying bug histories. 

This paper reports on a field study of coordination 

activities around bug fixing that used a combination of 

case study research and a survey of software 

professionals. The study goes beyond the electronic 

repositories of software activity by talking directly to 

the key actors on the bugs to discover the patterns of 

group work that are commonly used to fix bugs. It 

discusses the reliability of electronic repositories as the 

basis of research into the coordination of software 

projects, and provides some implications for the design 

of coordination and awareness tools. 



2. Related Work 
 

Research on coordination of software professionals 

faces the problem of having too many possible events 

and variables to observe and too limited observation 

and analysis resources. The need to be selective 

permeates our data collection and analysis strategies. 

To address this, and as a broad generalization, 

empirical studies of coordination in software 

development tend to follow three approaches. 

First, as discussed earlier, there are reports based 

primarily on electronic traces of team activity. These 

electronic traces are used as a substitute for the 

observation of software development work. For 

instance, Herbsleb and Mockus [11] use source code 

change management system data (as well as a survey) 

to model distributed software development. Cataldo et 

al. [5] use automatically extracted archival data to 

compute coordination requirements. Valetto et al. [20] 

mine software repositories to establish a measure of the 

socio-technical congruence of an organization. 

Second, there are detailed, rich accounts of the 

activity of one or a few software professionals. These 

are usually the result of ethnographic observations and 

fly-on-the-wall studies, such as the work of Chong and 

Hurlbutt on coordination of programming pairs [6] and 

of Ko et al. [14] on information needs of collocated 

teams. 

Third, there are broader, abstracted reports of a 

number of software projects. These tend to be detailed 

and nuanced as well, but they focus on trends and 

patterns of what went right or wrong at the group or 

project level. This is the case of Brooks’ classic 

postmortem of the OS/360 [4], and of the identification 

of cognitive, team, and organizational dynamics by 

Curtis et al. [7]. Recently, de Souza and Redmiles have 

used this approach to characterize the coordination of 

software professionals [8]. 

All of these approaches are necessary, and they have 

given us quite useful information about coordination in 

software projects. But, to our knowledge, a work-unit-

centric approach to study coordination has not been 

explored in our field. 

There is precedent for the work-unit-centric study of 

coordination in other disciplines. Common examples 

are the studies of root cause analyses (RCA) [21], 

which explore a number of process failures to uncover 

and fix their root causes. Our methodology differs from 

RCA in many ways; most importantly in that it is not 

interested in locating the main points of failure in a 

process (there does not even need to be a failure), but 

in describing and characterizing the process itself. 

Studies of coordination in software development 

have often portrayed it as an informal, complex and 

context-dependent phenomenon. The prominence of 

informal and undocumented coordination activities has 

been mentioned several times (notably by Kraut et al. 

[15], Perry et al. [18], and Herbsleb and Grinter [10]). 

Documentation, a centerpiece of formal process 

proposals, has been studied by Lethbridge et al., who 

report that it is often out of date and rarely consulted by 

developers [17]. This does not mean that developers do 

not need to acquire project information constantly: 

according to Singer et al. [19] search is one of the 

primary kinds of developer work. Rather, as Hertzum 

points out [12], engineers are interested in finding 

trustworthy information, which often leads them to 

their colleagues or other familiar sources rather than 

documents. 

Finally, previous studies on coordination around 

bug repositories have studied them from different 

angles. They are the main data source of the work on 

automatic assignment of bug ownership by Anvik et al. 

[1]. Bettenburg et al. [3] use them to improve the 

quality of bug reports. And De Souza et al. [9] studied 

approaches to manage interdependencies at a project at 

NASA, and describe “problem reports” as boundary 

objects, which are used by different groups of software 

professionals for different purposes. 

 

3. Study Design and Execution 
 

The goal of our study is to provide a rich, 

contextualized, work-item-centric account of 

coordination in bug fixing tasks. We had two main 

research questions: 

First, how is the process of fixing bugs coordinated 

in software teams? What is the lifecycle of bugs? What 

are the most common patterns of coordination involved 

in this work? How does their resolution play out over 

time and over the socio-technical network of the teams 

that work on them? 

