ECE450 — Software Engineering 11

Today: Design Patterns 11

ECEA450 - Software Engineering Il

Reminder: Maze example

Building a maze for a computer game

A maze is a set of rooms
A room knows its neighbours
— Another room

— Awall

— Adoor

ECEA450 - Software Engineering Il

Reminder: Factory method

Product
— Defines the interface of objects the factory method creates
ConcreteProduct
— Implements the Product interface
Creator
— Declares the factory method which returns a Product type
— Defines a default implementation
— Calls the factory method itself
ConcreteCreator
— Overrides factory method: returns instance of ConcreteProduct

Creator

Product
FactoryMathod()
AnOporatonl) o] - product = FactoryMethod{)
1 l;x
ConereteProduct F 77777777777 ConcreteCreator
) = I retum new ‘;|

ECE450 - Software Engineering Il

Sample code

public class MazeGame {
public static void main(Stringl[] args) {
Maze m = new MazeGame () .createMaze () ;

{ return new Maze(); }
private Wall { return new Wall(); }
private Room nt r) { return new Room(r) ;

private Door oom rl, Room r2) f{

return new Door (rl, r2);

private Maze

public Maze createMaze() {
// do what's needed

ECE450 - Software Engineering Il

}

Sample code (cont)

public Maze createMaze () {
Room rl = makeRoom (1) ;
Room r2 = makeRoom(2) ;
Door d = makeDoor(rl, r2);
rl.setSide (Direction.North, makeWall());
rl.setSide (Direction.East, d);
rl.setSide (Direction.West, makeWall());
rl.setSide (Direction.South, makeWall());
r2.setSide (Direction.North, makeWall());
r2.setSide (Direction.Easte, makeWall());
r2.setSide (Direction.West, d);
r2.setSide (Direction.South, makeWall());

Maze m = makeMaze () ;
m.addRoom (rl) ;
m.addRoom (r2) ;
return m;

ECEA450 - Software Engineering Il

Sample code (cont 2)

public class BombedMazeGame extends MazeGame {
private Wall
return new BombedwWall () ;
}
private Room makeRoom(int r) {
return new RoomWithABomb (r) ;

public class EnchantedMazeGame extends MazeGame {
private Room makeRoom(int r)
{ return new EnchantedRoom(r, castSpell()); }

private Door makeDoor (Room rl, Room r2)

{ return new DoorNeedingSpell (rl, r2); }
private Spell castSpell()

{ return new Spell(); }

ECEA450 - Software Engineering Il

Sample code (cont 3)

public static void main(String[] args) {

Maze m = new EnchantedMazeGame () .createMaze () ;

public static void main(String[] args) {
Maze m = new BombedMazeGame () .createMaze () ;

ECE450 - Software Engineering Il

Several factory methods

In our previous example, we had several factory methods helping us with
object construction

Sometimes it is useful to lump them together
— Treat all features of enchanted mazes as one group, all of bombed mazes as
another group
— We'll call them “families”
— User would only need one or the other

ECE450 - Software Engineering Il

Enter the Abstract Factory pattern

= Abstract Factory: Provide an interface for creating families of related or
dependent objects without specifying their concrete classes
— e.g. look and feel portability
- Independence
= Enforced consistency

CreateScroiiiar))
CreateWindowi)

CreateSeraliBan)
Greatawindow()

CroateSerallBas()
CroataWindow)

ECEA450 - Software Engineering Il 9

Applicability

Use when:

A system should be independent of how its products are created, composed, and
represented

— A system should be configured with one of multiple families of products

— A family of related product objects is designed to be used together, and you
need to enforce this constraint

— You want to provide a class library of products, and you want to reveal just their
interfaces, not their implementations

— You want to hide and reuse awkward or complex details of construction

Usually one starts by using Factory Methods and then moves on to
Abstract Factories (or Prototypes, or Builders) when the methods are not
flexible enough

ECEA450 - Software Engineering Il 10

Structure

= AbstractFactory
— Declares an interface for operations that create product objects
« ConcreteFactory
— Implements the operations to create concrete product objects
= AbstractProduct
— Declares an interface for a type of product object
« Product
— Defines a product to be created by the corresponding concrete factory
— Implements the AbstractProduct interface
- Client
— Uses only interfaces declared by AbstractFactory and AbstractProduct classes

CramtoProdueta()
CrasteProducta)

[conereteractoryt [concreteractoryz |- ...___! :
CreatePraducta() GreateProducia() H
CrmalsProductB) GreateProdusiBi} i

