
Observations on Conway’s Law in Scientific Computing

Jorge Aranda, Steve Easterbrook, and Greg Wilson
Department of Computer Science,

University of Toronto
Toronto, Canada, M5S 2E4

{jaranda, sme, gvwilson}@cs.toronto.edu

ABSTRACT
We describe the structure of organizations and products
of scientific computing projects using Conway’s Law as a
lens to guide our observations. Our organizational find-
ings include highly unconventional work structures, loose
project membership and roles, low team coordination and
awareness, and the dependence on liaisons for geographically
distributed development. These characteristics are reflected
in the ambiguous goals and requirements, organic growth,
and loose boundaries of the resulting products.

1. INTRODUCTION
The emerging literature on socio-technical congruence tends
to focus on commercial and open-source software develop-
ment groups. Although this focus is convenient due to the
immediate applicability of its observations to the software
industry, it ignores other essential, but less conventional,
software development domains. One such alternative do-
main is scientific computing, which is subjected to the same
coordination principles of more conventional projects, but
differs in many qualitative attributes.

One principle that software projects have been observed to
follow is Conway’s Law [3]. Briefly stated, “the structure of
a product resembles the structure of the organization that
designed it”. Over the years, this phenomenon has been
observed, expanded, and analyzed in depth (for instance,
see [5]). It is, perhaps, one of the few statements that can be
seen as general principles in our field and beyond – Conway
argued that it is true of all kinds of designed products,
software-based or not, since it addresses the essence of the
task of coordinated design.

In this paper we look at scientific computing projects
through the lens of Conway’s Law. Based on an ongoing
case study of such projects, we draw observations about the
coordination and structure characteristics of the groups and
products of this domain.

STC 2008, May 10, Leipzig, Germany.

2. SCIENTIFIC COMPUTING
We consider scientific computing projects to be those that
are integral to the process of discovery and validation of
scientific knowledge. Examples include simulators of climate
models and visualizers of medical phenomena. We exclude
trivial programs, proof-of-concepts, and non-trivial software
written by scientists for non-scientific purposes, such as
derivations of their work for commercialization.

Modern research depends on these scientific computing
projects to a surprising degree. It is difficult to find a field of
study that does not develop software at least tangentially;
for many fields (Physics, Biomedicine, Meteorology, to name
a few) it has become an absolute necessity.

Scientific computing is unique due to the combination of
several factors. It is routinely performed by people without
software training, on a part-time basis, over long periods of
time. It has ambiguous and changing goals. It addresses
specialized, thorny, unexplored problems. It tends to be
computationally expensive. It presents extraordinary chal-
lenges for quality assurance since, often, the “right answer”
is unknown, and defects are hard to detect. There is rarely
an external market for its products, and its main users are
often its own developers.

However, for all the differences that scientific computing
presents in comparison to the software industry, it still holds
design and coordination challenges common to software
projects in general. We can therefore hypothesize that
coordination phenomena observed in commercial and open
source software, such as Conway’s Law, should be found in
scientific computing projects as well.

3. CASE STUDY
We began to interview scientific groups as part of a larger
multiple-case exploratory case study [7] on describing how
software is developed “in the wild” [1]. Our goal was
to discover how scientific groups coordinate their software
systems, and to compare their practices to those of com-
mercial groups of similar sizes. Our interest in scientific
computing grew out of the realization that its bottleneck is
not computing power, but the skills, coordination, and tool
adoption of its developers (see for instance [6] and [2]).

3.1 Methodology and execution
We consider our units of analysis to be the individual sci-
entists that form part of scientific computing efforts (as we



will see, projects would have been a more problematic unit
of analysis). To fit our selection criteria, scientists: (a) had
to be developing scientific computing software (according
to our previous definition); and (b) for convenience, needed
to be located in Toronto. Although the large majority of
our cases came from the academic environment (as opposed
to, for instance, government research laboratories or other
scientific bodies), this was not one of our selection criteria.

We interviewed fifteen people in eight different scientific
domains. We began our data collection in the summer of
2007. Our interviews were semi-structured, lasted between
one and two hours, and covered contextual characteristics
of each project, as well as project goals, requirements elic-
itation, project management and lifecycle, team structure
and roles, documentation practices, tool use, and quality
assurance processes. We did not conduct our interviews
with an examination of Conway’s Law in mind, and in most
cases we did not examine the software that our participants
produced. These are threats to the internal validity of our
results. However, the topics we covered allowed us to draw
several preliminary but nonetheless useful observations.

