
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Design Patterns V
More Structural Patterns

ECE450 - Software Engineering II 2

Difficulties opening large documents

• Consider a document editor that can embed graphical objects in a
document
– Some graphical objects (say, large images) can be expensive to create...
– ...but opening a document should be fast!

• We shouldn’t create all the expensive objects at once when the document is opened

– ...and we need data from every image (e.g. height and width) from the start!
• So we have a dilemma: we don’t want to create all expensive objects at once, but we 

need their information anyway!

• Alternatives?

ECE450 - Software Engineering II 3

The Proxy pattern

• Proxy: Provide a surrogate or placeholder for another object to control 
access to it
– In our example, the DocumentEditor loads ImageProxy instead –and if we need 

to Draw() the image, the ImageProxy will load it.

ECE450 - Software Engineering II 4

Applicability

• Proxy is applicable whenever there is a need for a more versatile or 
sophisticated reference to an object than a simple pointer.

• Several possible scenarios:
– Remote Proxy: Provide a local representative for an object in a different 

address space
– Virtual Proxy: Create expensive objects on demand (as in our example)
– Protection Proxy: Control access to the original object (useful when objects 

should have different access rights)
– Smart Reference: A replacement for “bare” pointers that perform additional 

actions when objects are accessed:
• Counting the number of references to the real object so that it can be freed automatically 

when there are no more references
• Checking that the real object is locked before it’s accessed to ensure that no other object 

can change it
• ...



2

ECE450 - Software Engineering II 5

Participants

• Proxy
– Maintains a reference that lets the proxy access the real subject. Proxy may 

refer to a Subject if the RealSubject and Subject interfaces are the same
– Provides an interface identical to Subject’s so that a proxy can be substituted for 

the real subject
– Controls access to the real subject and perhaps creates/deletes it
– Other responsibilities, depending on the kind of proxy...

• Remote proxies are responsible for encoding a request and its arguments, and for 
sending the encoded request to the real subject in a different address space

• Virtual proxies may cache additional information about the real subject so that they can 
postpone accessing it.

• Protection proxies check that the caller has the access permissions required to perform a 
request ECE450 - Software Engineering II 6

Participants (cont)

• Subject
– Defines the common interface for RealSubject and Proxy so that a Proxy can be 

used anywhere a RealSubject is expected

• RealSubject
– Defines the real object that the proxy represents

ECE450 - Software Engineering II 7

Consequences

• Depending on the type of Proxy, the level of indirection that it introduces 
leads to different advantages:
– A remote proxy can hide the fact that an object resides in a different address 

space
– A virtual proxy can perform optimizations such as creating an object on demand
– Both protection proxies and smart references allow additional housekeeping 

tasks when an object is accessed

• Another optimization that the Proxy pattern can hide from the client is 
copy-on-write:
– Copying a large object might be expensive, so when the client asks for a copy, 

we can just copy a proxy.
– We postpone the actual copy of the object until the copy is modified

• Note that although decorators can have similar implementations as 
proxies, decorators have a different purpose. Decorators add one or more 
responsibilities to an object, whereas a proxy controls access to an object

ECE450 - Software Engineering II 8

Next problem,
but still with document editors...

• Object-oriented document editors typically use objects to represent 
embedded elements like tables and figures.
– However, they stop short of using an object for each character in the document

• Even though doing so would promote flexibility at the finest levels in the application



3

ECE450 - Software Engineering II 9

Lots of little objects

• Is it practical to make each character an object?
– We could easily have hundreds of thousands of character objects!

• Each of them representing a character, its location, font, size, style, etc.

