ECE450 — Software Engineering 11

Today: Design Patterns VIII
Chain of Responsibility, Strategy, State

ECEA450 - Software Engineering Il

Implementing GUI
context-sensitive help...

el My Documents
4 o My Conputer
otery |3t Motk Pl
- |
My D
"
witen
Fameeznt
ﬂr%‘ﬂl- Plegemei fectiz-apot L | Save
S ML Typé & Eath and file Rame for e Ak yau wanl b
i] =
ECEA450 - Software Engineering Il 2

Implementing GUI
context-sensitive help...

savepe [owiten Swmem @ L«O
) }J::V':'::“] - .

otery |3t Motk Pl

_
My Documents.

M Hegem [nTope

2y ntvceh =
Flaces S s Lo [oresentaton (. pot) L owed |

ECE450 - Software Engineering Il

Context-sensitive help

The user can obtain help information on any part of the interface just by
clicking on it

The help that is provided depends on the part of the interface that is
selected and its context
— A button widget in a dialog box might have different help information than a
similar button in the main window
— If no specific help information exists for that part of the interface, then the help
system should display a more general help message

It's therefore natural to organize help information according to its
generality —from the most specific to the most general

The problem is that the object that ultimately provides the help is not
known explicitly to the object that initiates the help request
— We need a way to decouple the button that initiates the help request from the
objects that provide help information

ECE450 - Software Engineering Il 4

Chain of Responsibility

Avoid coupling the sender of a request to its receiver by giving more than
one object a chance to handle the request. Chain the receiving objects and
pass the request along the chain until an object handles it.

[T (i1 | LKO

L3t Documeres =

3| o My Computer

ooy | My Stk Py

et vl

My Doaments
[

(=T

= Heoww [emieoer

Saren s brie: [Fraseneaten (*. pet)

ECEA450 - Software Engineering Il 5

Structure and participants

Cilent Handw
" e

Handler
— Defines an interface for handling requests
— (Optionally) implement the successor link
ConcreteHandler
— Handles requests it is responsible for
— Can access its successor
— If the ConcreteHandler can handle the request, it does so; otherwise it forwards the request to
its successor
Client
— Initiates the request to a ConcreteHandler object on the chain

ECEA450 - Software Engineering Il 6

Applicability

Use Chain of Responsibility when...
— More than one object may handle a request, and the handler isn't known a
priori. The handler should be ascertained automatically.
— You want to issue a request to one of several objects without specifying the
receiver explicitly
— The set of objects that can handle a request should be specified dynamically

Question: Is throwing exceptions the same as using the Chain of
Responsibility pattern?

Question: Can an object tell its successor exactly what operation to
perform? If so, how?
— Hint: Remember Command?

Question: Would Chain of Responsibility work in conjunction with
Composite?

ECE450 - Software Engineering Il 7

Consequences

Reduced coupling
— The pattern frees an object from knowing which other object handles a request
— As aresult, instead of objects maintaining references to all candidate receivers,
they keep a single reference to their successor

Added flexibility in assigning responsibilities to objects
— You can add or change responsibilities for handling a request by changing the
chain at run-time

Receipt isn’t guaranteed
— Since a request has no explicit receiver, there’s no guarantee it will be handled —
the request can fall off the end of the chain without ever being handled!

ECE450 - Software Engineering Il 8

Implementing Sort()

Often we need to implement a feature, but:
— There are several algorithms that could do the job, and we want to defer the
decision of which to use...
— ...or maybe we want to use a different algorithm depending on the
characteristics of the object that will run it

Think of Sort()
— Given the characteristics of your data structure, a sorting algorithm may be
more convenient than another
— ...so it would be good if we avoid getting stuck with one algorithm in particular