11

Sample code

public class MazeFactory {
Maze makeMaze() { return new Maze(Q); }
wall makeWall() { return new WallQ; }
Room makeRoom(int r) { return new Room(r); }
Door makeDoor(Room r1, Room r2) { return new Door(rl,r2);}

®

ECE450 - Software Engineering Il 12

Sample code:
Maze creation (old way)

public Maze createMaze() {

Room rl = new Room(1);
Room r2 = new Room(2);
Door d = new Door(rl,r2);

ri.setSide(Direction.North, new Wall(Q));
ri.setSide(Direc _.East, d);

ri.setSide(Direction.West, new Wall(Q));
ri.setSide(Direction.South, new WallQ));

=1

r2.setSide(Direction.North, new WallQ));
r2.setSide(Direction.East, d);

r2.setSide(Direc .West, new WallQ));
r2.setSide(Direction.South, new WallQ));

=1

Maze m = new Maze(Q);
m.addRoom(rl);
m_addRoom(r2);

return m;

ECEA450 - Software Engineering Il

13

Sample code

public Maze createMaze(MazeFactory factory) {
Room r1 = factory.makeRoom(1);
Room r2 = factory.makeRoom(2);
Door d = factory.makeDoor(rl,r2);

ri.setSide(Direction.North, factory.makeWall());
ri.setSide(Direction.East, d);

ril.setSide(Direction.South, factory.makeWall());

r2.setSide(Direction.North, factory.makeWall());

r2.setSide(Direction.West, factory.makeWall(Q));
r2.setSide(Direction.South, factory.makeWall());

Maze m = factory.makeMaze()
m._addRoom(rl);
m.addRoom(r2);

return m;

ECEA450 - Software Engineering Il 14

Sample code

public class EnchantedMazeFactory extends MazeFactory {
public Room makeRoom(int r) {
return new EnchantedRoom(r, castSpell());

i

public Door makeDoor(Room rl, Room r2) {
return new DoorNeedingSpell(rl,r2);

b

private protected castSpell() {
// randomly choose a spell to cast;

ECE450 - Software Engineering Il

15

Sample code

public class MazeGame

{
public static void main(String args[]) {
Maze m = new MazeGame() .createMaze(new MazeFactory());
3
3
public class MazeGame
{
public static void main(String args[]) {
Maze m = new MazeGame() .createMaze(new EnchantedMazeFactory());
3
bs

ECE450 - Software Engineering Il 16

Consequences

It isolates concrete classes
— Helps control the classes of objects that an application creates
— Isolates clients from implementation classes
— Clients manipulate instances through abstract interfaces
— Product class names are isolated in the implementation of the concrete factory
= They do not appear in the client code
— It makes exchanging product families easy
= The class of a concrete factory appears only once in the application (when it is
instantiated)
= Easy to change the concrete factory an application uses
= The whole product family changes at once
— It promotes consistency among products
= When products are designed to work together, it’'s important that an application use
objects only from one family at a time
= Abstract Factory makes this easy to enforce
— Supporting new kinds of products is difficult
= Extending Abstract Factory to produce new product types isn't easy (need to extend
factory interface and all concrete factories, add a new abstract product, plus
implementing a new class in each family)

ECEA450 - Software Engineering Il 17

Implementation

Factories as Singletons
— An application typically needs only one instance of a ConcreteFactory per product
family
— Best implemented as a Singleton
= More on that later

Defining extensible factories

— Hard to extend to new product types

— Add parameter to operations that create products
= Need only make()
= Less safe, more flexible
= Easier in languages that have common subclass (e.g. Java’s Object)
= Easier in more dynamically-typed languages (e.g. Smalltalk)
= All products have same abstract interface

Can also create the products through Prototypes instead of Factory
Methods
— Creates new products by cloning a prototype
— Prototype is our next topic...
ECEA450 - Software Engineering Il 18

Prototype

Specify the kinds of objects to create using a prototypical instance, and
create new objects by cloning this prototype

P
Bt
Clonet}
prototype
RotateTaol staft MusicalNote
Manipulate() Draw{Pasition)
; Ceney | AN
|
= prototype->Clong() ™ WholeNote Haifote
Draw(Position) Draw(Position)
while {user drags motse
p—»‘D:aW(nvg: poemnn))(Clonef) @ Clone) ¢

insert p into drawing 3 3

[tomconyarsa ™| | e copy s |

ECE450 - Software Engineering Il 19

Applicability

Use...
— When the classes to be instantiated are specified at run-time
= E.g. for dynamic loading
— To avoid building a class hierarchy of factories to parallel the hierarchy of
products
— When instances can have only one of a few states
= May be better to initialize once, and then clone the prototypes