3.2 The cases
The following brief descriptions of our cases are only in-
tended to convey a basic impression of their nature.

Particle Physics: We talked to six people in this area.
Most of them work with the ATLAS project, an experiment
on high-energy particle collisions based on the accelerator in
CERN, the European Organization for Nuclear Research. It
is one of the largest scientific efforts in history: CERN re-
ports that there are 2,100 participating physicists, including
450 students, from more than 167 universities [4]. Five of
our interviewees were graduate students either contributing
directly to the ATLAS software or adapting pieces of it to
suit their own research needs. Our sixth interviewee was a
manager of computing services for this group.

Forestry: Our Forestry interviewee was a Ph.D. student
researching, along with his advisor, how forests develop
under different management strategies. He uses computer-
based stochastic simulations to model forest development.

Urban planning: We had one interviewee in this area, a
Ph.D. student working, in collaboration with two professors
and several other graduate students, on an urban traffic
simulator. The aim is to model city-wide effects of public
transit policies. The team needed to build its simulator
from scratch, as one of its main innovations is the increased
level of detail of its model, which is not supported by other
available simulators.

Oncology: The oncology project involves the development
of minimally invasive procedures to cure cancer. It deter-
mines the amount of heat to be applied to a tissue, through
a laser, in order to heal the corresponding organ. The core
of the software was written eight years ago by a professor as
a prototype; to date it continues to be expanded and refined
by people at the research division of a local hospital. A total
of six people have worked on it throughout this period.

Medical Imaging: This project consists of the processing

of MRI images to automatically detect some forms of cancer.
It began as one component of a Ph.D. student’s thesis
project; a professor and a summer student have contributed
in different capacities.

Atmospheric Physics: The Ph.D. student that we in-
terviewed in this area is developing a simulator to help
explain the formation of atmospheric currents and clouds in
Jupiter. As with other cases in our pool, the simulator itself
is part of the innovation in this project, since it implements
atmospheric vectors previously not used in the field.

Biotechnology: There were two separate biotechnology
projects in our pool. The first is a medium-scale geographi-
cally distributed effort to develop software to examine pro-
tein interactions visually. Our interviewee was a professor
whose group contributes to this project significantly. The
project has evolved a steering committee layer, and is one
of the prominent software systems in the field.

The second Biotechnology case is a protein interaction
database portal that concentrates information on protein
interactions. Although it started as an element towards
the Ph.D. thesis of its main (and then only) contributor, it
quickly grew due to the demand for such a database portal
in the community. Currently, five people participate in its
development, in different capacities.

Earth Sciences: We interviewed an Earth Sciences profes-
sor whose students have developed a series of graphically-
intensive rock and soil engineering tools that analyze the
stability of various kinds of structural formations. Several
of the tools that his group developed over the years became
commercial products after significant modifications.

4. OBSERVATIONS
We make the following observations on the structure and
coordination dynamics of our cases.

4.1 Organizational structure
The term “organization” might be a misnomer to refer to
the groups of people that drive the projects we studied.
With this we do not mean that they are disorganized, but
that they are less formally defined than traditional software
development projects. They are still, however, organizations
in the sense that they are groups of people working together.
We list some of the characteristics that set them apart:

Loose membership and boundaries: It is often difficult
to determine who is a member of a scientific computing
organization and what constitutes membership. There are
several kinds of roles in the membership borderline: occa-
sional contributors, past contributors available for relatively
frequent consultation, non-coders that collaborate by pro-
viding guidance or by creating new scientific approaches to
an issue facing the project. Even current code contributors
present a membership problem: we can see the ATLAS
people as forming part of the same large project, but it
might be more convenient to picture them as developing
independent projects that happen to be based on the same
software platform.

Roles and hierarchy: These teams do not tend to follow



the conventional, relatively rigorous hierarchy of commer-
cial organizations. Developers are usually also graduate
students and professors, and they have flexible roles and
a less stringent hierarchy. Developers possess a greater
design autonomy. Quality assurance, build coordination,
and requirements analysis, among other specialized roles,
are absent from most projects. However, as projects grow,
the roles of system and database administration may be
formally assigned to a (usually non-academic) member.
Project leadership does not depend on hierarchical position
or seniority, but on proximity to and specialization in the
relevant research problem.

Team structure: There are, arguably, at least two team
members in most of these teams: a junior academic figure,
such as a graduate student, in charge of the development,
and a senior academic figure, such as a professor, rarely
involved in programming tasks, but participating through
guidance and some design activities.

