
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Design Patterns IV
Structural Patterns

ECE450 - Software Engineering II 2

Changing gears:
Structural patterns

• So far we have discussed almost 
exclusively creational patterns
– Factory method
– Abstract factory
– Builder
– Prototype
– Singleton

• ...and a couple of behavioral 
patterns
– Template method
– Null object

• We’ll now discuss structural 
patterns, that is, those that solve 
design problems through particular 
arrangements of class structures

ECE450 - Software Engineering II 3

Adding behaviour to a text box...

• Our application uses a TextBox class that displays texts in a box

• Sometimes these text boxes need additions:
– Borders (of different kinds)
– Vertical scrollbars
– Horizontal scrollbars
– ...

• How can we design the classes of the application so that they address this 
problem?

ECE450 - Software Engineering II 4

Just subclass everything!

• We can simply subclass everything
– But given enough added behaviors, this solution will go nuts quickly...



2

ECE450 - Software Engineering II 5

“Decorate” the original TextBox

• A more flexible approach is to enclose the component in another object 
that adds behaviour/functionality
– Think of it as “wrapping” the original object

• The “wrapped” object does what the original did, but has additional features

– This “wrapper”, or decorator, conforms to the interface of the component it 
decorates

• Its presence is transparent to the component’s clients

– We can nest decorators recursively, allowing a potentially unlimited number of 
added responsibilities

ECE450 - Software Engineering II 6

The Decorator pattern

• Intent:
– Attach additional responsibilities to an object dynamically. Decorators provide a 

flexible alternative to subclassing for extending functionality.

ECE450 - Software Engineering II 7

Participants

• Component
– Defines the interface for objects that 

can have responsibilities added to 
them dynamically

• ConcreteComponent
– Defines an object to which additional 

responsibilities can be attached

• Decorator
– Maintains a reference to a 

Component object and defines an 
interface that conforms to 
Component’s interface

• ConcreteDecorator
– Adds responsibilities to the 

component

ECE450 - Software Engineering II 8

Applicability

• Use Decorator...
– To add responsibilities to individual objects dynamically and transparently, that 

is, without affecting other objects
– For responsibilities that can be withdrawn
– When extension by subclassing is impractical. Sometimes a large number of 

independent extensions are possible and would produce an explosion of 
subclasses to support every combination.

• How does it work?
– Decorator forwards requests to its Component object.
– It may optionally perform additional operations before and after forwarding the 

request.



3

ECE450 - Software Engineering II 9

Consequences

• (+) More flexibility than static inheritance
– Responsibilities can be added and removed at run-time simply by attaching and 

detaching them.
– It’s also easy to add a property twice

• (+) Avoids feature-laden classes high up in the hierarchy
– Offers a pay-as-you-go approach to adding responsibilities
– Instead of trying to support all foreseeable features in a complex, customizable 

class, you can define a simple class and add functionality incrementally with 
Decorator objects.

• (-) A decorator and its component aren’t identical
– From an object identity point of view, a decorated component is not identical to 

the component itself

• (-) Lots of little objects
– Systems composed of lots of little objects that all look alike
– Easy to customize, but hard to learn and debug

ECE450 - Software Engineering II 10

Implementation

• Interface conformance
– A decorator object’s interface must conform to the interface of the object it 

decorates

• Omitting the abstract Decorator class
– There’s no need to define an abstract Decorator class when you only need to add 

one responsibility.

• Keeping Component classes lightweight
– To ensure a conforming interface, components and decorators must descend 

from a common Component class
– It’s important to keep this class lightweight

• Definition of data representation should be deferred to subclasses
• Otherwise the complexity of the Component class might make the decorators too 

heavyweight to use in quantity

• Changing the skin of an object vs. changing its guts
– Think of a decorator as a skin over an object that changes its behaviour
– If you want to change the guts instead you can use Strategy

• We’ll check it out later...

ECE450 - Software Engineering II 11

Java I/O streams are Decorators!

• There is an abstract Component...
– InputStream

• ...a few concrete Components...
– FileInputStream
– StringBufferInputStream
– ByteArrayInputStream
– ...