ECEA450 - Software Engineering Il 9

The Strategy pattern

= Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

,Stfaiégu' |

ECEA450 - Software Engineering Il 10

Structure and Participants

Strategy
— Declares an interface common to all supported algorithms. Context uses this interface to call
the algorithm defined by a ConcreteStrategy
ConcreteStrategy
— Implements the algorithm using the Strategy interface
Context
— Is configured with a ConcreteStrategy object
— Maintains a reference to a Strategy object
— May define an interface that lets Strategy access its data

Content sinngy l Swategy |
| | : If-hgnxmz‘llj
i -

|

ECE450 - Software Engineering Il 11

Applicability

= Use the Strategy pattern when...
— Many related classes differ only in their behavior. Strategies provide a way to
configure a class with one of many behaviors
— You need different variants of an algorithm
— A class defines many behaviors, and these appear as multiple conditional
statements in its operations

= Instead of many conditionals, move related conditional branches into their own Strategy
class

— Remember that Decorator modifies classes’ behaviors by changing their skin,
while Strategy modifies their behaviors by changing their guts.

ECE450 - Software Engineering Il 12

Consequences

Strategies eliminate conditional statements
— When different behaviors are lumped into one class, it's hard to avoid using
conditional statements to select the right behavior
— Encapsulating the behavior in separate Strategy classes eliminates these
conditional statements

A choice of implementations
— Strategies can provide different implementations of the same behavior
— The client can choose among strategies with different time and space trade-offs

Increased number of objects
— Strategies increase the number of objects in an application
— Sometimes you can reduce this overhead by implementing strategies as
stateless objects that contexts can share

ECEA450 - Software Engineering Il 13

Objects may behave differently
depending on their state

-

g)
LS

.

ECEA450 - Software Engineering Il 14

Handling states

Many programs rely heavily on tracking and changing the state of their
objects

— Network connections

— Vending machines

— Finite state machines

For these programs, the state of the object affects their behavior

— E.g., a vending machine only dispenses a product if its user has given it enough
cash

— The naive approach to handle states is to implement a lot of conditionals in one
class

Introducing the State pattern:

— Allow an object to alter its behavior when its internal state changes. The object
will appear to change its class

ECE450 - Software Engineering Il 15

Participants and structure

Context
— Defines the interface of interest to clients
— Maintains an instance of a ConcreteState subclass that defines the current
state
State
— Defines an interface for encapsulating the behavior associated with a
particular state of the Context
ConcreteState subclasses
— Each subclass implements a behavior associated with a state of the Context

ECE450 - Software Engineering Il 16

Wait a minute...

Srate. Content strmogy [swareny

] | :r;..n..-..u........:
g

- . ——

—

——

‘wiate Handie]

State pattern Strategy pattern
They are the same diagram!!
— Yes, but the patterns differ in intent:

= In the State pattern we have a set of behaviors encapsulated in state objects; at
any time the context delegates to one of those states.
Over time, the current state changes across the set of state objects to reflect the
internal state of the context, so the context’s behavior changes over time as well.
In Strategy, the client usually specifies the strategy object that the context is
composed with.
Although you can change Strategy objects, often there is one that is most
appropriate for a context object
In general, think of Strategy as a flexible alternative to subclassing
= ...while State is an alternative to putting lots of conditionals in your Context

ECEA450 - Software Engineering Il 17

Applicability

Use the State pattern in either of the following cases:

An object’s behavior depends on its state, and it must change its behavior at
run-time depending on that state

Operations have large, multipart conditional statements that depend on the
object’s state.

= This state is usually represented by one or more enumerated constants

= Often, several operations will contain this same conditional structure

= The State pattern puts each branch of the conditional in a separate class

ECEA450 - Software Engineering Il 18

Consequences

State localizes state-specific behavior and partitions behavior for different
states
— Because all state-specific code lives in a State subclass, new states and
transitions can be added easily by defining new subclasses

It makes state transitions explicit
— When an object defines its current state solely in terms of internal data values,
its state transitions have no explicit representation
= They only show up as assignments to some variables
— Introducing separate objects for different states makes the transitions more
explicit

ECE450 - Software Engineering Il 19