Second, do electronic traces of interaction provide a 

good enough picture of coordination, or is non-

persistent knowledge necessary to understand the story 

of each bug fix? 

We executed a field study in two parts. The first was 

a multiple-case exploratory case study [22] of bug 

histories. The second aimed to validate our case study 

findings with a survey of software professionals 

(developers, testers, and program managers). In both 

cases our data comes from software development at 

Microsoft’s product divisions. The following sections 

describe both parts of our study separately. 

 



3.1 Multiple-case case study 
 

The unit of analysis of our case study was the 

history of a closed bug. We defined it as the collection 

of conceptually related activities that at some point in 

the life of their project were summarized as at least one 

entry in a bug database. Some records in bug databases 

are not bugs in the strict sense; we still treated them as 

such since our teams did. Some bugs have duplicate 

records; we considered all of the duplicates as part of 

the same conceptual entity. Some bugs exhibit 

symptoms that are initially seen as different bugs and 

recorded separately; we treated them as part of the 

same defect whenever possible. 

Bugs do not necessarily begin their life when the 

entry is created in the bug database or end when they 

are marked as “Closed”. Some of them extend further 

in both directions; this extended life is part of our unit 

of analysis. 

We selected our cases from three major product 

divisions at Microsoft. Our selection criteria were: 

 The bug was filed in a bug database, and some 

elementary information about its nature was 

posted in its data fields. 

 The bug was marked as “Closed” at the start of 

our observations. 

 The bug was fresh (it was closed within two 

weeks of the start of our observations). 

Our cases were selected randomly. Other data, such 

as the bug’s resolution mechanism, were not part of our 

selection criteria, and we did not control for them. 

To get a better picture of the path that user-reported 

bugs follow, we deviated from our selection criteria in 

one case: we contacted a Customer Support escalation 

engineer and requested a pointer to a bug that had 

come from Microsoft's escalation channels (that is, a 

bug that was reported by a customer to support staff). 

All of our cases followed the same methodology. 

First, we queried a product division’s bug database to 

find a case fulfilling our criteria. We obtained as much 

information as we could from its electronic records, 

including the events in its audit trail, all the bug 

record’s data fields, data on its owners and on 

everybody that had participated in any action related to 

the bug, and links to source code repositories. 

From that point, we traced backwards by contacting 

the people that had last touched or were referenced by 

the bug record. If they were not relevant to the history 

(a common case, due to bulk edits of bugs), we kept 

tracing back to find agents that were relevant for the 

bug. 

Once found, we interviewed them to get their 

understanding of the history of the bug and of the 

participants and artifacts from which they obtained 

information or with which they coordinated to close it. 

When we were pointed to an artifact, such as a 

specification document, we analyzed it and traced back 

to its creators. When we were pointed to other people, 

we contacted them if possible, and repeated the process 

with them. When we were pointed to a persistent 

communication medium, such as an email, we obtained 

a copy, analyzed it, and traced back to its originators. 

In some cases this process would reach a dead end 

but we knew there was more information to be found 

(because, for instance, we had yet to reach the point 

where the bug had been originally discovered). If that 

was the case, we jumped to the next relevant 

participant in the bug record and continued 

reconstructing the bug history from that point. We 

always made sure to reach the beginning of the story. 

In other cases our inquiries would lead us to people 

and artifacts so far along the chain of events that they 

had little or no relevance to our bug’s history. In those 

cases we made a subjective judgment call and stopped 

exploring those branches. 

Our methodology was theoretically inspired in the 

focus on people, artifacts, and information flow of 

Hutchins' Distributed Cognition framework [13]. 

However, as we had expected [2], we found so many 

instances of information flow that executing our case 

studies at the computational and representational level 

of Hutchins’ studies was not feasible. We tried to strike 

a balance between richness and contextual detail on 

one hand, and replication and generalization power on 

the other. We stopped collecting data on a chain of 

events when we had reconstructed it in full, or when we 

had reconstructed it partially, but proceeding further 

was unfeasible due to a lack of participation from some 

of its actors or due to our time constraints. 

Our data collection was semi-structured. For each 

case we collected the following information: 

 A list of primary and secondary actors in the 

history and their contributions. 

