ECE450 — Software Engineering 11

Today: Design Patterns 111

ECEA450 - Software Engineering Il

Detour: The “simplest” creational
pattern: Singleton

= Ensure a class only has one instance, and provide a global point of access
to it

= In my experience, if there is one pattern people know of, it's Singleton.
— Catchy name
— Simple concept

= Again, in my experience, if there is one pattern people get wrong, it's
Singleton.
— Used as a simple substitute for global variables

— ...while thinking that there is nothing wrong with that: “They’'re not global
variables —they’'re a Singleton!”

= And even when people get the concept right, they frequently get the
implementation wrong.
— Threatened by parallel programs
— Subclassing vs. protecting the one and only instance

ECEA450 - Software Engineering Il

When is it OK to use Singletons?

Sometimes we need only one instance of an object
— One file system
— One print spooler

If you think you need only one instance of the object, answer these
questions:

— Can you assign ownership of the single instance reasonably?

— Is lazy initialization desirable?

— Is global access not provided otherwise?

If all criteria are satisfied, you might need a Singleton after all.

— Threatened by parallel programs
— Subclassing vs. protecting the one and only instance

ECE450 - Software Engineering Il

Singleton’s structure

= Singleton
— Defines a class-scoped instance() operation that lets clients access its unique
instance

— May be responsible for creating its own unique instance

Singleton

=]
slalic Instance() O--=q=-=-===---=- retum uniquelnstance
gletonOperationt)

GetSingletonDatal)

static uniquelnstance
singletonData

ECE450 - Software Engineering Il

Sample code (not the real deal)

public class SingletonObject {

private SingletonObject() {
// Just making the constructor private...

}

public static SingletonObject getSingletonObject() {
if (ref == null)
// The object has not been created yet
ref = new SingletonObject();
return ref;

}

private static SingletonObject ref;

ECEA450 - Software Engineering Il

But there’s a threading problem...

public class SingletonObject {

private SingletonObject() {
// No code, just making the constructor private...

}

public static synchronized SingletonObject getSingletonObject() {
if (ref == null)
// The object has not been created yet
ref = new SingletonObject();
return ref;

}

private static SingletonObject ref;

¥

ECEA450 - Software Engineering Il

Attack of the clones

public class Clone {

public static void main(String args[]) throws Exception {
// Get a singleton
SingletonObject obj = SingletonObject.getSingletonObject();

// Oh crap...
SingletonObject clone = (SingletonObject) obj.clone();
b

Note: Only really a problem if your Singleton class is extending another
class that supports cloning
— ...since clone() is a protected method

ECE450 - Software Engineering Il

Sample code (the real deal)

public class SingletonObject {

private SingletonObject() {
// Just making the constructor private...

¥

public static synchronized SingletonObject getSingletonObject() {
if (ref == null)
// The object has not been created yet
ref = new SingletonObject();
return ref;
3
public Object clone() throws CloneNotSupportedException {
// You shall not pass!
throw CloneNotSupportedException;
bs

private static SingletonObject ref;

ECE450 - Software Engineering Il

Consequences

Controlled access to sole instance
Because Singleton encapsulates the sole instance, it has strict control

Reduced name space
— One access method only

Variable number of instances
— You could change your mind to have n (e.g. 5) instances

Implementation

Implementation is very language-dependent
...and Singletons are more necessary in some language than others

Not an excuse for using global variables!

“The Singleton design pattern is one of the most inappropriately used patterns.
Singletons are intended to be used when a class must have exactly one instance,
no more, no less ... [Designers] frequently use Singletons in a misguided
attempt to replace global variables ... A Singleton is, for intents and purposes, a
global variable. The Singleton does not do away with the global; it merely
renames it.” —Jim Hyslop

ECEA450 - Software Engineering Il 10

ECEA450 - Software Engineering Il 9
Back to that pretty maze of ours...
= We've explored several ways to construct the elements of the maze
— Factory methods
— Abstract factories
— Prototypes
= We’'ll see one more and, with that, finish our tour through creational
patterns...
11

ECE450 - Software Engineering Il

Introducing the Builder

Separate the construction of a complex object from its representation so
that the same construction process can create different representations
E.g. read in Rich Text Format, converting to many different formats on load.

RTFReader ToxtConvorter
buider
ParseRTF() § ConvartCharactor{char)
ConvartFontChangstForti

' ConvertParagraphy)
i

A

wihdle {1 = got the next ok
Setp ey oA

Char)

Fol
o Bl FamiChangell Font) e
gelf el

gt e
GeTeXTexi) GetTexWidgst]

-{ ASCIText ‘ 1--| TeXText

ECE450 - Software Engineering Il 12

Applicability

= Use when:

The algorithm for creating a complex object should be independent of the parts
that make up the object and how they are assembled

The construction process must allow different representations for the object that
is constructed

ECEA450 - Software Engineering Il 13

Structure

Builder

— Specifies an abstract interface for creating parts of a Product object
Concrete Builder

Constructs and assembles parts of the product by implementing the Builder interface
Defines and keeps track of the representation it creates

Provides an interface for retrieving the product

Director

Constructs an object using the Builder interface
Product

— Represents the complex object under construction

Includes classes that define the constituent parts, including interfaces for assembling the parts
into the final result

builder

BuifaPan()

for all aby
buildel

Concret

uilder [------- i-(Product

BuildPari(}
Getesuili)

