
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Design Patterns III

ECE450 - Software Engineering II 2

Detour: The “simplest” creational
pattern: Singleton

• Ensure a class only has one instance, and provide a global point of access
to it

• In my experience, if there is one pattern people know of, it’s Singleton.
– Catchy name
– Simple concept

• Again, in my experience, if there is one pattern people get wrong, it’s
Singleton.
– Used as a simple substitute for global variables
– ...while thinking that there is nothing wrong with that: “They’re not global

variables –they’re a Singleton!”

• And even when people get the concept right, they frequently get the
implementation wrong.
– Threatened by parallel programs
– Subclassing vs. protecting the one and only instance

ECE450 - Software Engineering II 3

When is it OK to use Singletons?

• Sometimes we need only one instance of an object
– One file system
– One print spooler

• If you think you need only one instance of the object, answer these
questions:
– Can you assign ownership of the single instance reasonably?
– Is lazy initialization desirable?
– Is global access not provided otherwise?

• If all criteria are satisfied, you might need a Singleton after all.
– Threatened by parallel programs
– Subclassing vs. protecting the one and only instance

ECE450 - Software Engineering II 4

Singleton’s structure

• Singleton
– Defines a class-scoped instance() operation that lets clients access its unique

instance
– May be responsible for creating its own unique instance

2

ECE450 - Software Engineering II 5

Sample code (not the real deal)

public class SingletonObject {

private SingletonObject() {
// Just making the constructor private...

}

public static SingletonObject getSingletonObject() {
if (ref == null)

// The object has not been created yet
ref = new SingletonObject();

return ref;
}

private static SingletonObject ref;
}

ECE450 - Software Engineering II 6

But there’s a threading problem...

public class SingletonObject {

private SingletonObject() {
// No code, just making the constructor private...

}

public static synchronized SingletonObject getSingletonObject() {
if (ref == null)

// The object has not been created yet
ref = new SingletonObject();

return ref;
}

private static SingletonObject ref;
}

ECE450 - Software Engineering II 7

Attack of the clones

public class Clone {

public static void main(String args[]) throws Exception {
// Get a singleton
SingletonObject obj = SingletonObject.getSingletonObject();

// Oh crap...
SingletonObject clone = (SingletonObject) obj.clone();

}
}

• Note: Only really a problem if your Singleton class is extending another
class that supports cloning
– ...since clone() is a protected method

ECE450 - Software Engineering II 8

Sample code (the real deal)

public class SingletonObject {

private SingletonObject() {
// Just making the constructor private...

}

public static synchronized SingletonObject getSingletonObject() {
if (ref == null)

// The object has not been created yet
ref = new SingletonObject();

return ref;
}

public Object clone() throws CloneNotSupportedException {
// You shall not pass!
throw CloneNotSupportedException;

}

private static SingletonObject ref;
}

3

ECE450 - Software Engineering II 9

Consequences

• Controlled access to sole instance
– Because Singleton encapsulates the sole instance, it has strict control

• Reduced name space
– One access method only

• Variable number of instances
– You could change your mind to have n (e.g. 5) instances

ECE450 - Software Engineering II 10

Implementation

• Implementation is very language-dependent
– ...and Singletons are more necessary in some language than others

• Not an excuse for using global variables!
– “The Singleton design pattern is one of the most inappropriately used patterns.

Singletons are intended to be used when a class must have exactly one instance,
no more, no less ... [Designers] frequently use Singletons in a misguided
attempt to replace global variables ... A Singleton is, for intents and purposes, a
global variable. The Singleton does not do away with the global; it merely
renames it.” –Jim Hyslop

ECE450 - Software Engineering II 11

Back to that pretty maze of ours...

• We’ve explored several ways to construct the elements of the maze
– Factory methods
– Abstract factories
– Prototypes

• We’ll see one more and, with that, finish our tour through creational
patterns...

ECE450 - Software Engineering II 12

Introducing the Builder

• Separate the construction of a complex object from its representation so
that the same construction process can create different representations
– E.g. read in Rich Text Format, converting to many different formats on load.

4

ECE450 - Software Engineering II 13

Applicability

• Use when:
– The algorithm for creating a complex object should be independent of the parts

that make up the object and how they are assembled
– The construction process must allow different representations for the object that

is constructed

ECE450 - Software Engineering II 14

Structure

• Builder
– Specifies an abstract interface for creating parts of a Product object

• Concrete Builder
– Constructs and assembles parts of the product by implementing the Builder interface
– Defines and keeps track of the representation it creates
– Provides an interface for retrieving the product

• Director
– Constructs an object using the Builder interface

• Product
– Represents the complex object under construction
– Includes classes that define the constituent parts, including interfaces for assembling the parts

into the final result

ECE450 - Software Engineering II 15

Collaborations

• The Client creates the Director object and configures it with the Builder object
• Director notifies the Builder whenever a part of the product should be built
• Builder handles requests from the director and adds parts to the product
• The client retrieves the product from the Builder

