
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Design Patterns II

ECE450 - Software Engineering II 2

Reminder: Maze example

• Building a maze for a computer game

• A maze is a set of rooms
• A room knows its neighbours

– Another room
– A wall
– A door

ECE450 - Software Engineering II 3

Reminder: Factory method

• Product
– Defines the interface of objects the factory method creates

• ConcreteProduct
– Implements the Product interface

• Creator
– Declares the factory method which returns a Product type
– Defines a default implementation
– Calls the factory method itself

• ConcreteCreator
– Overrides factory method: returns instance of ConcreteProduct

ECE450 - Software Engineering II 4

Sample code
public class MazeGame {

public static void main(String[] args) {

Maze m = new MazeGame().createMaze();

}

private Maze makeMaze() { return new Maze(); }
private Wall makeWall() { return new Wall(); }

private Room makeRoom(int r) { return new Room(r); }

private Door makeDoor(Room r1, Room r2) {
return new Door(r1, r2);

}

public Maze createMaze() {

// do what's needed
}

}

2

ECE450 - Software Engineering II 5

Sample code (cont)

public Maze createMaze() {
Room r1 = makeRoom(1);

Room r2 = makeRoom(2);
Door d = makeDoor(r1, r2);

r1.setSide(Direction.North, makeWall());

r1.setSide(Direction.East, d);
r1.setSide(Direction.West, makeWall());
r1.setSide(Direction.South, makeWall());

r2.setSide(Direction.North, makeWall());
r2.setSide(Direction.East•, makeWall());
r2.setSide(Direction.West, d);

r2.setSide(Direction.South, makeWall());

Maze m = makeMaze();
m.addRoom(r1);

m.addRoom(r2);
return m;

}

ECE450 - Software Engineering II 6

Sample code (cont 2)

public class BombedMazeGame extends MazeGame {

private Wall makeWall() {

return new BombedWall();

}

private Room makeRoom(int r) {

return new RoomWithABomb(r);

}

}

public class EnchantedMazeGame extends MazeGame {

private Room makeRoom(int r)

{ return new EnchantedRoom(r, castSpell()); }

private Door makeDoor(Room r1, Room r2)

{ return new DoorNeedingSpell(r1, r2); }

private Spell castSpell()

{ return new Spell(); }

}

ECE450 - Software Engineering II 7

Sample code (cont 3)

public static void main(String[] args) {

Maze m = new EnchantedMazeGame().createMaze();
}

public static void main(String[] args) {
Maze m = new BombedMazeGame().createMaze();

}

ECE450 - Software Engineering II 8

Several factory methods

• In our previous example, we had several factory methods helping us with
object construction

• Sometimes it is useful to lump them together
– Treat all features of enchanted mazes as one group, all of bombed mazes as

another group
– We’ll call them “families”
– User would only need one or the other

3

ECE450 - Software Engineering II 9

Enter the Abstract Factory pattern

• Abstract Factory: Provide an interface for creating families of related or
dependent objects without specifying their concrete classes
– e.g. look and feel portability

• Independence
• Enforced consistency

ECE450 - Software Engineering II 10

Applicability

• Use when:
– A system should be independent of how its products are created, composed, and

represented
– A system should be configured with one of multiple families of products
– A family of related product objects is designed to be used together, and you

need to enforce this constraint
– You want to provide a class library of products, and you want to reveal just their

interfaces, not their implementations
– You want to hide and reuse awkward or complex details of construction

• Usually one starts by using Factory Methods and then moves on to
Abstract Factories (or Prototypes, or Builders) when the methods are not
flexible enough

ECE450 - Software Engineering II 11

Structure
• AbstractFactory

– Declares an interface for operations that create product objects

• ConcreteFactory
– Implements the operations to create concrete product objects

• AbstractProduct
– Declares an interface for a type of product object

• Product
– Defines a product to be created by the corresponding concrete factory
– Implements the AbstractProduct interface

• Client
– Uses only interfaces declared by AbstractFactory and AbstractProduct classes

