ECE450 — Software Engineering 11

Today: Closing notes — A birds’ eye
view on patterns

ECEA450 - Software Engineering Il

Where do we stand?

We have discussed the 23 original design patterns
— Many of them may seem irrelevant to you at this point
— Some of them may seem more cumbersome than the problem they intend to
solve
= Perhaps you have not experienced the problem yet?
— In any case, the patterns may be just a blur in your brain right now
= What was the difference between Decorator and Strategy again...?

Additional problem: We’ve only explored the surface of the field
— More creational, structural, and behavioral patterns
— Concurrency patterns
— Systems analysis patterns
— Reengineering patterns from code
— Refactoring code to adjust to patterns

ECEA450 - Software Engineering Il

Your approach to patterns

Most people that are learning patterns follow a similar path:
Step 1:

— Know enough to be dangerous, not enough to be useful

— Including patterns like crazy

— Factory method for a Hello World application

— Annoying, but perhaps necessary

= ...since expertise comes from practice

Step 2:

— Expert in a few patterns, know to tell when to use them

— Designs with one or two well-fitted patterns

— Masters the vocabulary and communicates with the right terms with others
Step 3:

— Know the topic in depth, enough to tweak implementations and know when to

ignore other experts’ advice
— Masters the principles behind pattern use
— Using patterns as an extension of their craft, not following a template

ECE450 - Software Engineering Il

Design principles distilled from
patterns

Encapsulate what varies

Depend on abstractions, not on concrete classes
Open for extension, closed for modification
Minimize coupling

Maximize cohesion

Favor composition over inheritance

ECE450 - Software Engineering Il




From design back to software
engineering

About 50% of the total cost of a system is spent on maintenance tasks

— Yes, bug fixing, but also (and more importantly) extensions and modifications to
the system

Having the foresight to encapsulate what varies simplifies maintenance
tasks and reduces overall costs
— Your system will change, so design it to accommodate foreseeable changes
— Your clients are far better experts at noticing what might change than you!

Design your system so that it can learn and mature easily
— Flexibility in uncertain areas
— Simplicity in agreed/constant areas

Document your designs to facilitate comprehension

Using the right vocabulary is very beneficial

— Spending hours understanding a module vs. reading a comment that explains it
implements the Visitor pattern

ECEA450 - Software Engineering Il 5