ECE450 - Software Engineering II 16

Sample code

public abstract class MazeBuilder {
public void buildRoom(int r){}
public void buildDoor(int r1, int direction, int r2){}
public Maze getMaze(){return null;}

}

public class MazeGame {
…
public Maze createMaze(MazeBuilder b) {

b.buildRoom(1);
b.buildRoom(2);
b.buildDoor(1, Direction.North, 2);
return b.getMaze();

}
…

}

5

ECE450 - Software Engineering II 17

Sample code

public class StandardMazeBuilder extends MazeBuilder
{

private Maze currentMaze;

public Maze getMaze() {
if(currentMaze==null)

currentMaze = new Maze();
return currentMaze;

}

public void buildRoom(int r) {
if(getMaze().getRoom(r) == null) {

Room room = new Room(r);
getMaze().addRoom(room);
for(int d = Direction.First; d <= Direction.Last; d++)

room.setSide(d, new Wall());
}

}
…

}
ECE450 - Software Engineering II 18

Sample code

public class StandardMazeBuilder extends MazeBuilder
{

…
public void buildDoor(int r1, int d, int r2) {

Room room1 = getMaze().getRoom(r1);
Room room2 = getMaze().getRoom(r2);
if(room1 == null) {

buildRoom(r1);
room1 = getMaze().getRoom(r1);

}
if(room2 == null) {

buildRoom(r2);
room2 = getMaze().getRoom(r2);

}
Door door = new Door(room1, room2);
room1.setSide(d, door);
room2.setSide(Direction.opposite(d), door);

}
…

}

ECE450 - Software Engineering II 19

Sample code

public class CountingMazeBuilder extends MazeBuilder
{

private int rooms = 0;
private int doors = 0;

public void buildDoor(int r1, int direction, int r2) {
doors++;

}

public void buildRoom(int r) {
rooms++;

}

public int getDoors() { return doors; }
public int getRooms() { return rooms; }

}

ECE450 - Software Engineering II 20

Sample code

public class MazeGame
{

public static void main(String args[]) {
MazeGame mg = new MazeGame();
Maze m = mg.createMaze(new StandardMazeBuilder());
System.out.println(m);

CountingMazeBuilder cmb = new CountingMazeBuilder();
mg.createMaze(cmb);
System.out.println("rooms = "+cmb.getRooms());
System.out.println("doors = "+cmb.getDoors());

}

…
}

6

ECE450 - Software Engineering II 21

Sample code
(Abstract factory reminder)

public Maze createMaze(MazeFactory f) {
Room r1 = f.makeRoom(1);
Room r2 = f.makeRoom(2);
Door d = f.makeDoor(r1,r2);

r1.setSide(Direction.North, f.makeWall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, f.makeWall());
r1.setSide(Direction.South, f.makeWall());

r2.setSide(Direction.North, f.makeWall());
r2.setSide(Direction.East, f.makeWall());
r2.setSide(Direction.West, d);
r2.setSide(Direction.South, f.makeWall());

Maze m = f.makeMaze();
m.addRoom(r1);
m.addRoom(r2);
return m;

}
ECE450 - Software Engineering II 22

Sample code
(Builder comparison)

public Maze createMaze(MazeBuilder b) {
b.buildDoor(1, Direction.North, 2);
// A bit extreme, but you get the point...

return b.getMaze();
}

ECE450 - Software Engineering II 23

Consequences

• Lets you vary a product’s internal representation
– And hides details on how the product is assembled

• Isolates code for construction and representation
– Clients don’t need to know anything about the classes that define the product’s

internal structure; such classes don’t appear in Builder’s interface

• Gives you finer control over the production process
– Constructs the product step by step under the director’s control, instead of in

one shot

ECE450 - Software Engineering II 24

Implementation

• Assembly and construction interface
– Builders construct their products in step-by-step fashion.
– Builder class interface must be general enough to allow the construction of

products for all kinds of concrete builders

• Why no abstract class for products?
– In the common case, the products produced by the concrete builders differ so

greatly in their representation that there is little to gain from giving different
products a common parent class

7

ECE450 - Software Engineering II 25

Creational patterns recap

• If createMaze() calls virtuals to construct components
– Factory method

• If createMaze() is passed a parameter object to create rooms, walls, and
all other elements of the same family
– Abstract factory

• If createMaze() is passed a parameter object to create and connect mazes
step by step
– Builder

• If createMaze() is parameterized with various prototypical rooms, doors,
walls, ..., which it copies and then adds to the maze
– Prototype

• If we need to ensure that there is only one maze per game, or one factory
that produces its elements
– Singleton