ECE450 - Software Engineering II 12

Sample code

public class MazeFactory {
Maze makeMaze() { return new Maze(); }
Wall makeWall() { return new Wall(); }
Room makeRoom(int r) { return new Room(r); }
Door makeDoor(Room r1, Room r2) { return new Door(r1,r2);}

}

4

ECE450 - Software Engineering II 13

Sample code:
Maze creation (old way)

public Maze createMaze() {
Room r1 = new Room(1);
Room r2 = new Room(2);
Door d = new Door(r1,r2);

r1.setSide(Direction.North, new Wall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, new Wall());
r1.setSide(Direction.South, new Wall());

r2.setSide(Direction.North, new Wall());
r2.setSide(Direction.East, d);
r2.setSide(Direction.West, new Wall());
r2.setSide(Direction.South, new Wall());

Maze m = new Maze();
m.addRoom(r1);
m.addRoom(r2);
return m;

}

ECE450 - Software Engineering II 14

Sample code

public Maze createMaze(MazeFactory factory) {
Room r1 = factory.makeRoom(1);
Room r2 = factory.makeRoom(2);
Door d = factory.makeDoor(r1,r2);

r1.setSide(Direction.North, factory.makeWall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, factory.makeWall());
r1.setSide(Direction.South, factory.makeWall());

r2.setSide(Direction.North, factory.makeWall());
r2.setSide(Direction.East, d);
r2.setSide(Direction.West, factory.makeWall());
r2.setSide(Direction.South, factory.makeWall());

Maze m = factory.makeMaze()
m.addRoom(r1);
m.addRoom(r2);
return m;

}

ECE450 - Software Engineering II 15

Sample code

public class EnchantedMazeFactory extends MazeFactory {
public Room makeRoom(int r) {

return new EnchantedRoom(r, castSpell());
}

public Door makeDoor(Room r1, Room r2) {
return new DoorNeedingSpell(r1,r2);

}

private protected castSpell() {
// randomly choose a spell to cast;
…

}
}

ECE450 - Software Engineering II 16

Sample code

public class MazeGame
{

public static void main(String args[]) {
Maze m = new MazeGame().createMaze(new MazeFactory());

}
}

public class MazeGame
{

public static void main(String args[]) {
Maze m = new MazeGame().createMaze(new EnchantedMazeFactory());

}
}

5

ECE450 - Software Engineering II 17

Consequences

• It isolates concrete classes
– Helps control the classes of objects that an application creates
– Isolates clients from implementation classes
– Clients manipulate instances through abstract interfaces
– Product class names are isolated in the implementation of the concrete factory

• They do not appear in the client code

– It makes exchanging product families easy
• The class of a concrete factory appears only once in the application (when it is

instantiated)
• Easy to change the concrete factory an application uses
• The whole product family changes at once

– It promotes consistency among products
• When products are designed to work together, it’s important that an application use

objects only from one family at a time
• Abstract Factory makes this easy to enforce

– Supporting new kinds of products is difficult
• Extending Abstract Factory to produce new product types isn’t easy (need to extend

factory interface and all concrete factories, add a new abstract product, plus
implementing a new class in each family)

ECE450 - Software Engineering II 18

Implementation

• Factories as Singletons
– An application typically needs only one instance of a ConcreteFactory per product

family
– Best implemented as a Singleton

• More on that later

• Defining extensible factories
– Hard to extend to new product types
– Add parameter to operations that create products

• Need only make()
• Less safe, more flexible
• Easier in languages that have common subclass (e.g. Java’s Object)
• Easier in more dynamically-typed languages (e.g. Smalltalk)
• All products have same abstract interface

• Can also create the products through Prototypes instead of Factory
Methods
– Creates new products by cloning a prototype
– Prototype is our next topic...

