
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Closing notes – A birds’ eye 
view on patterns

ECE450 - Software Engineering II 2

Where do we stand?

• We have discussed the 23 original design patterns
– Many of them may seem irrelevant to you at this point
– Some of them may seem more cumbersome than the problem they intend to 

solve
• Perhaps you have not experienced the problem yet?

– In any case, the patterns may be just a blur in your brain right now
• What was the difference between Decorator and Strategy again...?

• Additional problem: We’ve only explored the surface of the field
– More creational, structural, and behavioral patterns
– Concurrency patterns
– Systems analysis patterns
– Reengineering patterns from code
– Refactoring code to adjust to patterns
– ...

ECE450 - Software Engineering II 3

Your approach to patterns

• Most people that are learning patterns follow a similar path:
• Step 1:

– Know enough to be dangerous, not enough to be useful
– Including patterns like crazy
– Factory method for a Hello World application
– Annoying, but perhaps necessary

• ...since expertise comes from practice

• Step 2:
– Expert in a few patterns, know to tell when to use them
– Designs with one or two well-fitted patterns
– Masters the vocabulary and communicates with the right terms with others

• Step 3:
– Know the topic in depth, enough to tweak implementations and know when to 

ignore other experts’ advice
– Masters the principles behind pattern use
– Using patterns as an extension of their craft, not following a template

ECE450 - Software Engineering II 4

Design principles distilled from 
patterns

• Encapsulate what varies

• Depend on abstractions, not on concrete classes

• Open for extension, closed for modification

• Minimize coupling

• Maximize cohesion

• Favor composition over inheritance



2

ECE450 - Software Engineering II 5

From design back to software 
engineering

• About 50% of the total cost of a system is spent on maintenance tasks
– Yes, bug fixing, but also (and more importantly) extensions and modifications to 

the system

• Having the foresight to encapsulate what varies simplifies maintenance 
tasks and reduces overall costs
– Your system will change, so design it to accommodate foreseeable changes
– Your clients are far better experts at noticing what might change than you!

• Design your system so that it can learn and mature easily
– Flexibility in uncertain areas
– Simplicity in agreed/constant areas

• Document your designs to facilitate comprehension

• Using the right vocabulary is very beneficial
– Spending hours understanding a module vs. reading a comment that explains it 

implements the Visitor pattern


