Playing to the strengths of small organizations

Jorge Aranda

University of Toronto,
Toronto, ON, Canada
jaranda@cs.toronto.edu

Abstract. By virtue of their size, small organizations can take advan-
tage of many opportunities to develop software efficiently and success-
fully, and they waste them if they try to emulate their larger counter-
parts. As software researchers, we should study how small organizations
can best exploit those opportunities instead of prescribing solutions that
were designed for organizations of a very different nature.

“Today, we suffer from an almost universal idolatry of gigantism. It is
therefore necessary to insist on the virtues of smallness, where this ap-
plies.” —E. F. Schumacher [16]

1 Introduction

Small organizations form a large part of the software industry,! but our research
community has mostly overlooked their needs and characteristics. This is a se-
rious omission: small software organizations have a number of strengths that
are absent in larger organizations, strengths that help them develop software
efficiently and successfully and that are neglected if the organization applies
processes and practices that were not designed to exploit them.

In this paper I argue that small organizations should not attempt to emulate
the processes and practices of larger organizations, but should rather take advan-
tage of the strengths enabled by their size. Similarly, I argue that requirements
researchers should recognize these strengths, and design and evaluate techniques
that make the best use of them.

2 Small is beautiful

We have known since the earliest days of our field that large software orga-
nizations suffer from problems caused by their size. They incur in significant
coordination overheads [6], and tend to release products that are less satisfac-
tory than those built by smaller organizations [9]. But somehow many in the

! In the United States in 2002, 95% of software development firms had less than
50 employees. They generated 21% of the total income and employed 28% of all
employees in the area [7].

software industry assume that the goal of a small firm should be growth, that
size is a valid measure of success. To be sure, a large size brings certain benefits:
the appearance of stability, the ability to engage in greater and more ambitious
projects, the appeal of commanding the work of a large number of employees.
And yet there are many rewards for small organizations, rewards that often go
unnoticed and unclaimed in their push to become large by behaving as if they
were already large. Some of these rewards are psychological and even ethical,
such as the joy of working in closely-knit groups and a greater agency over one’s
own work. That kind of reward may be significant enough to justify a preference
for small groups, but it is not the topic of this paper. Rather, I claim that small
organizations also have important advantages purely from the point of view of
developing software efficiently and successfully. Some of these advantages relate
specifically to their requirements elicitation and communication activities.

2.1 Formality is unnecessary

Organizational scientists tell us that increases in organizational size lead to
greater bureaucracy and formalization [5, 12]. Large organizations succeed partly
by being predictable; predictability is achieved through organizational inertia
and the formalization of structures and processes [11]. Requirements must be
elicited by specialized personnel, documented in formal and unambiguous terms,
traceable back to their sources and forward to their implementations, and changed
only with the oversight of a committee. Only through mechanisms such as these
can large organizations deal with the challenge of communicating and controlling
the requirements of their projects.

For small organizations, many of these activities are entirely unnecessary;
there are plenty of documented cases of successful organizations that do fine
without them [2]. This is largely because it is easier to share an understanding
of requirements information with everyone involved on an as-needed basis. If a
team is able to sort out its requirements problems by getting everyone together
in the same room, it does not need to spend time creating documents that will
soon become obsolete and might go unread [14].

2.2 Communication can be rich and robust

Organizations working on large projects must adopt some form of geographic
distribution of effort. Even when the whole organization is located in the same
area, communication between those of its members sitting beyond a short dis-
tance from each other is as low as if they were in different cities [1]. This is
one of the factors that force large organizations to use inefficient communication
mechanisms, such as requirements documents, to share project information.

In contrast, if the organization is small enough that it can work in a shared
room or two, it is able to use much richer and pervasive communication dy-
namics [15]. This “radical co-location” has been found to lead to greater project
efficiency and satisfaction [17], and it allows the organization to forego the cre-
ation and maintenance of unnecessary documentation. Note that the effects of

co-location benefit large organizations as well when they can partition projects
in small sizes, but this is a natural advantage for small organizations.

2.3 Strong cohesion is possible

Small organizations can develop a strong group cohesion with relative ease.
Group cohesion leads to increases in performance [3], partly because cohesive
groups have lower coordination and communication overheads. They develop a
shared vocabulary and a tacit understanding of each member’s areas of expertise,
enabling the maintenance of an efficient “oral tradition” within their teams.
This cohesion can even extend to members of customer organizations. Ex-
treme Programming [4], for instance, advocates for the development of a close
bond with customers, a bond that allows the team to understand the needs and
culture of their clients intuitively and to resolve technical issues quickly.