ECE450 - Software Engineering II 19

Prototype

• Specify the kinds of objects to create using a prototypical instance, and
create new objects by cloning this prototype

ECE450 - Software Engineering II 20

Applicability

• Use...
– When the classes to be instantiated are specified at run-time

• E.g. for dynamic loading

– To avoid building a class hierarchy of factories to parallel the hierarchy of
products

– When instances can have only one of a few states
• May be better to initialize once, and then clone the prototypes

6

ECE450 - Software Engineering II 21

Structure

• Prototype
– Declares an interface for cloning itself

• ConcretePrototype
– Implements an operation for cloning itself

• Client
– Creates a new object by asking a prototype to clone itself

ECE450 - Software Engineering II 22

Sample code

public class MazePrototypeFactory extends MazeFactory
{

private Maze prototypeMaze;
private Wall prototypeWall;
private Room prototypeRoom;
private Door prototypeDoor;

public MazePrototypeFactory(Maze pm, Wall pw, Room pr, Door pd) {
prototypeMaze = pm;
prototypeWall = pw;
prototypeRoom = pr;
prototypeDoor = pd;

}

…
}

ECE450 - Software Engineering II 23

Sample code (cont)

public class MazePrototypeFactory extends MazeFactory
{

Wall makeWall() {
Wall wall = null;
try {

wall = (Wall)prototypeWall.clone();
} catch(CloneNotSupportedException e) { throw new Error(); }
return wall;

}
Room makeRoom(int r) {

Room room = null;
try {

room = (Room)prototypeRoom.clone();
} catch(CloneNotSupportedException e) { throw new Error(); }
room.initialize(r);
return room;

}
…

} ECE450 - Software Engineering II 24

Sample code (cont)

public abstract class MapSite implements Cloneable
{

public abstract void enter();

public String toString() {
return getClass().getName();

}

public Object clone() throws CloneNotSupportedException {
return super.clone();

}
}

7

ECE450 - Software Engineering II 25

Sample code (cont)

public class Door extends MapSite {

public Door(Room s1, Room s2) {

initialize(s1, s2);

}

public void initialize(Room s1, Room s2) {

side1 = s1;

side2 = s2;

open = true;

}

private Room side1;

private Room side2;

boolean open;

}

ECE450 - Software Engineering II 26

Sample code (cont)

public class Room extends MapSite
{

public Room(int r) {
initialize(r);

}

public void initialize(int r) {
room_no = r;

}

public Object clone() throws CloneNotSupportedException {
Room r = (Room)super.clone();
r.side = new MapSite[Direction.Num];
return r;

}
…
private int room_no;
private MapSite[] side = new MapSite[Direction.Num];

}

ECE450 - Software Engineering II 27

Sample code (cont)

public class EnchantedRoom extends Room
{

public EnchantedRoom(int r, Spell s) {
super(r);
spell = s;

}

public Object clone() throws CloneNotSupportedException {
EnchantedRoom r = (EnchantedRoom)super.clone();
r.spell = new Spell();
return r;

}

private Spell spell;
}

ECE450 - Software Engineering II 28

Sample code (cont)

public static void main(String args[]) {
MazeFactory mf = new MazePrototypeFactory(

new Maze(), new Wall(),
new Room(0), new Door(null,null));

Maze m = new MazeGame().createMaze(mf);
}

public static void main(String args[]) {
MazeFactory mf = new MazePrototypeFactory(

new Maze(), new Wall(),
(Room)Class.forName("EnchantedRoom").newInstance(),
(Door)Class.forName("DoorNeedingSpell").newInstance());

Maze m = new MazeGame().createMaze(mf);
}

8

ECE450 - Software Engineering II 29

Consequences

• Many of the same as Abstract Factory
• Can add and remove products at run-time
• New objects via new values

– Setting state on a prototype is analogous to defining a new class

• New structures
– A multi-connected prototype and deep copy

• Reduces subclassing
– No need to have a factory or creator hierarchy

• Dynamic load
– Cannot reference a new class’s constructor statically
– Must register a prototype

• Big disadvantage:
– Implements clone() all over the place

• Can be tough to avoid infinite recursion!

• No parallel class hierarchy
– Awkward initialization

ECE450 - Software Engineering II 30

Implementation

• Can use a prototype manager
– Store and retrieve in a registry

• Shallow vs. deep copy
– Consider a correct implementation of clone() for Maze
– Need a concept of looking up equivalent cloned rooms in the current maze

r1 r2

d

m

• m.clone()

• r1.clone()

• n.wall.clone()

• e.door.clone()

• r1.clone()

• !!!