 A list of relevant artifacts and tools. 

 A chronological list of the information flow and 

coordination events in the bug’s history. 

 Pieces of evidence as required by the 

particularities of each case. 

 The history of the bug as reconstructed by its 

record in the bug database. 

 The history of the bug as reconstructed by the 

full collection of electronic traces we obtained  

 The history of the bug as reconstructed from 

making sense of all available evidence, 

including our interviews with participants. 



Table 1 – Cases Summary 

 

Case Type of Case 

How 

Found Resolution 

Direct 

Agents 

Indirect 

Agents 

Other 

Listeners 

Lifespan 

(days) 

Days 

w/Events Events 

C1 Documentation Ad-hoc test Fixed 6 4 179 320 12 19 

C2 Code (security) Ad-hoc test Fixed 21 6 3 408 49 138 

C3 Build test failure Automated Fixed 42 8 291 59 21 141 

C4 Code(functionality) Ad-hoc test Fixed 6 1 0 7 5 16 

C5 Code (install) User (Beta) By Design 2 3 0 2 2 12 

C6 Code(functionality) Automated Fixed 2 4 11 29 6 20 

C7 Build test failure Automated  Fixed 6 7 197 14 6 34 

C8 Code(functionality) Dog food Won’t Fix 2 7 0 2 2 5 

C9 Code(functionality) Automated Not Repro 5 2 1 2 2 12 

C10 Code(functionality) Escalation Fixed 23 18 13 35 20 220 

 

In total, we studied ten bugs (including the 

escalation case). We interviewed 26 people. A brief 

summary of our cases is provided in Table 1. Direct 

Agents are those who executed tasks in the process of 

resolving the bug; Indirect Agents were addressed by 

Direct Agents, but did not intervene. 

 

3.2 Survey 
 

We validated our case study results with a 54-

question survey of software professionals at Microsoft. 

We sent it to 1,500 randomly selected Microsoft 

employees divided evenly between developers, testers, 

and program managers. We offered participants a 

chance to win a $500US gift card. We received 110 

responses (7.3% response rate); all responses were 

optional but for all questions we received at least 100 

responses. We did not control for the product division 

of the respondents or for demographic criteria. 

The survey asked each respondent about the history 

of the last recently closed bug that they had played a 

primary role in resolving. It asked them to go over the 

corresponding record in the bug database and to bring 

up and re-read any emails pertaining to the bug, so as 

to have the history of the bug fresh in their minds. 

The survey had three main parts. In the first, 

respondents gave us general data about the bug in 

question. In the second we questioned about the 

coordination patterns that we will present in Section 5. 

In the third, we probed the extent to which the record in 

the bug database told the full story of their bug. 

Results from some of the general data questions 

appear in Figures 1-3. Although it is not appropriate to 

compare the case studies with the survey responses 

using statistical means, the two are mostly in 

agreement, with one exception: the number of direct 

agents identified in the case studies versus those 

reported in the survey. The quartiles for directly 

involved agents in the survey are 3 (25%), 4 (50%), 6 

(75%) and 15 (100%). In contrast, three of our ten 

cases had more than 15 directly involved agents. We 

believe the difference suggests that our investigation 

revealed a much bigger bug footprint than our 

respondents perceive. 

 

 
 

Figure 1 - How was this bug found? 

 

 
 

Figure 2 - Kind of bug 



 
 

Figure 3 - How was this bug closed? 

 

4. Errors and Omissions 
 

The most striking lesson from our cases is the deep 

unreliability of electronic traces, and particularly of the 

bug records, which were erroneous or misleading in 

seven of our ten cases, and incomplete and insufficient 

in every case. In fact, even considering all of the 

electronic traces of a bug that we could find 

(repositories, email conversations, meeting requests, 

specifications, document revisions, and organizational 

structure records), in every case but one the histories 

omitted important details about the bug. 

Before discussing the errors and omissions in these 

cases, we need to note that we believe this problem is 

not a consequence of a carelessness or lack of 

discipline particular to Microsoft. The repositories and 

documents we reviewed seem to be as thorough as 

those of comparable companies, or more. We discuss 

this in greater detail in our Limitations section. 