ECE450 - Software Engineering II 10

But...
• If we share objects from a pool, handling each character as an object 

becomes practical
– Each “flyweight” object stores a character code, but its coordinate position in the 

document and its typographic style can be determined from the text layout 
algorithms

• The character code is intrinsic state, while the other information is extrinsic
• Intrinsic state consists of information that is independent of the object’s context, 

thereby making it shareable
• Extrinsic state depends on and varies with the context and therefore can’t be shared

ECE450 - Software Engineering II 11

Class structure of example

• This is how the class structure of our example looks like
– Glyph is the abstract class for graphical objects, some of which may be 

“flyweights”
– A “flyweight” representing the letter “a” only stores the corresponding character 

code; it doesn’t need to store its location or font
• Clients supply the context-dependent information that the flyweight needs to draw itself

ECE450 - Software Engineering II 12

The Flyweight pattern

• Use sharing to support large numbers of fine-grained objects efficiently

• Applicability: Use when all of the following are true:
– An application uses a large number of objects
– Storage costs are high because of the sheer quantity of objects
– Most object state can be made extrinsic
– Many groups of objects may be replaced by relatively few shared objects once 

extrinsic state is removed
– The application doesn’t depend on object identity (since flyweight objects may 

be shared, identity tests will return true for conceptually distinct objects)



4

ECE450 - Software Engineering II 13

Structure and participants

• Flyweight
– Declares an interface through which flyweights can receive and act on extrinsic state

• ConcreteFlyweight
– Implements the Flyweight interface and adds storage for intrinsic state, if any. A 

ConcreteFlyweight must be shareable.

ECE450 - Software Engineering II 14

Structure and participants (cont)

• UnsharedConcreteFlyweight
– Not all Flyweight subclasses need to be shared (e.g. rows and columns). The Flyweight 

interface enables sharing, it does not enforce it.

• FlyweightFactory
– Creates and manages flyweight objects

ECE450 - Software Engineering II 15

Structure and participants (cont)

• Client
– Maintains a reference to flyweights
– Computes or stores the extrinsic state of flyweights
– Should not instantiate ConcreteFlyweights directly. They must ubtain ConcreteFlyweight

objects exclusively from the FlyweightFactory object to ensure they are shared properly

ECE450 - Software Engineering II 16

Consequences

• Flyweights may introduce run-time costs associated with transferring, 
finding, and/or computing extrinsic state
– However, such costs are offset by space savings, which increase as more 

flyweights are shared

• Storage savings are a function of several factors:
– The reduction in the total number of instances that comes from sharing
– The amount of intrinsic state per object
– Whether extrinsic state is computed or stored



5

ECE450 - Software Engineering II 17

One more problem

• Consider the domain of thread scheduling. We have two types of thread 
schedulers (preemptive and time sliced), and two operating systems (Unix 
and Windows)
– We define a class for each permutation of these two dimensions; we end up with 

four classes (preemptive-Unix, preemptive-Windows, etc.)
– Adding platforms or approaches to thread scheduling increases considerably the 

number of classes we would need to code (and debug, and maintain...)

• The Bridge design pattern refactors this explosive inheritance into two 
orthogonal hierarchies:
– One for platform-independent abstractions
– One for platform-dependent implementations

ECE450 - Software Engineering II 18

The Bridge pattern

• Decouple an abstraction from its implementation so that the two can vary 
independently

The abstractions
(e.g. approaches 
to thread 
scheduling) 
evolve over here...

The 
implementations
(e.g. operating 
systems) evolve 
over here...

ECE450 - Software Engineering II 19

Applicability

• Use the Bridge pattern when...
– You want to avoid a permanent binding between an abstraction and its 

implementation

– Both the abstractions and their implementations should be extensible by 
subclassing (in this case, the pattern lets you extend them independently)

– You have a proliferation of classes as shown in our example

ECE450 - Software Engineering II 20

Structure and participants

• Abstraction
– Defines the abstraction’s interface
– Maintains a reference to an object of type 

Implementor

• RefinedAbstraction
– Extends the interface defined by 

Abstraction

• Implementor
– Defines the interface for implementation 

classes. The interface does not have to 
correspond exactly to Abstraction’s 
interface; in fact the two can be quite 
different

• ConcreteImplementor
– Implements the Implementor interface



6

ECE450 - Software Engineering II 21

Consequences

• Decoupling interface and implementation
– An implementation is not bound permanently to an interface
– The implementation of an abstraction can be configured at run-time
– An object could even change its implementation at run-time!

• Improved extensibility
– You can extend the Abstraction and Implementor hierarchies independently

• Hiding implementation details from clients