• ...an abstract Decorator
– FilterInputStream

• ...and a bunch of concrete Decorators
– PushbackInputStream
– BufferedInputStream
– DataInputStream
– LineNumberInputStream
– ...

ECE450 - Software Engineering II 12

Moving on:
Incompatibility problems

• We arrive at Europe with our laptop’s battery almost exhausted. We want 
to recharge the battery and...



4

ECE450 - Software Engineering II 13

Moving on:
Incompatibility problems

• ...but you’re smart engineers and knew you were going to deal with this...

ECE450 - Software Engineering II 14

Incompatibility problems:
They happen with software too

• We may have an application that needs to use libraries/a different 
application/you-name-it, but the thing we want to call has a different 
interface than our caller
– Alternative 1: Re-write the caller

• Ugly, messy, error-prone
• Equivalent to changing the power cable in our previous example

– Alternative 2: Re-write the called libraries/classes
• May not have the source code
• As ugly and error-prone as Alternative 1

– Alternative 3: Write an adapter
• The adapter converts all requests to a language the adaptee understands

ECE450 - Software Engineering II 15

The Adapter pattern

• Convert the interface of a class into another interface clients expect. 
Adapter lets classes work together that couldn’t otherwise because of 
incompatible interfaces

• Applicability: Use when...
– You want to use an existing class, and its interface does not match the one you 

need
– You want to create a reusable class that cooperates with unrelated or unforeseen 

classes, that is, classes that don’t necessarily have compatible interfaces

ECE450 - Software Engineering II 16

Structure

• Target
– Defines the domain-specific interface that Client uses.

• Client
– Collaborates with objects conforming to the Target interface

• Adaptee
– Defines an existing interface that needs adapting

• Adapter
– Adapts the interface of Adaptee to the Target interface



5

ECE450 - Software Engineering II 17

Consequences and Implementation

• It’s a very straightforward pattern
– Makes things work after they are designed

• Amount of work it takes to implement Adapter depends on complexity of 
interface to adapt

• Comparison with Decorator
– Adapter is meant to change the interface of an existing object
– Decorator enhances another object without changing its interface
– Decorator is thus more transparent to the application than Adapter is
– Decorator supports recursive composition, which isn’t possible with pure 

Adapters

ECE450 - Software Engineering II 18

Facade pattern

• Provide a unified interface to a set of interfaces in a subsystem
– Defines a higher-level interface that makes the subsystem easier to use

• Structuring a system into subsystems helps reduce complexity
– A common design goal is to minimize the communication and dependencies 

between subsystems:

ECE450 - Software Engineering II 19

Example of a Facade

ECE450 - Software Engineering II 20

Applicability

• Use it when...
– You want to provide a simple interface to a complex subsystem

• Subsystems often get more complex as they evolve
• A facade can provide a simple default view of the subsystem that is good enough for 

most clients
• Only clients needing more customizability will need to look beyond the facade

– There are many dependencies between clients and the implementation classes of 
an abstraction

• A facade decouples the subsystem from clients and other subsystems, promoting 
subsystem independence and portability

– You want to layer your subsystems
• Use a facade to define an entry point to each subsystem level
• If subsystems are dependent, then you can simplify the dependencies between them by 

making them communicate with each other solely through their facades



6

ECE450 - Software Engineering II 21

Structure

• Facade
– Knows which subsystem classes are responsible for a request
– Delegates client requests to appropriate subsystem objects

• Subsystem classes
– Implement subsystem functionality
– Handle work assigned by the Facade object
– Have no knowledge of the facade; that is, they keep no references to it

ECE450 - Software Engineering II 22

Consequences

• Shields clients from subsystem components
– Reduces number of objects that clients deal with
– Makes it easier to use the subsystem

• Promotes weak coupling between the subsystem and its clients
– Can vary the components of a subsystem without affecting clients
– Reduces compilation dependencies

• Doesn’t prevent applications from using subsystem classes if they need to
– You can choose between ease of use and generality