From this basic structure, projects grow in two directions.
One is towards additional technical human resources: hiring
a database administrator, or a summer student charged
with improving the user interface. This occurs when the
technical challenges of the project clearly surpass the ca-
pabilities of current team members. The other direction is
growth towards additional scientific human resources: more
researchers getting involved in the project, generally with
the purpose of addressing more, similar, research questions.
This occurs most often when the team’s academic work is
centered on a research problem posed by a leading professor,
who assigns pieces of the problem to their students.

Communication: Project communication volume tends
to be extremely low in comparison to commercial software
development. Except for the two largest projects in our
pool, coordination almost exclusively has a single focal
person: the project lead, the person with the main research
problem. Even these communication transactions are scarce
and ineffectual – we had instances where our interviewees
learned information vital to their projects by talking to us.
Team awareness is nearly non-existent. This is not to say
that the group does not communicate, but that it discusses
scientific challenges, not software development activities.

Knowledge transfer through liaisons: The two largest
cases in our pool are geographically distributed. For them,
coordinating presents a challenge similar to that experienced
by many current global software development projects [5].
These projects rely on the participation of people acting as
liaisons among sites – typically post-doctorates or graduate
students in an internship. Their role is to transfer tacit
knowledge about the technical and scientific problems that
the local team encounters. In the ATLAS project, in par-
ticular, graduate students report being constantly stumped
with the arcane requirements of the software platform until
one such liaison contributes the missing piece of the puzzle.

4.2 Product structure
Just as“organization”is a word ill-fitted to describe scientific
software development teams, “product” is an inappropriate
term to describe the results of their work. Theirs are

products that rarely have releases, external users, or clear
boundaries. Some of their notable characteristics are:

Undefined requirements and goals: It is rare to find
clearly stated targets in this domain. For example, contribu-
tors to the ATLAS project report first becoming familiarized
with their research problem, with their complex software
platform, and with the topics in the mailing lists, and then
developing a sense of what “needs to get done next”. Re-
quirements documentation is also a rarity, especially when
the projects are breaking new ground – and, because of their
nature, most of them are. They are never really finished,
and though our interviewees used terms such as “eighty
percent done”, they do not seem to mean that they have
truly quantified their progress, but that they sense that there
is (always) a little more work to do. Projects are abandoned,
rather than finished: when their research problem ceases to
be interesting, or when their developers, mostly graduate
students, eventually leave after obtaining their degrees and
nobody else picks up on their work.

Releases, work backlog, and discipline: On the surface,
the previous observations (no upfront planning, adaptive
approach) might lead the reader to characterize these groups
as performing agile software development. However, they
differ from agile development in significant ways: They
do not have release cycles. They do not explicitly and
periodically prioritize their work backlog (usually they do
not even have an explicit work backlog). They do not do
test-driven development. They do not hold periodic (daily,
weekly, or monthly) meetings to discuss the status of their
software projects. All of these are common features of
conventional agile development, and they are absent from
the large majority of our cases.

Organic growth: The kind of growth that these products
experience seems to be the result of their ambiguous goals
and team structures and of their low and loose organiza-
tional coordination. In general, these projects grow organ-
ically, slowly, and often in unexpected directions. Some of
them began as side projects or scripts written to get one
small problem out of the way; their author shared them
with a broader community, sparking its interest, and they
took a life of their own, to the extent that they became the
main interest of their authors. Some others, built to address
a general problem, were picked up, used as a platform,
and extended by other developers to address variations of
that general problem, or more specific problems, years after.
Their contributors have only a rough sketch of the future
directions of the project; their strategy seems to be to take
development one feature at a time, and to then move on to
the feature that “naturally” should follow. This lack of plan-
ning appears to affect the architecture of the systems. Their
modules rarely, if ever, follow basic architectural principles
such as information hiding. Contributions to a platform are
sometimes incompatible among themselves, and they easily
reach the point where they are of no use to anybody but
their authors and, perhaps, their future students.

Loose product boundaries: It is hard to draw a clear
boundary delineating these products. Their modules tend
to branch out and become incompatible, although formally
they may continue to be a part of the same package. They



may interact with other external products as a series of
workflow pipes to address larger research questions, to the
point where they practically cease to be a product them-
selves and begin to be treated as modules of a different sys-
tem. They may also be adapted to become commercial tools,
in which case they shed many of their features and refine
some key functionality. In these cases it is questionable to
consider the modified commercial product an “adaptation”
of the original scientific product: in our Earth Sciences case
reportedly not a single line of code produced in the academic
environment survived commercialization.

