
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Design Patterns VII
Observer, Command, and Memento

ECE450 - Software Engineering II 2

Keeping on top of things

• Many modern software applications need to maintain consistency with 
data stored or modified elsewhere
– A stock trading application that responds to fluctuations in the stock market
– A web-based email client that lets you know when you received new messages
– An instant messenger client that keeps track of the status of your contacts in 

real time
– A chart in a spreadsheet that changes whenever its data source changes
– ...a long etcetera...

• How can we design an application that ensures this data consistency 
without making the classes tightly coupled?
– For example, the data objects in the spreadsheet should not need to know that 

you have a chart
• You could have a table, or a reference to the data in a text editor, or a different kind of 

chart, and the spreadsheet should not need to differentiate between all these types

• Ideas?

ECE450 - Software Engineering II 3

Publish-subscribe mechanism

• The key to solve this problem is to identify that there are two elements: A 
subject and an observer
– A subject may have any number of dependent observers
– All observers will be notified whenever the subject undergoes a change in state
– The subject, then, is the “publisher” of notifications...
– ...and it sends these notifications to all of its “subscribers”, without worrying 

about what those subscribers are

• The Observer pattern
– Define a one-to-many dependency between objects so that when one object 

changes state, all its dependents are notified and updated automatically

ECE450 - Software Engineering II 4

Structure and participants

• Subject
– Knows its observers. Any number of Observer objects may observe a subject
– Provides an interface for attaching and detaching Obsever objects

• Observer
– Defines an updating interface for objects that should be notified of changes in a subject



2

ECE450 - Software Engineering II 5

Structure and participants

• ConcreteSubject
– Stores state of interest to ConcreteObserver objects
– Sends a notification to its observers when its state changes

• ConcreteObserver
– Maintains a reference to a ConcreteSubject object
– Stores state that should stay consistent with the subject’s
– Implements the Observer updating interface to keep its state consistent with the subject’s

ECE450 - Software Engineering II 6

Applicability

• Use the Observer pattern in any of the following situations:
– When an abstraction has two aspects, one dependent on the other.

Encapsulating these aspects in separate objects lets you vary and reuse them 
independently

– When a change to one object requires changing others, and you don’t know how 
many objects need to be changed

– When an object should be able to notify other objects without making 
assumptions about who these objects are

• In other words, you don’t want these objects tightly coupled

• Using Java? You can use its Observer and Observable interfaces
– ...but they’ll consume an inheritance dimension

• Also applicable as user interface event “listeners”
– For example, you want to know when the user moves the mouse or presses a 

key...
– ...so you “listen” to events applying the Observer pattern

ECE450 - Software Engineering II 7

Consequences

• The Observer pattern lets you vary subjects and observers independently
– It lets you add observers without modifying the subject or other observers

• Abstract coupling between Subject and Observer
– All a subject knows is that it has a list of observers, each conforming to the 

simple interface of the abstract Observer class
– The subject doesn’t know the concrete class of any observer

• Support for broadcast communication
– Unlike an ordinary request, the notification that a subject sends need not specify 

its receiver
• It is broadcast automatically to all subscribed objects

– You can add and remove observers at any time; it is up to the observer to 
handle or ignore notifications

ECE450 - Software Engineering II 8

Implementation

• Push- and pull-models of observing
– So far we have described a “pull” model: Subjects notify observers that they 

have been modified, but do not specify what the modification was
• Each observer is responsible for “pulling” the specific information they are interested in

– The “push” model consists of having the subject send observers detailed 
information about the change, whether they want it or not

– The pull model emphasizes the subject’s ignorance of its observers, but may be 
inefficient

– The push model is more efficient, but compromises reuse, as the Subject classes 
make assumptions about Observer classes that might not always be true



3

ECE450 - Software Engineering II 9

Moving on:
Requests can be objects too!

• First problem: Sometimes it’s necessary to issue requests to objects 
without knowing anything about the operations being requested or the 
receiver of the request
– For instance, user interface toolkits that include objects like buttons and menus 

–the system does not know what each will do, but it knows that they’ll do 
something

• Second problem: Implementing undo
– Still the nightmare of many architects
– Can make or break your software’s usability

• Both problems can be solved with one pattern: Command
– Encapsulate a request as an object, thereby letting you parameterize clients with 

different requests, queue or log requests, and support undoable operations

ECE450 - Software Engineering II 10

Structure and Participants

• Command
– Declares an interface for executing an operation

• ConcreteCommand
– Defines a binding between a Receiver object and an action
– Implements Execute by invoking the corresponding operation(s) on Receiver

ECE450 - Software Engineering II 11

Structure and Participants

• Client
– Creates a ConcreteCommand object and sets its receiver

• Invoker
– Asks the command to carry out the request

• Receiver
– Knows how to perform the operations associated with carrying out a request. 