 

4.1 Levels of data collection and analysis 
 

We found there are several levels at which one can 

investigate the history of bugs, roughly corresponding 

to the amount of time one needs to invest in each of 

them. Each level incorporates all of the information 

acquired in the previous, plus additional findings from 

a deeper analysis: 

 

 Level 1: Automated analysis of bug record data. At 

the first level, one can use automation to obtain a list of 

agents that were involved in a bug’s history, as well as 

information such as a bug’s lifespan, its resolution, its 

changes of state, how was it found, who were its 

owners, which code change-sets correspond to the bug, 

and a chronological list of its events. 

 

Level 2: Automated analysis of electronic 

conversations and other repositories. Traces of 

electronic conversations can be used to construct a 

social network of electronic interaction, and assume 

that it corresponds in structure and intensity to the real 

communication events of the participants. These data 

can be filtered by participants, keywords and 

timestamps to locate the electronic interactions that are 

(probably) related to the bug in question. 

 

Level 3: Human sense-making. Automation is still far 

short of a human’s capability to infer every connection 

in the data and reason about the evidence. 

First, there is often a wealth of information in the 

electronic repositories described above, but it is not 

formally linked–discovering it requires a semantic, 

unstructured analysis of the evidence. For instance, a 

note by person A in a bug record could state that a fix 

“will not address group X’s performance concerns, 

which will be filed in a separate bug”. An adequately 

motivated human could conclude that there probably 

was a discussion between A and representatives of X, 

extract the list of people that are part of group X from a 

different database, match it with email records to 

identify the relevant conversation and agents involved, 

and, through trial-and-error queries (since no bug ID is 

provided), locate the follow-up bug in the database. 

Second, and posing an even greater challenge for 

automation, if we want to understand and improve 

coordination dynamics we need our bug histories to 

include the social, political, and otherwise tacit 

information that is also part of the bread and butter of 

software development. This is often subtle, not always 

apparent, and it must be read between the lines of the 

evidence collected. 

 

Level 4: Direct accounts of the history by its 

participants. Interviewing the participants of a bug 

history seems to be the best gateway to obtain the 

information that was not documented, or it is 

disconnected, or erroneous. Interviews enrich 

significantly the data of the previous levels, as long as 

they take place before the history of the bug is 

forgotten. Although they are not guaranteed to provide 

us a complete account of the bug’s history, they allow 

us to validate earlier conclusions, and to detect events 

that are not stored in the records, but that are essential 

to understand it. 

 

4.2 The levels in practice 
 

We conducted our case study at the last of the four 

levels we listed. However, throughout its execution, we 



kept parallel bug histories corresponding to every 

previous level of analysis of the evidence, in an effort 

to determine how much of the real histories of bugs is 

gained or corrected at each level. 

The differences between levels were stark, 

quantitatively and qualitatively. The following tables 

help to contrast them. Table 2 shows the number of 

events we could log, for each level, in the bug histories. 

Similarly, Table 3 shows the total number of agents 

(direct and indirect) found at each level. 

 

Table 2 – Events 

 
Case Level 1 Level 2 Level 3 Level 4 

C1 8 16 17 19 

C2 11 11 138 138 

C3 19 119 119 141 

C4 11 14 15 16 

C5 8 11 11 12 

C6 12 18 19 20 

C7 6 33 34 34 

C8 4 4 5 5 

C9 7 11 12 12 

C10 17 78 149 220 

 

 

Table 3 – Agents 

 
Case Level 1 Level 2 Level 3 Level 4 

C1 7 9 9 10 

C2 5 5 27 27 

C3 12 38 38 50 

C4 5 5 7 7 

C5 4 5 2 5 

C6 7 7 5 6 

C7 7 14 12 13 

C8 6 6 15 9 

C9 6 7 7 7 

C10 8 25 41 41 

 

Although the numbers support our claims, they 

cannot show the extent to which the bug histories 

diverge among levels. It is not just that higher levels 

produce longer stories; rather, they change qualitatively 

in ways that are deeply relevant to the study of 

coordination. The following paragraphs describe the 

most important kinds of divergence that we observed. 

