
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Design Patterns VIII
Chain of Responsibility, Strategy, State

ECE450 - Software Engineering II 2

Implementing GUI
context-sensitive help...

ECE450 - Software Engineering II 3

Implementing GUI
context-sensitive help...

ECE450 - Software Engineering II 4

Context-sensitive help

• The user can obtain help information on any part of the interface just by 
clicking on it

• The help that is provided depends on the part of the interface that is 
selected and its context
– A button widget in a dialog box might have different help information than a 

similar button in the main window
– If no specific help information exists for that part of the interface, then the help 

system should display a more general help message

• It’s therefore natural to organize help information according to its 
generality –from the most specific to the most general

• The problem is that the object that ultimately provides the help is not 
known explicitly to the object that initiates the help request
– We need a way to decouple the button that initiates the help request from the 

objects that provide help information



2

ECE450 - Software Engineering II 5

Chain of Responsibility

• Avoid coupling the sender of a request to its receiver by giving more than 
one object a chance to handle the request. Chain the receiving objects and 
pass the request along the chain until an object handles it.

ECE450 - Software Engineering II 6

Structure and participants

• Handler
– Defines an interface for handling requests
– (Optionally) implement the successor link

• ConcreteHandler
– Handles requests it is responsible for
– Can access its successor
– If the ConcreteHandler can handle the request, it does so; otherwise it forwards the request to 

its successor

• Client
– Initiates the request to a ConcreteHandler object on the chain

ECE450 - Software Engineering II 7

Applicability

• Use Chain of Responsibility when...
– More than one object may handle a request, and the handler isn’t known a 

priori. The handler should be ascertained automatically.
– You want to issue a request to one of several objects without specifying the 

receiver explicitly
– The set of objects that can handle a request should be specified dynamically

• Question: Is throwing exceptions the same as using the Chain of 
Responsibility pattern?

• Question: Can an object tell its successor exactly what operation to 
perform? If so, how?
– Hint: Remember Command?

• Question: Would Chain of Responsibility work in conjunction with
Composite?

ECE450 - Software Engineering II 8

Consequences

• Reduced coupling
– The pattern frees an object from knowing which other object handles a request
– As a result, instead of objects maintaining references to all candidate receivers, 

they keep a single reference to their successor

• Added flexibility in assigning responsibilities to objects
– You can add or change responsibilities for handling a request by changing the 

chain at run-time

• Receipt isn’t guaranteed
– Since a request has no explicit receiver, there’s no guarantee it will be handled –

the request can fall off the end of the chain without ever being handled!



3

ECE450 - Software Engineering II 9

Implementing Sort()

• Often we need to implement a feature, but:
– There are several algorithms that could do the job, and we want to defer the 

decision of which to use...
– ...or maybe we want to use a different algorithm depending on the 

characteristics of the object that will run it

• Think of Sort()
– Given the characteristics of your data structure, a sorting algorithm may be 

more convenient than another
– ...so it would be good if we avoid getting stuck with one algorithm in particular

ECE450 - Software Engineering II 10

The Strategy pattern

• Define a family of algorithms, encapsulate each one, and make them 
interchangeable. Strategy lets the algorithm vary independently from 
clients that use it.

ECE450 - Software Engineering II 11

Structure and Participants

• Strategy
– Declares an interface common to all supported algorithms. Context uses this interface to call 

the algorithm defined by a ConcreteStrategy

• ConcreteStrategy
– Implements the algorithm using the Strategy interface

• Context
– Is configured with a ConcreteStrategy object
– Maintains a reference to a Strategy object
– May define an interface that lets Strategy access its data

ECE450 - Software Engineering II 12

Applicability

• Use the Strategy pattern when...
– Many related classes differ only in their behavior. Strategies provide a way to 

configure a class with one of many behaviors
– You need different variants of an algorithm
– A class defines many behaviors, and these appear as multiple conditional 

statements in its operations
• Instead of many conditionals, move related conditional branches into their own Strategy 

class

– Remember that Decorator modifies classes’ behaviors by changing their skin, 
while Strategy modifies their behaviors by changing their guts.



4

ECE450 - Software Engineering II 13

Consequences

• Strategies eliminate conditional statements
– When different behaviors are lumped into one class, it’s hard to avoid using 

conditional statements to select the right behavior
– Encapsulating the behavior in separate Strategy classes eliminates these 

conditional statements

• A choice of implementations
– Strategies can provide different implementations of the same behavior
– The client can choose among strategies with different time and space trade-offs

• Increased number of objects
– Strategies increase the number of objects in an application
– Sometimes you can reduce this overhead by implementing strategies as 

stateless objects that contexts can share

ECE450 - Software Engineering II 14

Objects may behave differently
depending on their state

ECE450 - Software Engineering II 15

Handling states

• Many programs rely heavily on tracking and changing the state of their 
objects
– Network connections
– Vending machines
– Finite state machines
– ...

• For these programs, the state of the object affects their behavior
– E.g., a vending machine only dispenses a product if its user has given it enough 

cash
– The naive approach to handle states is to implement a lot of conditionals in one 

class

• Introducing the State pattern:
– Allow an object to alter its behavior when its internal state changes. The object 

will appear to change its class

ECE450 - Software Engineering II 16

Participants and structure

• Context
– Defines the interface of interest to clients
– Maintains an instance of a ConcreteState subclass that defines the current 

state

• State
– Defines an interface for encapsulating the behavior associated with a 

particular state of the Context

• ConcreteState subclasses
– Each subclass implements a behavior associated with a state of the Context



5

ECE450 - Software Engineering II 17

Wait a minute...

• They are the same diagram!!
– Yes, but the patterns differ in intent:

• In the State pattern we have a set of behaviors encapsulated in state objects; at 
any time the context delegates to one of those states.

• Over time, the current state changes across the set of state objects to reflect the 
internal state of the context, so the context’s behavior changes over time as well.

• In Strategy, the client usually specifies the strategy object that the context is 
composed with.

• Although you can change Strategy objects, often there is one that is most 
appropriate for a context object

• In general, think of Strategy as a flexible alternative to subclassing...
• ...while State is an alternative to putting lots of conditionals in your Context

State pattern Strategy pattern

ECE450 - Software Engineering II 18

Applicability

• Use the State pattern in either of the following cases:
– An object’s behavior depends on its state, and it must change its behavior at 

run-time depending on that state

– Operations have large, multipart conditional statements that depend on the 
object’s state.

• This state is usually represented by one or more enumerated constants
• Often, several operations will contain this same conditional structure
• The State pattern puts each branch of the conditional in a separate class

ECE450 - Software Engineering II 19

Consequences

• State localizes state-specific behavior and partitions behavior for different 
states
– Because all state-specific code lives in a State subclass, new states and 

transitions can be added easily by defining new subclasses

• It makes state transitions explicit
– When an object defines its current state solely in terms of internal data values, 

its state transitions have no explicit representation
• They only show up as assignments to some variables

– Introducing separate objects for different states makes the transitions more 
explicit