Any class may serve as a Receiver

ECE450 - Software Engineering II 12

Applicability

• Use the Command pattern when you want to...
– Parameterize objects by an action to perform
– Specify, queue, and execute requests at different times

• A Command object can have a lifetime independent of the original request

– Support undo
• The Command’s Execute operation can store state for reversing its effects in the 

command itself
• The Command interface must have an added Unexecute operation that reverses the 

effects of a previous call to Execute
• Executed commands are stored in a history list
• Unlimited-level undo and redo is achieved by traversing the list backwards and forwards 

calling Unexecute and Execute, respectively

– Support logging changes so that they can be reapplied in case of a system crash
• Recovering from a crash involves reloading logged commands from disk and reexecuting

them with the Execute operation

– Structure a system around high-level operations built on primitives operations
• Common in information systems that support transactions

– Note that you can construct macros of commands using the Composite pattern



4

ECE450 - Software Engineering II 13

Consequences

• Command decouples the object that invokes the operation from the one 
that knows how to perform it

• Commands are first-class objects. They can be manipulated and extended 
like any other object

• You can assemble commands into a composite command (again, through 
Composite)

• It’s easy to add new Commands, because you don’t have to change 
existing classes

ECE450 - Software Engineering II 14

Implementation

• Avoiding error accumulation in the undo process
– Hysteresis can be a problem (that is, undo -> redo leading to slightly different 

state)
– Errors can accumulate as commands are executed, unexecuted, and reexecuted

repeatedly
– It may be necessary to store more information in the command to ensure 

objects are restored to their original state
– The Memento pattern (coming up!) can be applied to give the command access 

to this information without exposing the internals of other objects

• What happens if you try to undo an operation such as Print()?
– You can’t unprint!
– Could do nothing
– ...or raise an exception...
– ...or provide an isUndoable method that acts like an impermeable barrier...

• and optionally clear the history at each un-undoable call

ECE450 - Software Engineering II 15

And now for a discussion on
Memento!

(You must see it if you 
haven’t –one of the 
smartest and most 
creative movies ever!)

ECE450 - Software Engineering II 16

The other Memento...

• Sometimes it’s necessary to record the internal state of an object
– Implementing checkpoints
– Undo mechanisms

• You must save state information somewhere so that you can restore 
objects...
– ...but objects normally encapsulate some or all of their state, making it 

inaccessible to others!
– Exposing this state would violate encapsulation

• Memento:
– Without violating encapsulation, capture and externalize an object’s internal 

state so that the object can be restored to this state later

• A memento is an object that stores a snapshot of the internal state of 
another object –the memento’s originator.
– The undo mechanism will request a memento from the originator
– The originator initializes the memento with information of its current state
– Only the originator can store and retrieve information from the memento



5

ECE450 - Software Engineering II 17

Participants and structure

• Memento
– Stores internal state of the Originator object
– Protects against access by objects other than the originator

• Originator
– Creates a memento containing a snapshot of its current internal state
– Uses the memento to restore its internal state

• Caretaker
– Is responsible for the memento’s safekeeping
– Never operates on or examines the contents of a memento

ECE450 - Software Engineering II 18

Applicability

• Use the Memento pattern when...
– A snapshot of (some portion of) an object’s state must be saved so that it can be 

restored to that state later, and

– a direct interface to obtaining the state would expose implementation details and 
break the object’s encapsulation

ECE450 - Software Engineering II 19

Consequences

• Preserving encapsulation boundaries
– Memento avoids exposing information that only an originator should manage but 

that must be stored nevertheless outside the originator

• Using mementos might be expensive
– They will incur in considerable overhead if Originator must copy large amounts of 

information to store the memento or if clients create and return mementos to 
the originator often

• Defining narrow and wide interfaces
– It may be difficult in some languages to ensure that only the originator can 

access the memento’s state
• In general, you want to make Memento an internal class to the originator, so that the 

Caretaker does not know how to read it


