
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Design Patterns IX
Interpreter, Mediator,

Template Method recap

ECE450 - Software Engineering II 2

The Interpreter pattern

• Need to know it exists, but it is probably the pattern with the lowest 
general applicability of all
– Though it’s very helpful if you deal with language creation, allowing users to 

come up with domain formulas, small compilers, etc.

• Interpreter: Given a language, define a representation for its grammar 
along with an interpreter that uses the representation to interpret 
sentences in the language

• Example: Regular expressions
– The Interpreter pattern uses a class to represent each grammar rule...

• I.e., what constitutes an “expression”, a “literal”, etc.

– ...and a Composite structure to construct the language

ECE450 - Software Engineering II 3

Structure and participants

• AbstractExpression
– Declares an abstract Interpret operation that 

is common to all nodes in the abstract syntax 
tree

• TerminalExpression
– Implements an Interpret operation associated 

with terminal symbols in the grammar
– An instance is required for every terminal 

symbol in a sentence

• NonterminalExpression
– One such class is required for every rule in the 

grammar
– Implements an Interpret operation for 

nonterminal symbols, typically calling itself 
recursively on the variables of the rule

• Context
– Contains information that is global to the 

interpreter

• Client
– Builds, or is given, an abstract syntax tree 

representing a sentence in the language that 
the grammar defines

– Invokes the Interpret operation
ECE450 - Software Engineering II 4

Applicability

• Use Interpret when there is a language to interpret, and you can represent 
statements in the language as abstract syntax trees. It works best when:
– The grammar is simple (otherwise the class hierarchy may become 

unmanageable)
– Efficiency is not a critical concern



2

ECE450 - Software Engineering II 5

Consequences

• It’s easy to change and extend the grammar
– ...since it uses classes to represent grammar rules

• Complex grammars are hard to maintain
– The pattern defines at least one class for every rule in the grammar. Grammars 

containing many rules can be hard to manage and maintain.

• Adding new ways to interpret expressions
– It’s easier to evaluate an expression in a new way (e.g., pretty printing)
– If you keep creating new ways of interpreting an expression, consider using 

Visitor to avoid changing the grammar classes

ECE450 - Software Engineering II 6

Coordinating GUI objects

ECE450 - Software Engineering II 7

How can we coordinate the
interactions of all those objects?

• Idea #1: Each object notifies of its changes directly to those that would be 
interested
– For example, the Font list lets the Outline checkbox know whether it should be 

disabled
– Too tight coupling!

• Idea #2: Implement Observer
– Every object has a list of Observers and notifies them of changes

• Objects don’t need to know the details of who is observing them...
• ...nor how the change will impact others

– Much better approach...
– ...but a bit clumsy: Every object is both an observer and a subject!

• Idea #3: The Mediator pattern
– Define an object that encapsulates how a set of objects interact. Mediator 

promotes loose coupling by keeping objects from referring to each other 
explicitly, and it lets you vary their interaction independently

ECE450 - Software Engineering II 8

The mediator sits in the middle
of all interactions



3

ECE450 - Software Engineering II 9

Structure and Participants

• Mediator
– Defines an interface for communicating with Colleague objects

• ConcreteMediator
– Implements cooperative behavior by coordinating Colleague objects

• Colleague classes
– Each Colleague class knows its Mediator object
– Each colleague communicates with its mediator whenever it would have otherwise 

communicated with another colleague

ECE450 - Software Engineering II 10

Applicability

• Use the Mediator pattern when...
– A set of objects communicate in well-defined but complex ways. The resulting 

interdependencies are unstructured and difficult to understand

– Reusing an object is difficult because it refers to and communicates with many 
other objects

– A behavior that’s distributed between several classes should be customizable 
without a lot of subclassing

ECE450 - Software Engineering II 11

Consequences

• It limits subclassing
– Mediator localizes behavior that otherwise would be distributed among several 

objects. Changing this behavior requires subclassing Mediator only; Colleagues 
can be reused as is

• It decouples colleagues

• It simplifies object protocols
– Replaces many-to-many interactions with one-to-many interactions between the 

mediator and its colleagues

• It abstracts how objects cooperate
– Since all mediation happens through a single object, it helps clarify how objects 

interact

• It centralizes control
– Trades complexity of interaction for complexity in the mediator
– May become more complex than any individual colleague

ECE450 - Software Engineering II 12

Implementation

• Do we need the abstract Mediator class?
– We do not need it when colleagues work with only one mediator

• How can we implement the Colleague-Mediator communication?
– We can implement the Mediator as an Observer of all the Colleagues

• Instead of having everyone be both an Observer and a Subject



4

ECE450 - Software Engineering II 13

Finishing the tour
at the beginning...

• Remember our old pizza example?
– When we started this topic, we 

discussed the Template Method 
pattern, but we never defined it nor 
explained it properly

– It’s the only pattern left to define 
from the original Design Patterns
book

– ...so let’s get through with it:

• Template Method: Define the 
skeleton of an algorithm in an 
operation, deferring some steps to 
subclasses. Template Method lets 
subclasses redefine certain steps of 
an algorithm without changing the 
algorithm’s structure

ECE450 - Software Engineering II 14

Example recap

public abstract class Pizza {

public final void cook() {
placeOnCookingSurface();

placeInCookingDevice();
int cookTime = getCookTime();
letItCook(cookTime);
removeFromCookingDevice();

}
protected abstract void placeOnCookingSurface();
protected abstract void placeInCookingDevice();

protected abstract int getCookTime();
protected abstract void letItCook(int min);
protected abstract void removeFromCookingDevice();

}

ECE450 - Software Engineering II 15

Participants and structure

• AbstractClass
– Defines abstract primitive operations that concrete subclasses define to 

implement steps of an algorithm
– Implements a template method defining the skeleton of an algorithm

• ConcreteClass
– Implements the primitive operations to carry out subclass-specific steps of 

the algorithm

ECE450 - Software Engineering II 16

Applicability

• Use the Template Method pattern...
– To implement the invariant parts of an algorithm once and leave it up to 

subclasses to implement the behavior that can vary
– When common behavior among subclasses should be factored and localized in a 

common class to avoid code duplication
• “Refactoring to generalize”

– To control subclasses extensions
• You can define a template method that calls “hook” operations at specific points, thereby 

permitting extensions only at those points



5

ECE450 - Software Engineering II 17

Consequences

• Fundamental technique for code reuse
– Particularly important in class libraries, since they are the means for factoring 

out common behavior in library classes

• Lead to an inverted control structure sometimes referred to as “the 
Hollywood principle”
– “Don’t call us, we’ll call you”
– The parent class calls the operations of a subclass and not the other way around


