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Today: Closing notes — A birds’ eye
view on patterns

ECEA450 - Software Engineering Il

Where do we stand?

We have discussed the 23 original design patterns
— Many of them may seem irrelevant to you at this point
— Some of them may seem more cumbersome than the problem they intend to
solve
= Perhaps you have not experienced the problem yet?
— In any case, the patterns may be just a blur in your brain right now
= What was the difference between Decorator and Strategy again...?

Additional problem: We’ve only explored the surface of the field
— More creational, structural, and behavioral patterns
— Concurrency patterns
— Systems analysis patterns
— Reengineering patterns from code
— Refactoring code to adjust to patterns
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Your approach to patterns

Most people that are learning patterns follow a similar path:
Step 1:

— Know enough to be dangerous, not enough to be useful

— Including patterns like crazy

— Factory method for a Hello World application

— Annoying, but perhaps necessary

= ...since expertise comes from practice

Step 2:

— Expert in a few patterns, know to tell when to use them

— Designs with one or two well-fitted patterns

— Masters the vocabulary and communicates with the right terms with others
Step 3:

— Know the topic in depth, enough to tweak implementations and know when to

ignore other experts’ advice
— Masters the principles behind pattern use
— Using patterns as an extension of their craft, not following a template
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Design principles distilled from
patterns

Encapsulate what varies

Depend on abstractions, not on concrete classes
Open for extension, closed for modification
Minimize coupling

Maximize cohesion

Favor composition over inheritance
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From design back to software
engineering

About 50% of the total cost of a system is spent on maintenance tasks

— Yes, bug fixing, but also (and more importantly) extensions and modifications to
the system

Having the foresight to encapsulate what varies simplifies maintenance
tasks and reduces overall costs
— Your system will change, so design it to accommodate foreseeable changes
— Your clients are far better experts at noticing what might change than you!

Design your system so that it can learn and mature easily
— Flexibility in uncertain areas
— Simplicity in agreed/constant areas

Document your designs to facilitate comprehension

Using the right vocabulary is very beneficial

— Spending hours understanding a module vs. reading a comment that explains it
implements the Visitor pattern
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