 

4.2.1 Erroneous data fields. Basic data fields in bug 

records were sometimes incorrect. C9 was a Test bug, 

but it was marked as a Code bug. Some duplicates of 

C2 and of C4 had the wrong Status (they were still 

marked as “Resolved” when their duplicates had been 

marked as “Closed”). C8 was resolved as “Won’t Fix”, 

when it should have been resolved “By Design”. 

Our survey asked participants regarding about the 

Resolution field of their bugs, and their responses 

support our finding. 10% of the respondents stated that 

the Resolution field of their bug was inaccurate. 

 

4.2.2 Missing data in bug record. Among the 

important bits of data missing from bug records were 

links to the source code repository in C7 and C10, links 

to duplicate and related records of bug C2, links to a 

bug that was found in the process of resolving the 

original in C9, any links to specification documents 

(especially for case C5, resolved By Design), 

reproduction steps (C3), a statement of the corrective 

actions taken to fix the bug (C2, C4, C7), and a 

statement of the root cause of the bug (C7, C9). 

The missing link to source code change-sets is one 

of the most problematic omissions. For the last bug of 

70% of our survey respondents, the fix involved 

committing code to a repository. But 23% of those 

cases had no link from the bug record to the source. 

The survey supports the rest of our findings too. 

Reproduction steps were marked as incomplete, 

inaccurate, or missing, 18% of the time. Corresponding 

percentages for the root cause of bugs and the 

corrective actions taken are 26% and 35%. 

 

4.2.3 People. Obtaining the lists of primary and 

secondary participants in a bug’s history was a constant 

source of errors and omissions. People that took 

actions concerning the bug were often not mentioned in 

the record or in email communications (C2, C3, C7, 

C9, C10). The purported owners of a bug sometimes 

had no activities or stake in its resolution (C6, C7, C8, 

C9). The extent of a participant’s contribution was easy 

to misjudge based on electronic traces: high frequency 

and intensity of interaction did not imply high level of 

contribution. And in at least two occasions, the 

geographic location of our interviewees was incorrect 

in the employee database. 

In the survey, the people marked as “owners” of the 

bug were driving its resolution only in 34% of the time. 

In 11% they had nothing to do with the bug. 

Furthermore, according to our responses, in 10% of 

the time the primary people that worked on a bug are 

not easy to spot by looking at the bug record, and in 

10% they do not even appear in the record. The list of 

people that edited the bug’s fields and history includes 

only some of its primary participants 40% of the time, 

and none of them 4%. Corresponding numbers for 

secondary participants are 39% and 38%. All of the 

people in the bug’s history and fields are fully 

irrelevant in 7% of the cases. 

 



4.2.4 Events. It is unrealistic to expect all events 

related to a bug to be found in its record or through its 

electronic traces. Naturally, most face-to-face events 

left no trace in any repository. But in some occasions, 

the key events in the story of a bug had left no 

electronic trace; the only way to discover them was 

through interviews with the participants. At the same 

time, some events logged in the bug records of all of 

our cases were noise or junk (for instance, bulk edits 

and mistakes with their later corrections). The 

chronological order of events was also problematic: 

Bugs were sometimes resolved even before their record 

had been created (C7), or closed long after they had 

been resolved because they’d been forgotten by the 

person that needed to close them (C2, C4). 

In the survey, 3% of the bugs had been discussed at 

least a month before they were first filed, and an 

additional 6% at least a week before being filed. 

 

4.2.5 Groups and politics. As we moved further from 

the raw data and into broader patterns of coordination, 

we saw that most of the important information at the 

team and division levels could only be found through 

higher levels of analysis. In C4 we found a pocket of 

people with a culture and practices different than those 

of their division, in the process of assimilation after an 

acquisition. The status of a group with respect to 

milestones and releases bore significant consequences 

to the kind and speed of the decisions made as new 

bugs were found (for instance, for C5 the team was 

undergoing a “bug bash” and having face-to-face triage 

meetings daily; most bugs were only given a minute of 

air time or less). Sometimes, as in C3 and C7, 

ownership of a bug falls in a gray zone, and inter-team 

or inter-division struggles to determine ownership and 

accountability ensue. These issues usually impact the 

history of bugs considerably, yet we could not have 

learned about them without interviewing its participants 

and paying close attention to the details in the 

electronic record. 

