
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Design Patterns VI
Composite, Iterator, and Visitor 

Patterns

ECE450 - Software Engineering II 2

Think of drawing/diagramming
editors

• Drawing/diagramming editors let users 
build complex diagrams out of simple 
components

– The user can group components to form 
larger components...

– ...which in turn can be grouped to form still 
larger components

ECE450 - Software Engineering II 3

The problem

• Although we grouped the shapes, the system should not treat the result as 
a “primitive” shape
– Even if most of the time we treat them identically
– We may decide to ungroup them

• Or to modify an attribute of one of the components of the grouped shape

• The Composite pattern describes how to use recursive composition so that 
clients don’t have to make this distinction.

ECE450 - Software Engineering II 4

The Composite pattern

• Composite: Compose objects into tree structures to represent part-whole 
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly
– The key to the pattern is the abstract class that represents both primitives and 

their containers.



2

ECE450 - Software Engineering II 5

Structure and participants

• Component
– Declares the interface for objects in the composition
– Implements default behavior for the interface common to all classes
– Declares an interface for accessing and managing its child components
– (Optionally) defines an interface for accessing a component’s parent in the structure, and 

implements it if appropriate

• Leaf
– Represents leaf objects in the composition. A leaf has no children
– Defines behavior for primitive objects in the composition

ECE450 - Software Engineering II 6

Structure and participants (cont)

• Composite
– Defines behavior for components having children
– Stores child components
– Implements child-related operations in the Component interface

• Client
– Manipulates objects in the composition through the Component interface

ECE450 - Software Engineering II 7

Applicability

• Use the Composite pattern when...
– You want to represent part-whole hierarchies of objects
– You want clients to be able to ignore the difference between compositions of 

objects and individual objects.
• Clients will treat all objects in the composite structure uniformly

• A second example: file systems
– Directories contain entries, each of which could be a directory

ECE450 - Software Engineering II 8

Consequences

• The pattern defines class hierarchies consisting of primitive objects and 
composite objects
– Primitive objects can be composed into more complex objects, which in turn can 

be composed, and so on recursively.
– Wherever client code expects a primitive object, it can also take a composite 

object

• Makes the client simple
– Clients can treat composite structures and individual objects uniformly.
– Clients don’t know (and shouldn’t care) whether they’re dealing with a leaf or a 

composite component

• But can make your design overly general
– The disadvantage of making it easy to add new components is that it makes it 

harder to restrict the components of a composite
• Sometimes you want only some kinds of components, but you’ll have to use run-time 

checks to guarantee your constraints.



3

ECE450 - Software Engineering II 9

Implementation

• Explicit parent references?
– You may want to maintain references from child components to their parent to 

simplify traversal and management of a composite structure
– The usual place to define the parent reference is in the Component class

• Declaring the child management operations?
– Our diagram has the Component abstract class declare the Add and Remove 

operations for managing children, but leaf nodes never use them
– Is it better to have those operations declared in the Composite class?
– Tradeoff between safety and transparency:

• Defining the child management interface at the root gives you transparency (you can 
treat all components uniformly) but costs you safety (clients may try to do meaningless 
things like add and remove objects from leaves!)

• Defining child management in the Composite class gives you safety (any attempt to add 
or remove objects from leaves will be caught at compile-time), but you lose transparency 
(leaves and composites have different interfaces).

• What is the best data structure for storing components?
– Depends on efficiency. It is possible that you don’t even need a general-purpose 

data structure at all!
ECE450 - Software Engineering II 10

That was it for structurals...
Now we need to tackle behaviorals

• We’ve gone through the creational 
patterns...

– Factory method
– Abstract factory
– Builder
– Prototype
– Singleton

• ... the structural ones...
– Decorator
– Adapter
– Facade
– Proxy
– Flyweight
– Bridge

• ...and two behaviorals
– Template method
– Null object

• A (short) review is in order...

ECE450 - Software Engineering II 11

Behavioral patterns

• Behavioral patterns are concerned with algorithms and the assignment of 
responsibilities between objects
– They describe not just patterns of objects or classes, but also the patterns of 

communication between them

ECE450 - Software Engineering II 12

We’ll start with a simple one...

• Assume you have an aggregate object such as a list

• This aggregate object should give you a way to access its elements 
without exposing its internal structure.
– And you may want to traverse the list in different ways

• However, adding the operations for different traversals to the List interface 
would bloat it
– The List is there for a purpose different than supporting our traversals

• And remember classes should do just one thing, if possible (maximizing cohesion)

– Not only that, but you may want to traverse it more than once at the same time

• How can we address this problem?



4

ECE450 - Software Engineering II 13

The Iterator pattern

• Iterator: Provide a way to access the elements of an aggregate object 
sequentially without exposing its underlying representation
– You probably knew of this one already

• Java’s Iterator interface is an application of this principle

ECE450 - Software Engineering II 14

Structure and participants

• Iterator
– Defines an interface for accessing and 

traversing elements

• ConcreteIterator
– Implements the Iterator interface
– Keeps track of the current position in the 

traversal of the aggregate

• Aggregate
– Defines an interface for creating an Iterator

object

• ConcreteAggregate
– Implements the Iterator creation interface to 

return an instance of the proper 
ConcreteIterator

ECE450 - Software Engineering II 15

Applicability

• Use the Iterator pattern...
– To access an aggregate object’s contents without exposing its internal 

representation
– To support multiple traversals of aggregate objects
– To provide a uniform interface for traversing different aggregate structures