14

Collaborations

aClient aDirector

aConcreteBuilder
, '

new ConcreteBuilder

|Construct(y

BuikdPartA()
BuikiPartB()

BuikdParc()

GetResult()

L

The Client creates the Director object and configures it with the Builder object
Director notifies the Builder whenever a part of the product should be built

Builder handles requests from the director and adds parts to the product
The client retrieves the product from the Builder

ECE450 - Software Engineering Il 15

Sample code

public abstract class MazeBuilder {
public void buildRoom(int r){}
public void buildDoor(int ri1, int direction, int r2){}
Maze getMaze(Q{return null;}

public class MazeGame {

public Maze createMaze(MazeBuilder b) {
b.bui IdRoom(1) ;
b_bui ldRoom(2) ;
b.buildDoor(1, Direction.North, 2);
return b.getMaze(Q);

ECE450 - Software Engineering Il 16

Sample code

public class StandardVazeBuilder extends MazeBuilder

{
private Maze currentMaze;
public Maze getMaze() {
if(currentMaze==null)
currentMaze = new Maze();
return currentMaze;
1
public void buildRoom(int r) {
if(getMaze().getRoom(r) == null) {
Room room = new Room(r);
getMaze() .addRoom(room) ;
for(int d = Direction.First; d <= Direction.Last; d++)
room.setSide(d, new WallQ));
3
3
3 ECE450 - Software Engineering Il 17

Sample code

public class StandardVazeBuilder extends MazeBuilder

{
public void buildDoor(int r1, int d, int r2) {
Room rooml = getMaze().getRoom(rl);
Room room2 = getMaze().getRoom(r2);
ifC rooml == null) {
bui ldRoom(r1);
rooml = getMaze().getRoom(rl);
3
if(room2 == null) {
bui ldRoom(r2);
room2 = getMaze().getRoom(r2);
1
Door door = new Door(rooml, room2);
rooml._setSide(d, door);
room2.setSide(Direction.opposite(d), door);
3
3 ECE450 - Software Engineering Il 18

Sample code

public class CountingMazeBuilder extends MazeBuilder
{
private int rooms = 0;
private int doors = 0;
public void buildDoor(int ri1, int direction, int r2) {
doors++;

¥

public void buildRoom(int r) {
rooms++;

¥

public int getDoors() { return doors; }
public int getRooms() { return rooms; }

ECE450 - Software Engineering Il 19

Sample code

public class MazeGame

{
public static void main(String args[]) {
MazeGame mg = new MazeGame();
Maze m = mg.createMaze(new StandardMazeBuilder());
System.out.printin(m);
CountingMazeBuilder cmb = new CountingMazeBuilder();
mg.createMaze(cmb) ;
System._out.printIn(rooms = "+cmb.getRooms());
System.out.printIn('doors = "+cmb.getDoors());
1
1

ECE450 - Software Engineering Il 20

Sample code
(Abstract factory reminder)

public Maze createMaze(MazeFactory f) {
Room r1 = f.makeRoom(1);
Room r2 = f.makeRoom(2);
Door d = f.makeDoor(rl,r2);

v
v
v
v

[ay

_setSide(Direction.North, f.makewall());
.setSide(Direction.East, d);

.setSide(Direction.West, f.makeWall(Q));
_setSide(Direction.South, f.makeWall());

)

r2._setSide(Direction_North, f.makewall(Q));
r2._setSide(Direction.East, f.makeWall(Q));
r2._setSide(Direction._West, d);

r2_setSide(Direction._South, f.makeWall(Q));

Maze m = f.makeMaze();
m.addRoom(rl);
m.addRoom(r2);

return m; . :
3 ECEA450 - Software Engineering Il 21

Sample code
(Builder comparison)
public Maze createMaze(MazeBuilder b) {
b.buildDoor(1, Direction.North, 2);

// A bit extreme, but you get the point...

return b.getMaze(Q);

ECEA450 - Software Engineering Il 22

Consequences

Lets you vary a product’s internal representation
— And hides details on how the product is assembled

Isolates code for construction and representation

— Clients don’t need to know anything about the classes that define the product’s
internal structure; such classes don't appear in Builder’s interface

Gives you finer control over the production process

— Constructs the product step by step under the director’s control, instead of in
one shot

ECE450 - Software Engineering Il 23

Implementation

Assembly and construction interface
— Builders construct their products in step-by-step fashion.

— Builder class interface must be general enough to allow the construction of
products for all kinds of concrete builders

Why no abstract class for products?

— In the common case, the products produced by the concrete builders differ so
greatly in their representation that there is little to gain from giving different
products a common parent class

ECE450 - Software Engineering Il 24

Creational patterns recap

If createMaze() calls virtuals to construct components
— Factory method

If createMaze() is passed a parameter object to create rooms, walls, and
all other elements of the same family
— Abstract factory

If createMaze() is passed a parameter object to create and connect mazes
step by step
— Builder

If createMaze() is parameterized with various prototypical rooms, doors,
walls, ..., which it copies and then adds to the maze
— Prototype

If we need to ensure that there is only one maze per game, or one factory
that produces its elements

— Singleton . .
ECEA450 - Software Engineering Il 25