  

4.2.6 Rationale. Probably the hardest questions to 

answer without human sense-making and participant 

collaboration were the “why” questions: In C4, why did 

a developer choose another as a required code 

reviewer, but a third as an optional reviewer? In C10, 

why was there no activity in a bug record for weeks 

after a few bouts of minute-by-minute updates and 

frantic emails? Why were the Status or Resolution 

fields in C2, C4, and C8 incorrect? Why in C5 did a 

triage group conclude that the bug would not be fixed? 

Why did a tester file a bug, C9, even though she 

suspected the failure was most likely a false alarm?  

We found that the answers to these questions, 

discovered during interviews, would often unlock the 

whole explanation of the events in the history of a bug. 

 

4.2.7 Miscellaneous. Other facts that could only be 

found at higher levels of analysis resist categorization, 

but still tend to be at the heart of a bug’s history. In C6, 

a bug was found independently by a tester and a 

developer in different groups; the developer produced a 

fix without knowledge that the bug had been already 

documented. In C4, a developer committed hundreds of 

new lines of code to fix a bug shortly after it was 

found; he did not write them all at a blazing speed, but 

rather copied them from the code of his old company, 

now acquired by Microsoft, and “stitched it” to the 

relevant interfaces. In two cases (C3 and C7), early and 

correct diagnoses were promptly ignored in a flurry of 

emails to get an urgent bug resolved. In general, the 

bugs in our case pool had far richer and more complex 

stories than would appear by automatically collecting 

and analyzing their electronic traces. 

 

5. Coordination Patterns 
 

In the end, our bug histories were rich, varied, and 

context dependent. They did not follow a uniform path 

or lifecycle. This posed a problem: our first research 

goal was, precisely, to describe the lifecycle of bugs 

and the process of fixing them. 

Instead of attempting to formulate a process for all 

bug histories, we chose to describe the menu of 

coordination patterns that we observed. We selected 

the patterns that seemed to be the most recurrent and 

those that occurred rarely but had a great impact in the 

history of a bug. Table 4 lists them. 

Some of the patterns have negative implications. For 

instance, we saw several cases of “snowballing 

threads” and “rapid fire email in public” that were 

clearly inefficient, yet they seemed to be routine for our 

participants. The only “summit” we observed 

corresponded to a bug (C3) that was described to us as 

“very important” and “threatening to move our ship 

date” by the release manager in charge. We added one 

pattern for completeness (video conferences), though 

we observed no instances of it. Another pattern, 

“forgotten”, was pointed to us by one of our survey 

respondents; it was not included in our original list. 

We asked our survey respondents whether those 

patterns had occurred for their last bug, and if so, 

whether they had been essential for the resolution of 

the bug. Figure 4 provides their responses. The last 

column represents the perceived usefulness of a pattern 

in relation to its frequency. 



 

Table 4 - Coordination patterns 

 

Communication media  

Broadcasting emails 
Sending a manual or automatic notification to a number of mailing lists to inform their members 

of an event. 

Shotgun emails 
Sending an email to a number of mailing lists and individuals in the hope that one of the 

recipients will have an answer to the current problem 

Snowballing threads Adding people to an ever-increasing list of email recipients. 

Probing for expertise 
Sending emails to one or few people, not through the “shotgun” method, in the hope that they will 

either have the expertise to assist with a problem or can redirect to somebody that will. 

Probing for ownership 
Sending emails to one or few people, not through the “shotgun” method, requesting that they 

accept ownership of the bug or can redirect to somebody that will. 

Infrequent, direct email Emails sent privately and infrequently among a handful of people. 

Rapid-fire email Bursts of email activity in private among a few people in the process of troubleshooting the issue. 

Rapid-fire email in public 
Like the above, but with tens or hundreds of people copied as recipients of the email thread, most 

of them unconnected to the issue. 

IM discussion Using an instant messaging platform to pass along information, troubleshoot, or ping people. 

Phone Phone conversations used to pass along information, troubleshoot, or ping people. 