• That is, to support polymorphic iteration

ECE450 - Software Engineering II 16

Consequences

• Iterators support variations in the traversal of an aggregate
– Complex aggregates may be traversed in many ways. Iterator subclasses (or 

Iterator instances) allow clients to traverse the aggregate in the way they desire

• More than one traversal can be pending on an aggregate
– An iterator keeps track of its own traversal state. Therefore, you can have more 

than one traversal in progress at once



5

ECE450 - Software Engineering II 17

Implementation

• Who controls the iteration?
– When the client controls the iteration, the iterator is called an external iterator

• Clients must advance the traversal and request the next element explicitly

– When the iterator controls it, the iterator is an internal iterator
• Clients hand an internal iterator an operation to perform, and the iterator applies that 

operation to every element in the aggregate

• Who defines the traversal algorithm?
– It could be defined in the iterator (making it easy to use different iteration 

algorithms in the same aggregate) or in the aggregate (probably necessary if we 
need to access private variables of the aggregate)

• Iterators for Composites
– External iterators can be difficult to implement over recursive aggregate 

structures like Composites
• They need to store a path through the Composite to keep track of the current object

• Null iterator
– A null iterator always “is done” with the traversal
– They can make traversing tree-structured aggregates (like Composites) easier

• Aggregate elements return a concrete iterator as usual
• But leaf elements return an instance of NullIterator

ECE450 - Software Engineering II 18

Operations on a compiler

• Consider a compiler that represents programs as abstract syntax trees
– Every node is a token (a variable, an assignment, etc.)
– The compiler needs to perform operations on the trees for various kinds of 

analyses
• Type-checking
• Code optimization
• Flow analysis
• ...

– Most of these operations will need to treat nodes that represent assignment 
statements differently from nodes that represent variables or arithmetic 
expressions

• There will be one class for assignment statements, another for variable accesses, etc.

– Distributing all our operations across the various node classes leads to a system 
that is hard to understand, maintain, and change

• It will be confusing to have type-checking code mixed with pretty-printing code

– It would be better if each new operation could be added separately, and the 
node classes were independent on the operations that apply to them

ECE450 - Software Engineering II 19

The Visitor pattern

• Represent an operation to be 
performed on the elements of 
an object structure. Visitor lets 
you define a new operation 
without changing the classes of 
the elements on which it 
operates

ECE450 - Software Engineering II 20

Participants and structure

• Visitor
– Declares a Visit operation for each 

class of ConcreteElement in the 
object structure

– The operation’s name and signature 
identifies the class that sends the 
Visit request to the visitor, which 
lets the visitor determine the 
concrete class of the element being 
visited

• ConcreteVisitor
– Implements each operation declared 

by Visitor
– Each operation implements a 

fragment of the algorithm defined 
for the corresponding class of object 
in the structure



6

ECE450 - Software Engineering II 21

Participants and structure

• Element
– Defines an Accept operation that 

takes a visitor as an argument

• ConcreteElement
– Implements an Accept operation 

that takes a visitor as an argument

• ObjectStructure
– Can enumerate its elements
– May provide a high-level interface to 

allow the visitor to visit its elements
– May either be a Composite or a 

collection such as a list or set

ECE450 - Software Engineering II 22

Collaborations

• A client that uses the Visitor 
pattern must create a 
ConcreteVisitor object and then 
traverse the object structure, 
visiting each element with the 
visitor

• When the element is visited, it calls 
the Visitor operation that 
corresponds to its class. The 
element supplies itself as an 
argument to this operation to let 
the visitor access its state, if 
necessary

ECE450 - Software Engineering II 23

Applicability

• Use the Visitor pattern when...
– An object structure contains many classes of objects with differing interfaces, 

and you want to perform operations on these objects that depend on their 
concrete classes

– Many distinct and unrelated operations need to be performed on objects in an 
object structure, and you want to avoid “polluting” their classes with these 
operations

– The classes defining the object structure rarely change, but you often want to 
define new operations over the structure

ECE450 - Software Engineering II 24

Consequences
• Visitor makes adding new operations easy

– You can define a new operation simply by adding a new visitor
– In contrast, if you spread functionality over many classes, then you must change each class to 

define a new operation

• A visitor gathers related operations and separates unrelated ones
– Related behavior isn’t spread over the classes defining the object structure; it’s localized in a 

visitor
– Unrelated sets of behavior are partitioned in their own visitor classes

• Adding new ConcreteElement classes is hard
– The Visitor pattern makes it hard to add new subclasses of Element
– Each new ConcreteElement gives rise to a new abstract operation on Visitor and a 

corresponding implementation in every ConcreteVisitor class!

• Accumulating state
– Visitors can accumulate state as they visit each element

• Breaking encapsulation
– Visitor’s approach assumes that the ConcreteElement interface is powerful enough to let 

visitors do their job
– The pattern often forces you to provide public operations that access an element’s internal 

state, which may compromise its encapsulation



7

ECE450 - Software Engineering II 25

Implementation

• Who is responsible for traversing the object structure?
– A visitor must visit each element of the object structure. How does it get there?

– We can put responsibility for traversal in any of three places: In the object 
structure, in the visitor, or in a separate Iterator object

• Having the traversal code in the visitor is the least preferred option, as it forces you to 
repeat the code in every ConcreteVisitor for each ConcreteElement; so you would only 
follow this approach for a particularly complex traversal (e.g. one that depends on the 
results of the operations on the object structure)