4.3 Linking organization and product
Although these are preliminary observations, the previous
subsections have noted significant evidence describing how
the structure of scientific software development groups is
reflected in the structure of their products. Both the teams
and their products have ambiguous boundaries. Coordi-
nation and awareness are low, and they tend to radiate
from the project lead; the result is a central platform with
extensions and modules that grow in disparate directions,
eventually becoming incompatible to each other. Cohesion
through code or documentation is low; to alleviate this
problem geographically distributed teams need to modify
their structure by resorting to the establishment of liaisons.

4.4 Other observations
These observations are not related to Conway’s Law, but are
still relevant for an understanding of the domain.

High-performance computing: Scientific computing is
often confused with high-performance computing. However,
although the scientists we interviewed sometimes use high-
performance tools and equipment, their use and efficiency is
far from being their main concern. This might be because
they have no need for high-performance tools or, more likely,
because they are so difficult to use and take advantage of,
even for people with good programming proficiency, that
scientists do not invest time to learn to use them in depth.

Tools and practices: Scientific computing is generally
performed by people that are not trained in software devel-
opment and that see such training as a waste of time in com-
parison to further study in their area of knowledge. They do
not use current software tools (version control repositories,
defect databases, debuggers, or IDEs) or practices. Quality
assurance is an afterthought, partly because of the challenge
of testing a process for which the right answer is unknown,
but also because of a lack of testing discipline. This results
in low efficiency and a high rate of project failure.

Scientific vs. commercial software development:
Although most scientific computing projects are small, the
contrast with commercial software development in small
companies is stark. While small companies present a wide
range of approaches to software development [1], scientific
computing groups are mostly quite similar. This is un-
fortunate because they are similar in their general lack of
technical expertise, tool adoption, process, and professional
discipline. There are exceptions, and our case pool includes
one, but this seems to be a pervasive pattern in the domain.

Another difference between the two domains is the lack

of market pressures on scientific computing groups. They
do not usually respond to external users. The survival of
their groups rarely depends on the success of their software
projects, and their funding does not depend on code quality.
They do not validate their own code, and therefore they
only catch the most glaring defects before the publication
of their results. Scientists do report feeling the pressure
to deliver results – students to their advisors; advisors to
their funding sources. But it is a pressure that pushes them
towards publication, not towards software quality, which as
a consequence is often overlooked.

We have previously observed how the catastrophic tone
of the literature on commercial software does not match
our observations. It turns out to be much more fitting to
scientific computing. Considering our society’s dependence
on science, and science’s dependence on software, this is an
area that demands further attention from our community.

5. CONCLUSION
In this paper we analyzed scientific software development
through the lens of Conway’s Law. We discovered highly
unconventional organizational structures and coordination
mechanisms, and we traced the effects they have in their
resulting products. These observations should be valuable
for researchers of socio-technical congruence, as we explore
the phenomenon in an unusual setting, and for researchers
of scientific software development, due to our focus on
coordination rather than on tool efficiency.

6. ACKNOWLEDGMENTS
We thank the participants of our case study for their invalu-
able collaboration, and Neil Ernst, Jennifer Horkoff, and
Jonathan Lung for their feedback on an earlier version of
this paper. This research was funded by NSERC.

7. REFERENCES
[1] J. Aranda, S. M. Easterbrook, and G. V. Wilson.

Requirements in the wild: How small companies do it.
In RE ’07: Proceedings of the 15th IEEE International
Requirements Engineering Conference, pages 39–48,
Delhi, India, 2007.

[2] J. Carver, R. Kendall, S. Squires, and D. Post. Software
development environments for scientific and engineering
software: A series of case studies. In ICSE ’07:
Proceedings of the 29th International Conference on
Software Engineering, pages 550–559, Minneapolis,
MN, USA, 2007.

[3] M. E. Conway. How do committees invent?
Datamation, 14(4):28–31, 1968.

[4] European Organization for Nuclear Research. Atlas
experiment public information, 2008.
http://atlas.ch/.

[5] J. D. Herbsleb and R. E. Grinter. Splitting the
organization and integrating the code: Conway’s law
revisited. In ICSE ’99: Proceedings of the 21st
International Conference on Software Engineering,
pages 85–95, Los Angeles, CA, USA, 1999.

[6] G. V. Wilson. Where’s the real bottleneck in scientific
computing? American Scientist, 94(1):5, 2006.

[7] R. K. Yin. Case Study Research: Design and Methods
(3rd Edition). Sage, 2003.


