
1

Discovering the Shared Understanding Dynamics
of Large Software Teams

Jorge Aranda

University of Toronto

Ramzan Khuwaja

IBM Toronto Lab

Steve Easterbrook

University of Toronto

Abstract

Reaching project goals demands from team mem-

bers the creation and communication of detailed

and vastly heterogeneous project information.

Although no team member needs to know every

piece of project information, each of them de-

pends extensively on knowledge generated by

other parties. Their aggregated information-

seeking and information-sharing activities form a

web of interactions that develops the team's

shared understanding of their project.

 Current approaches to study this phenomenon

are unsatisfactory, as they tend to overlook its

inherent complexity. To address this issue, we

present a proposal to analyze shared understand-

ing dynamics that draws from cognitive and orga-

nizational theories, as well as from Kruchten's

4+1 views of software architecture.

1 Shared Understanding

Reaching project goals demands the creation and

communication of detailed project information

among team members. The nature of this project

information is vastly heterogeneous: it may be as

overarching as requirements specifications or as

seemingly trivial as the location of a file in a re-

pository. Usually, no team member needs to know

every piece of information, and in large projects it

becomes impossible to have total knowledge.

However, every team member depends on knowl-

edge generated by people other than themselves,

and their aggregated information-seeking and

 Copyright Jorge Aranda, Steve Easterbrook, and

IBM Canada Ltd., 2007. Permission to copy is hereby

granted provided the original copyright notice is repro-

duced in copies made.

information-sharing activities form a web of in-

teraction with one main purpose: improving the

team’s shared understanding [4] of their project.

 Reaching this shared understanding is con-

siderably difficult, even for small teams. It in-

volves the effective use of social, organizational,

and cognitive strategies. Shared understanding

cannot be developed systematically, and it can

never be guaranteed because we cannot ensure

that two parties have a shared understanding. We

can only point to interactions in which the lack of

understanding became apparent through break-

downs and conflicts.

 Developing shared understanding becomes a

monumental task for large-scale software devel-

opment, where software teams are geographically

separated, their members number in the hundreds

or thousands, and their skills and vocabularies are

extremely specialized and widely divergent. But

the difficulty of the task does not make it any less

vital. Without reaching enough shared under-

standing, a software team will not be working

consistently towards the same goals, and it will be

surprised by obstacles that were not flagged and

communicated in advance. In contrast, the devel-

opment of shared understanding will focalize the

efforts of the full team, improve the flow of in-

formation within and from outside its boundaries,

and improve the organization’s opportunities in

the market. Reaching shared understanding, then,

is a necessary, if not a sufficient, requirement for

the success of a software development team.

 The researcher of shared understanding in

software teams encounters three problems from

the start:

Completeness: It is realistically impossible to

record and analyze all of the relevant data of

teams of even modest sizes.

Observability: It is impossible to confirm that

two people share the same understanding of a

2

situation. It is only in moments of breakdown that

a lack of understanding becomes evident.

Breadth of focus: Shared understanding can

be studied with a variety of strategies, and each

will only display one angle of the problem. An

exclusive focus, for instance, on processes and

methodologies will ignore the informal interac-

tions (such as water cooler conversations) that

play a large role in strengthening the understand-

ing in a team; a focus on the latter will equally

suffer from ignoring the processes that, unknown

to the researcher, every team member has interna-

lized as part of their understanding.

 As a response to these challenges, we have

developed a multiple-view approach to study the

development of shared understanding in large

software teams. Details of our proposal are sum-

marized in the following section.

2 Organizational Views

In order to study the development of shared un-

derstanding, we need to ground our analysis on a

framework that incorporates several key views

that offer different insights on the software team.

 This is not the first time that studies in our

field have needed to combine multiple aspects of

analysis. The success of a similar approach in

software architecture should be of use for the

study of shared understanding. We refer to Kruch-

ten’s ―4+1 view model‖ of software architecture

[2]. Kruchten identifies the problem caused by the

narrowness of several approaches to model archi-

tectures: “Sometimes the architecture of the soft-

ware suffers scars (...) from an over-emphasis on

one aspect of software development.” In response,

Kruchten proposes “to organize the description of

software architecture using several concurrent

views, each one addressing one specific set of

concerns.”

 The concurrent views for software architec-

ture proposed by Kruchten are summarized in

Figure 1.