ECE450 - Software Engineering Il 20

Structure

Prototype

Declares an interface for cloning itself

ConcretePrototype

Cli

Implements an operation for cloning itself
ent
Creates a new object by asking a prototype to clone itself

Qperation() §

=
p = prototype->Clone()

[wet | [co vee? |
| Clone() § ‘ |C\nnn() @ ‘

i t

|]
retum copy of qnuh“ raturn copy of ”"B1

ECEA450 - Software Engineering Il 21

Sample code

public class MazePrototypeFactory extends MazeFactory
{

private Maze prototypeMaze;

private Wall prototypeWall;

private Room prototypeRoom;

private Door prototypeDoor;

public MazePrototypeFactory(Maze pm, Wall pw, Room pr, Door pd) {
prototypeMaze = pm;
prototypeWall = pw;
prototypeRoom = pr;
prototypeDoor = pd;

ECEA450 - Software Engineering Il 22

Sample code (cont)

public class MazePrototypeFactory extends MazeFactory
{
Wall makeWall(Q {
wall wall = null;
try {
wall = (Wall)prototypeWall.clone();
} catch(CloneNotSupportedException e) { throw new Error(); }
return wall;
1
Room makeRoom(int r) {
Room room = null;
try {
room = (Room)prototypeRoom.clone();
} catch(CloneNotSupportedException e) { throw new Error(); }
room. initialize(r);
return room;

3 ECE450 - Software Engineering Il 23

Sample code (cont)

public abstract class MapSite implements Cloneable

{
public abstract void enter();
public String toString() {
return getClass().getName();
b
public Object clone() throws CloneNotSupportedException {
return super.clone(Q);
b
b

ECE450 - Software Engineering Il 24

Sample code (cont)

public class Door extends MapSite {
public Door (Room s1, Room s2) {
initialize(sl, s2);

}

public void initialize(Room s1, Room s2) {
sidel = s1;
side2 = s2;
open = true;

}

private Room sidel;
private Room side2;
boolean open;

}

ECEA450 - Software Engineering Il 25

Sample code (cont)

public class Room extends MapSite

{
public Room(int r) {
initialize(r);
3
public void initialize(int r) {
room no = r;
3
public Object clone() throws CloneNotSupportedException {
Room r = (Room)super.clone();
r.side = new MapSite[Direction.Num];
return r;
3
private int room_no;
private MapSite[] side = new MapSite[Direction.Num];
3 ECEA450 - Software Engineering Il 26

Sample code (cont)

public class EnchantedRoom extends Room

{
public EnchantedRoom(int r, Spell s) {
super(r);
spell = s;
3
public Object clone() throws CloneNotSupportedException {
EnchantedRoom r = (EnchantedRoom)super.clone();
r.spell = new Spell(Q);
return r;
3
private Spell spell;
bs

ECE450 - Software Engineering Il 27

Sample code (cont)

public static void main(String args[]) {
MazeFactory mf = new MazePrototypeFactory(
new Maze(), new WallQ,
new Room(0), new Door(null,null));
Maze m = new MazeGame() .createMaze(mf);

public static void main(String args[]) {
MazeFactory mf = new MazePrototypeFactory(
new Maze(), new WallQ),
(Room)Class. forName(**EnchantedRoom') .newlnstance(),
(Door)Class. forName("'DoorNeedingSpell') .newlnstance());
Maze m = new MazeGame().createMaze(mf);

ECE450 - Software Engineering Il 28

Consequences

Many of the same as Abstract Factory
Can add and remove products at run-time
New objects via new values

— Setting state on a prototype is analogous to defining a new class
New structures

— A multi-connected prototype and deep copy
Reduces subclassing

— No need to have a factory or creator hierarchy
Dynamic load

— Cannot reference a new class’s constructor statically

— Must register a prototype
Big disadvantage:

— Implements clone() all over the place

= Can be tough to avoid infinite recursion!

No parallel class hierarchy

— Awkward initialization

ECEA450 - Software Engineering Il

29

Implementation

Can use a prototype manager
— Store and retrieve in a registry
Shallow vs. deep copy
— Consider a correct implementation of clone() for Maze
— Need a concept of looking up equivalent cloned rooms in the current maze

d

« m.clone()

«rl.clone()

o
V

« n.wall.clone()

r2

« e.door.clone()

S

4+
4

«rl.clone()

ECEA450 - Software Engineering Il

30