2.4 Unscalable practices can be implemented

Many of the software development practices popularized in recent years, partic-
ularly those based on the Agile manifesto, prioritize co-located, cohesive teams
over formalized processes. Arguably, part of the backlash against the Agile move-
ment comes from the mismatch between its proposals and the formalized, ge-
ographically distributed, incohesive environments in which people attempt to
apply them. It is possible to be Agile in large organizations, but it is not easy.

Agile techniques are a much better fit to smaller (less formal, co-located,
cohesive) organizations. Story cards, backlogs, daily sprints, and other agile
requirements practices depend on such an environment to prosper. They are
tested, validated strategies to understand, prioritize, and track the requirements
of a project, but they do not scale well—a problem for large, but not for small
organizations.

3 Conclusion

We should not try to persuade small organizations to use the strategies we have
devised for their larger counterparts. Some small organizations do apply them,
perhaps out of a belief that it is the correct way to develop software, or a desire to
emulate seemingly successful large firms. My position is that this is a mistake.
Those strategies do not take advantage of their strengths; in fact they waste
them entirely. Instead of proceeding down this path, we should welcome the
opportunity to help these organizations identify their abilities, and to be explicit
about the ways in which these abilities can be exploited to their advantage.

An important question remains: when does a growing organization cease to
be small? That is, when do these strengths disappear? There seems to be a
threshold after which organizational dynamics change, at around ten or twenty
people [8]. Many organizations appear to have another qualitative jump at about
one hundred and fifty [10]; there could be at least one more in-between these

two. To my knowledge, these thresholds have yet to be explored in the domain of
software organizations. And it is possible that other determinants of size, such as
the number of teams or the number and variety of customers, is more important
than the number of employees for our purposes [13]. A better understanding
of the construct of size and of the characteristics of software organizations of
different sizes is an important step to advance our knowledge of the field.

4

Acknowledgements

I would like to thank Steve Fasterbrook, Greg Wilson, Jon Pipitone, Neil Ernst,
and Jonathan Lung for their insightful comments on this paper.

References

1.
2.

11.

12.

13.

14.

15.

16.

17.

Thomas J. Allen. Managing the Flow of Technology. MIT Press, 1977.

Jorge Aranda, Steve M. Easterbrook, and Gregory V. Wilson. Requirements in the
wild: How small companies do it. In RE ’07: Proceedings of the 15th IEEE Inter-
national Requirements Engineering Conference, pages 39-48, Delhi, India, 2007.
Daniel J. Beal, Robin R. Cohen, Michael J. Burke, and Christy L. McLendon.
Cohesion and performance in groups: A meta-analytic clarification of construct
relations. Journal of Applied Psychology, 88(6):989-1004, 2003.

Kent Beck. FEztreme Programming Explained: Embrace Change; 2nd FEdition.
Addison-Wesley Professional, 2005.

Peter M. Blau and Richard A. Schoenherr. The Structure of Organizations. Basic
Books, 1971.

Frederick P. Brooks. The Mythical Man-Month. Addison-Wesley, 1975.

U. S. Census Bureau. Statistics retrieved from http://www.census.gov/.

Theodore Caplow. Organizational size. Administrative Science Quarterly,
1(4):484-505, 1957.

Melvin E. Conway. How do committees invent? Datamation, 14(4):28-31, 1968.

. Robin Dunbar. Grooming, Gossip, and the Evolution of Language. Harvard Uni-

versity Press, 1996.

Michael T. Hannan and John Freeman. Organizational Ecology. Harvard, 1989.
Heather A. Haveman. Organizational size and change: Diversification in the savings
and loan industry after deregulation. Administrative Science Quarterly, 38:20-50,
1993.

John R. Kimberly. Organizational size and the structuralist perspective: A review,
critique, and proposal. Administrative Science Quarterly, 21(4):571-597, 1976.
Timothy C. Lethbridge, Janice Singer, and Andrew Forward. How software engi-
neers use documentation: The state of the practice. IEEE Software, 20(6):35-39,
2003.

Gary M. Olson and Judity S. Olson. Distance matters. Human-Computer Inter-
action, 15(2):139-178, 2000.

E. Fritz Schumacher. Small is Beautiful: A study of economics as if people mattered.
Blond and Briggs, 1973.

Stephanie D. Teasley, Lisa A. Covi, M. S. Krishnan, and Judith S. Olson. Rapid
software development through team collocation. IEEE Transactions on Software
Engineering, 28(7):671-683, 2002.