 The complexity of the phenomenon of shared

understanding, and the qualities of Kruchten’s

model, suggest that an approach similar to his

own should be fruitful for our domain. A diversity

of views is needed when analyzing something as

complex as large-scale software development.

These views need to cover the technical, social,

cognitive, and organizational factors that impact

software development, and their combined appli-

cation should convey a holistic picture of the

software development team under study.

Figure 1 - Kruchten's 4+1 view model of software

architecture

 As part of our studies of shared understand-

ing, we have prepared a preliminary version of

this multiple-views model of organizations. Our

proposal is the result of a survey of the literature

in the areas we mention, as well as of a pilot study

of a project management team, which we cannot

report here because of space limitations. The

model has not yet been properly evaluated, and

we expect it will suffer significant changes as we

progress with our research. However, we consider

it helpful to describe it at this stage in order to

begin a dialogue with the community regarding

the convenience of each of the views we describe,

and the best approaches to analyze them.

 All of these views have been proposed pre-

viously, in separate, for the study and understand-

ing of organizations. To our knowledge, however,

they have not been proposed under a unified

framework before. Our proposal is composed of

the following views:

 Structural view: This view captures the hie-

rarchy of the software development organization,

the role of each member, and the structure of its

work groups. This view is trivial for small teams,

but large groups have complex hierarchical struc-

tures that affect the development of software

deeply. When individuals need to satisfy an n-

dimensional matrix management structure, we

need to understand said structure if we want to

propose sensible refinements to the organization.

 Process view: This view describes the busi-

ness processes and methodologies followed by the

organization. It is, perhaps, the most commonly

3

used perspective to describe an organization in the

IT industry, and it is also the one that has been

better developed –languages such as BPML can

be used extensively to document this type of in-

formation.

 We propose to focus on processes as executed

instead of as specified because this focus will

make apparent the shortcuts and tacit activities

that organizations perform but do not usually

document.

 Dependency view: This view records the

chains of dependencies between the product under

development and other products from within or

outside the organization.

 Software products in large companies have

many dependencies to other projects. Their suc-

cessful completion depends on the completion of

products built by other teams, which in turn de-

pend on others. The chain of dependencies be-

comes quickly complicated and volatile.

 Although some companies have successfully

found ways to document and keep track of the

dependencies of their projects through dependen-

cy management applications, many companies

still struggle with this challenge. Studying the

development of shared understanding for these

companies requires the analysis of product depen-

dencies, of the mechanisms through which these

are discovered and negotiated, and of the ways in

which they are managed as part of product devel-

opment.

 Social view: This view focuses on the formal

and informal interactions between stakeholders of

a software project, and on the social structures in

which they are arranged.

 Through the use of Social Network Analysis

[5], we can analyze the structural and dynamic

qualities of software teams, and explore the ways

in which interactions take place in practice (as

opposed to the ways in which they are prescribed

by business processes).

 The study of social networks is of particular

relevance to large-scale software development

teams because many of their members serve the

primary goal of facilitating the flow of informa-

tion among social clusters. These individuals

bridge the gaps between groups with different

vocabularies, skill sets, and expectations. As a

research community, we know very little about

how these bridges carry out their tasks and ensure

that product development runs smoothly.

 Competencies view: This view provides an

inventory of the skills, background knowledge,

and experience of the members of the software

team. It is relevant because large teams develop

highly specialized roles and competencies, and

these usually imply distinct terminologies and

subcultures. An awareness of these personal dif-

ferences will be of importance when restructuring

teams, providing opportunities for learning, and

analyzing the feasibility of the implementation of

best practices and team dynamics.

 Artifact view: This view allows us to investi-

gate the qualities, affordances, capabilities, and

limitations of the artifacts used in everyday soft-

ware development [3]. These artifacts (documents

such as requirements specifications, or tools such

as IDEs) are often focal points of communication

and cognition, and hence their characteristics have

a significant impact in software development ac-

tivities.

 The thorough study of all documents and

tools used in a software project is not practical.

However, collecting data on the frequency with

which different types of documents are used and

their relevance for each group member may pro-

vide us with useful patterns of interaction and

team dynamics. It will also point to particularly

relevant documents, which may be studied with a

more careful detail.

 Intentional view: Tied to the social actors

and to their positions in the organization’s struc-

ture, this view makes explicit the key goals (and

means to achieve them) of a socio-technical sys-

tem’s agents. This perspective allows us to ad-

dress questions such as these: What are the goals

of each agent? Are they currently satisfied or de-

nied? What are the consequences of the interac-

tions of the actors? And, perhaps more

importantly, which structural arrangement suits

best the satisfaction of as many goals as possible?