Bug database  

Close-reopen 
A bug that is reopened because it had been incorrectly diagnosed or resolved, or because there is 

disagreement on its resolution or on the team's ability to postpone addressing it. 

Follow-up bugs filed 
Other bugs were found and filed in the process of fixing this one, or a piece of this bug was filed 

in a different record as follow-up. 

Forgotten A bug record that goes unnoticed and unattended for long periods. 

Working on code  

Code review The fix for this bug was reviewed and approved by at least one peer. 

Two birds with one stone The fix for this bug also fixed other bugs that had been discovered and filed previously. 

While we’re there The fix for this bug also fixed other bugs that had not been discovered previously. 

Meeting  

Drop by your office 
Getting a piece of information, or bouncing some ideas regarding the issue, face to face informally 

with a coworker in a nearby office. 

Air time in status meeting The issue was discussed in a regular group status meeting. 

Huddle The issue called for a team meeting exclusively to discuss it. 

Summit The issue called for a meeting among people from different divisions exclusively to discuss it. 

Meeting with remote 

participants 

Any meeting where at least one member is attending remotely (could be a huddle or summit 

meeting). 

Video conferences 
Any meeting where video was used to communicate with at least one attendee (could be a huddle 

or summit meeting. 

Other patterns  

Ignored fix/diagnosis A correct diagnosis or fix that was proposed early on and was temporarily ignored by the majority. 

Ownership avoidance Bouncing ownership of the bug or code. 

Triaging Discussing and deciding whether this is an issue worth addressing. 

Referring to the spec 
At least one concrete and specific reference to a spec, design document, scenario, or vision 

statement, to provide guidance to solve or settle the issue. 

Unexpected contribution New information or alternatives that come from people out of the group discussing the issue. 

Deep collaboration 
Two or more people working closely (face to face or electronically) and for a sustained period to 

unravel the issue. 

 



 
 

Figure 4 - Usefulness and frequency of patterns 

 
We do not claim that our list of patterns is 

comprehensive. But using them to characterize bug 

histories may provide enough relevant information 

about their coordination events while ignoring 

irrelevant details. Furthermore, as we discuss in the 

next section, some of them could be supported (or in 

the case of negative patterns, prevented) by software 

tools. 

 

6. Implications 
 

6.1 For tool designers 
 

Although the set of states commonly used in bug 

databases (Active, Assigned, Resolved, etc.) may be 

helpful to manage software development, our data 

shows that they are poor approximations of the true 

lifecycle of a bug. We believe it is more useful, for 

understanding coordination and for designing tools for 

developers, to think of bug fixing activities not as 

belonging to a stage of a bug’s life or a workflow, but 

as striving for the satisfaction of one or several goals. 

We formulated a list of goals based on the activities 

of the people in our case study. Table 5 describes them. 

Not all of the goals occur for every case, and they do 

not occur strictly sequentially. 

These goals provide a framework to analyze the 

effectiveness of coordination and project management 

tools and practices. For instance, Assignment of 

Ownership is often problematic, especially if there is 

no clear owner of the seemingly buggy code. In the 

case study this happened more often with test scripts 

than with feature code, and with developers leaving 

their posts without tying loose ends. Tools and 

practices that ensure that every artifact has an active 

owner would reduce this problem. 

Search is another problematic area. In our cases it 

often resulted in “snowballing threads” and “shotgun 

emails,” which sometimes succeed in finding the 

people or piece of knowledge necessary, but can be 

extremely inefficient if one considers the person-hours 

needed by hundreds of email recipients to parse 

numerous messages that, more often than not, have no 

relevance for them. 

For coordination purposes, Awareness was the area 

most in need of improvement. However, it is not easy 

to figure out how to provide the right level of 

awareness in very large companies with interconnected 

products. Awareness seems to be most needed not at 

the team level, but among the primary and secondary 

agents that form the social network around a work item. 

Tools that (partially) detect work networks and allow 

for their members to be aware of the activities of their 

peers should help address this issue. 

 

6.2 For researchers 
 

Our case study and survey results point in the same 

direction: Electronic repositories hold incomplete or 

incorrect data more often than not. We base this 

conclusion on our exploration of bug databases and 

email communications; source code repositories are 

even more at fault than these data sources as they are 

blind to the networks of testers, program managers, 

usability experts, and users that are also primary agents 

in coordination phenomena. 

