ECE450 — Software Engineering 11

Today: Design Patterns VII
Observer, Command, and Memento

ECEA450 - Software Engineering Il 1

Keeping on top of things

Many modern software applications need to maintain consistency with
data stored or modified elsewhere
— A stock trading application that responds to fluctuations in the stock market
— A web-based email client that lets you know when you received new messages
— An instant messenger client that keeps track of the status of your contacts in
real time
— Achart in a spreadsheet that changes whenever its data source changes
— ...along etcetera...

How can we design an application that ensures this data consistency
without making the classes tightly coupled?
— For example, the data objects in the spreadsheet should not need to know that
you have a chart

= You could have a table, or a reference to the data in a text editor, or a different kind of
chart, and the spreadsheet should not need to differentiate between all these types

Ideas?

ECEA450 - Software Engineering Il

Publish-subscribe mechanism

The key to solve this problem is to identify that there are two elements: A
subject and an observer
— A subject may have any number of dependent observers
— All observers will be notified whenever the subject undergoes a change in state
— The subject, then, is the “publisher” of notifications...
— ...and it sends these notifications to all of its “subscribers”, without worrying
about what those subscribers are

The Observer pattern

— Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically

ECE450 - Software Engineering Il 3

Structure and participants

Subject
— [(oteerer |
AaeR o Do >
[usdeet |
- Fay

et subjeciSiae '
Subject

— Knows its observers. Any number of Observer objects may observe a subject
— Provides an interface for attaching and detaching Obsever objects
Observer
— Defines an updating interface for objects that should be notified of changes in a subject

ECE450 - Software Engineering Il




Structure and participants

ConcreteSubject
— Stores state of interest to ConcreteObserver objects
— Sends a notification to its observers when its state changes
ConcreteObserver
— Maintains a reference to a ConcreteSubject object
— Stores state that should stay consistent with the subject’s
— Implements the Observer updating interface to keep its state consistent with the subject’s

ECEA450 - Software Engineering Il 5

Applicability

Use the Observer pattern in any of the following situations:

When an abstraction has two aspects, one dependent on the other.
Encapsulating these aspects in separate objects lets you vary and reuse them
independently

— When a change to one object requires changing others, and you don’t know how
many objects need to be changed

— When an object should be able to notify other objects without making
assumptions about who these objects are

= In other words, you don't want these objects tightly coupled

Using Java? You can use its Observer and Observable interfaces
— ...but they’ll consume an inheritance dimension

Also applicable as user interface event “listeners”
— For example, you want to know when the user moves the mouse or presses a
key...
— ...so you “listen” to events applying the Observer pattern

ECEA450 - Software Engineering Il 6

Consequences

The Observer pattern lets you vary subjects and observers independently
— It lets you add observers without modifying the subject or other observers

Abstract coupling between Subject and Observer

— All a subject knows is that it has a list of observers, each conforming to the
simple interface of the abstract Observer class

— The subject doesn’'t know the concrete class of any observer

Support for broadcast communication
— Unlike an ordinary request, the notification that a subject sends need not specify
its receiver
= Itis broadcast automatically to all subscribed objects
— You can add and remove observers at any time; it is up to the observer to
handle or ignore notifications

ECE450 - Software Engineering Il 7

Implementation

Push- and pull-models of observing
So far we have described a “pull” model: Subjects notify observers that they
have been modified, but do not specify what the modification was
= Each observer is responsible for “pulling” the specific information they are interested in

— The “push” model consists of having the subject send observers detailed
information about the change, whether they want it or not

— The pull model emphasizes the subject’s ignorance of its observers, but may be
inefficient

— The push model is more efficient, but compromises reuse, as the Subject classes
make assumptions about Observer classes that might not always be true

ECE450 - Software Engineering Il 8




Moving on:
Requests can be objects too!