 The study of the intentionality of social

agents has advanced considerably. Some current

proposals, such as the i* framework [6], provide

analysts with the tools to apply the intentional

view to socio-technical contexts. At the same time,

large-scale uses of these proposals have so far

resulted in cumbersome intentionality models that

do not facilitate analysis. Considering the over-

whelming number of agents and goals that are

involved in large-scale software development,

refinements to these intentionality proposals ap-

pear necessary if they are to be used for the study

of shared understanding in these contexts.

4

 Physical view: This view notes the geograph-

ical location of the team members, and the layout

of their work environment.

 This is perhaps the most overlooked perspec-

tive in our field, even though the software devel-

opment issues that arise because of lack of

physical proximity are considerable [1]. There are

indications that these issues are, indeed, determi-

nant factors of success or failure of software de-

velopment projects.

 Scenario-based view: The eight views pro-

posed so far are valuable by themselves, but they

are likely to interact in ways that our separate

perspectives cannot convey. Therefore, we pro-

pose an additional view, the equivalent of Kruch-

ten’s ―+1‖: a scenario-based view that ties the rest

together, providing a unified perspective of soft-

ware development.

 Because of its unifying character, this is per-

haps the most important of all the views described

here. It explains how an event is handled from its

initial trigger to its final consequences. It

represents, in a way, ―executing‖ the socio-

technical system, and tracing it along all the other

views of our proposal.

 By necessity, the scenario-based view will be

incomplete. It is impractical to capture the details

of the execution of every event through the organ-

ization. We should be concerned with the normal

and extraordinary execution of a few key scena-

rios that illustrate an aspect of the business’s op-

eration, not with the totality of scenarios and their

consequences. But this incompleteness is not a

deficiency exclusive to our proposal: any other

approach to the study of large-scale software de-

velopment will need to ignore some data as well.

3 Current and Future Work

We are presently researching shared understand-

ing at the scale of a large software division fol-

lowing the framework described in this paper.

 We expect the result of this exercise to be

twofold. First, we should generate a partial map of

shared understanding in the software division.

The map should be useful in the detection of pat-

terns of shared understanding dynamics, leading

to the identification of best practices, tool and

document improvements, and mechanisms for the

prevention of breakdowns in software teams.

 The second outcome of this exercise should

be the refinement of this model of organizational

analysis, which will be potentially useful not only

for researchers of shared understanding in soft-

ware teams, but for many other software project

management studies.

Acknowledgements

This research was supported by IBM’s Centre for Ad-

vanced Sciences (Toronto).

About the Authors

Jorge Aranda is a Ph.D. student in Computer Science at

the University of Toronto. His research interests are the

social and psychological aspects of software develop-

ment. He can be reached at jaranda@cs.toronto.edu.

Ramzan Khuwaja is a Project Manager currently as-

signed to IBM’s Software Group, Rational Tools,

project management office. Ramzan has a Ph.D. in

Computer Science, and 13 years of working experience

in the IT industry. He can be reached at ram-

zank@ca.ibm.com.

Steve Easterbrook is a Computer Science professor at

the University of Toronto. Contact him at

sme@cs.toronto.edu.

References

[1] T. DeMarco and T. Lister. Peopleware: Produc-

tive Projects and Teams. Dorset House Publishing

Co., 2nd edition, 1999.

[2] P. Kruchten. ―Architectural Blueprints—The

―4+1‖ View Model of Software Architecture‖

IEEE Software 12(6), Nov. 1995.

[3] M. Scaife and Y. Rogers. ―External cognition:

How do graphical representations work?‖ Intl.

Journal of Human-Computer Studies, 45, 1996.

[4] L. Suchman. Plans and Situated Actions: The

problem of human-machine interaction. Cam-

bridge University Press, 1987.

[5] S. Wasserman and K. Faust. Social Network Anal-

ysis: Methods and Applications. Cambridge Uni-

versity Press, 1994.

[6] E. Yu. ―Towards Modelling and Reasoning Sup-

port for Early-Phase Requirements Engineering‖

Procs. of the 3rd IEEE International Conference on

Requirements Engineering (RE’97), 1997.

IBM and Rational are registered trademarks of Interna-

tional Business Machines Corporation in the United

States, other countries, or both.