Some of the concrete discrepancies we found might 

be acceptable for large-scale automated analyses of 

coordination. Others, such as most of the People issues 

in 4.2.3 and the missing links from bug records to 

source code change-sets, are far more serious. 

 

 



Table 5 – Stakeholders’ goals during the lifespan of a bug 

 

Discovery 
Detecting a difference between reality and expectation. The essential first step to record the 

unexpected behavior as a bug. 

Diagnosis 
Understanding the nature, cause, and impact of the bug, as well as the actions that will be taken as 

a result. We believe it happens in every case, though often tacitly. 

Assignment of Ownership 
Determining who will be responsible and accountable for the resolution of a bug, both at the 

group and individual levels. 

Search 

Finding the appropriate knowledge, resources, and skills. It seems to be often meshed with 

Assignment of Ownership activities, so that the expert is the owner of the bug –but even the 

owner may need to reach out for other, more specific bits of expertise and knowledge. 

Correction 
What we usually think of as “fixing a bug”. Correcting relevant lines of code, changing 

documentation, scripts, or other artifacts so that reality and expectation match again. 

Closure 
Determining that the organization is willing to live with the current state of things as related to the 

bug. 

Awareness 
Communicating status to relevant participants. It stretches through the whole history of almost 

every bug. 

 

One could take several actions to reduce the 

problems posed by electronic repositories. An essential 

first step is to connect them. Also important would be 

to provide some elementary intelligence to automation 

tools to detect and ignore noise activity and bulk edits. 

Finally, studying the standard operations of the 

participating organization can help researchers 

determine whether most coordination events leave 

minable electronic traces or not. 

But even if all of the above were taken care of, 

reaching conclusions about coordination dynamics 

exclusively through automation runs the risk of failing 

to perceive the personal, social, and political factors of 

large scale software development, and thus of missing 

the essence of each of the interactions that constitute a 

software product. 

 

7. Limitations 
 

During our analysis we worked with several 

concepts that do not yet have a consistent definition in 

the literature. In particular, one could argue that our 

coordination patterns and goals are subjective and have 

blurry boundaries–we never specified, for instance, the 

difference between “rapid-fire” and “infrequent” 

emails. Although this is a valid criticism, our constructs 

are a first iteration given the data we collected. 

Additional data and further iterations should refine 

these constructs, and add others that help convey the 

underlying concepts more clearly. 

Our data come exclusively from Microsoft, and the 

extent to which our results are valid for other 

companies is not clear without replications. As is well 

known, Microsoft has tens of thousands of employees, 

millions of daily users, and many interconnected 

products. These are all forces that shape coordination 

dynamics. However, the use of software repositories 

and communication media at Microsoft seems to be 

similar to that of comparable companies. The clearest 

finding in our study, the difference between the 

minable version and the true version of a bug’s history, 

should not be Microsoft-specific, as it depends not on 

corporate culture but on the amount and quality of the 

information that can be economically and efficiently 

captured electronically. 

It is possible that for some software development 

environments, particularly open source, in which all or 

most information is communicated electronically and 

persistently, this is less of a problem. Replications of 

this study would help resolve that question. 

 

8. Conclusions 
 

This field study found that the histories of even 

simple bugs are strongly dependent on social, 

organizational, and technical knowledge that cannot be 

solely extracted through the automated analysis of 

software repositories. Automatically extracted histories 

provide factual errors and incomplete and erroneous 

accounts of coordination. The paper discusses some 

strategies to mitigate this problem. 

The study also used rich bug histories to discover a 

number of coordination patterns of bug fixing, which 

were validated through a survey of software 

professionals. From an analysis of the underlying 

purpose of the people that engage in these patterns, we 

derived eight goals for bug fixing that are useful as a 

framework to design better tools and practices. 

Although we initially considered studying 

coordination for feature development along with bug 

fixing, a pilot feature case (not reported in this paper) 

proved to belong to an entirely different domain, and 



we chose to focus on bug fixing exclusively. We plan 

to explore the differences and interactions between 

both kinds of development activities in future work. 
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