First problem: Sometimes it's necessary to issue requests to objects
without knowing anything about the operations being requested or the
receiver of the request

— For instance, user interface toolkits that include objects like buttons and menus

—the system does not know what each will do, but it knows that they’ll do
something

Second problem: Implementing undo
— Still the nightmare of many architects
— Can make or break your software’s usability

Both problems can be solved with one pattern: Command

— Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queue or log requests, and support undoable operations

ECEA450 - Software Engineering Il 9

Structure and Participants

Command
— Declares an interface for executing an operation
ConcreteCommand
— Defines a binding between a Receiver object and an action
— Implements Execute by invoking the corresponding operation(s) on Receiver

ECEA450 - Software Engineering Il 10

Structure and Participants

Client

— Creates a ConcreteCommand object and sets its receiver
Invoker

— Asks the command to carry out the request
Receiver

— Knows how to perform the operations associated with carrying out a request.
Any class may serve as a Receiver

ECE450 - Software Engineering Il 11

Applicability

Use the Command pattern when you want to...
— Parameterize objects by an action to perform
— Specify, queue, and execute requests at different times
= A Command object can have a lifetime independent of the original request
— Support undo

The Command’s Execute operation can store state for reversing its effects in the
command itself

The Command interface must have an added Unexecute operation that reverses the
effects of a previous call to Execute
Executed commands are stored in a history list
Unlimited-level undo and redo is achieved by traversing the list backwards and forwards
calling Unexecute and Execute, respectively
— Support logging changes so that they can be reapplied in case of a system crash
= Recovering from a crash involves reloading logged commands from disk and reexecuting
them with the Execute operation
— Structure a system around high-level operations built on primitives operations
= Common in information systems that support transactions

— Note that you can construct macros of commands using the Composite pattern

ECE450 - Software Engineering Il 12




Consequences

Command decouples the object that invokes the operation from the one
that knows how to perform it

Commands are first-class objects. They can be manipulated and extended
like any other object

You can assemble commands into a composite command (again, through
Composite)

It's easy to add new Commands, because you don’t have to change
existing classes

ECEA450 - Software Engineering Il 13

Implementation

= Avoiding error accumulation in the undo process
— Hysteresis can be a problem (that is, undo -> redo leading to slightly different
state)
— Errors can accumulate as commands are executed, unexecuted, and reexecuted
repeatedly

— It may be necessary to store more information in the command to ensure
objects are restored to their original state

— The Memento pattern (coming up!) can be applied to give the command access
to this information without exposing the internals of other objects

= What happens if you try to undo an operation such as Print()?
— You can’t unprint!
— Could do nothing
— ...or raise an exception...
— ...or provide an isUndoable method that acts like an impermeable barrier...
= and optionally clear the history at each un-undoable call

ECEA450 - Software Engineering Il 14

And now for a discussion on
Memento!

(You must see it if you
haven't ~one of the
smartest and most
creative movies everl)

ECE450 - Software Engineering Il 15

The other Memento...

= Sometimes it's necessary to record the internal state of an object
— Implementing checkpoints
— Undo mechanisms

= You must save state information somewhere so that you can restore
objects...

— ...but objects normally encapsulate some or all of their state, making it
inaccessible to others!

— Exposing this state would violate encapsulation

< Memento:
— Without violating encapsulation, capture and externalize an object’s internal
state so that the object can be restored to this state later

= A memento is an object that stores a snapshot of the internal state of
another object —the memento’s originator.
— The undo mechanism will request a memento from the originator
— The originator initializes the memento with information of its current state
— Only the originator can store and retrieve information from the memento

ECE450 - Software Engineering Il 16




Participants and structure

Memento
— Stores internal state of the Originator object
— Protects against access by objects other than the originator
Originator
— Creates a memento containing a snapshot of its current internal state
— Uses the memento to restore its internal state
Caretaker
— Is responsible for the memento’s safekeeping
— Never operates on or examines the contents of a memento

Momants Carstaknr
L _ B
- o | i
| Sussaied)

ECEA450 - Software Engineering Il 17

Applicability

Use the Memento pattern when...

— A snapshot of (some portion of) an object’s state must be saved so that it can be
restored to that state later, and

— adirect interface to obtaining the state would expose implementation details and
break the object’s encapsulation

ECEA450 - Software Engineering Il 18

Consequences

Preserving encapsulation boundaries
— Memento avoids exposing information that only an originator should manage but
that must be stored nevertheless outside the originator

Using mementos might be expensive
— They will incur in considerable overhead if Originator must copy large amounts of
information to store the memento or if clients create and return mementos to
the originator often

Defining narrow and wide interfaces
— It may be difficult in some languages to ensure that only the originator can
access the memento’s state
= In general, you want to make Memento an internal class to the originator, so that the
Caretaker does not know how to read it

ECE450 - Software Engineering Il 19




