ECE450 — Software Engineering 11

Today: Design Patterns |

ECEA450 - Software Engineering Il

The patterns ruckus

We (software people) didn’t start the fire

Christopher Alexander
— A Pattern Language
— A Timeless Way of Building

ECEA450 - Software Engineering Il 2

The patterns ruckus (more)

ECE450 - Software Engineering Il

The patterns ruckus (even

ECE450 - Software Engineering Il &2




Patterns in the world

There are some problems that come up over and over again in a domain
— Architecture: How to provide easy access to an enclosed space selectively?
— Software: How to allow for open extension of classes without modifying their
currently accepted code?

Each time a similar problem comes up, designers will typically start with
something that has worked before

— But then add a wrinkle inspired by something that works better for their current
context

In the software field, an enthusiastic community has formed around the
concept of design patterns

The “Gang of Four” (I hate that name) Design Patterns book really started it all
in 1995

— Architectures and designs are discussed using patterns terminology

— People won’t treat you with respect as a designer anymore if you're not familiar
with at least some patterns

ECEA450 - Software Engineering Il

A pattern must...

Solve a problem
— That is, it must be useful

Have a context
— It must describe where the solution can be used

Recur
— It must be relevant in other situations

Teach
— It must provide sufficient understanding to tailor the solution

Have a name
— It must be referred to consistently

ECEA450 - Software Engineering Il

Patterns craze

Beware!
— It's a sign of lack of expertise to think everything can be solved with patterns
— Or to believe that the more patterns one can stick into one’s design, the better

Not everything is a pattern
Patterns do not lead to direct code reuse
Patterns are deceptively simple

Even experts can disagree
— (ESPECIALLY experts can disagree)

Designers’ key quality is good judgment
— Good judgment comes from experience
— Patterns are not a workaround to exercising good judgment

ECE450 - Software Engineering Il

Design Pattern Descriptions

Name and intent

Problem and context
— What is the problem and the context where we would use this pattern?
— Under what specific conditions should this pattern be used?

Solution
— A description of the elements that make up the design pattern
— Emphasizes their relationships, responsibilities, and collaborations
— Not a concrete design or implementation; rather an abstract description

Positive and negative consequences of use

— The pros and cons of using the pattern
— Includes impact on reusability, portability, and extensibility

ECE450 - Software Engineering Il




Organizing Patterns

= Organizing by purpose: What a pattern does
— Creational: Creating, initializing, and configuring classes and objects
— Structural: Composition of classes and objects
— Behavioral: Dynamic interactions among classes and objects

= Organizing by scope: What the pattern applies to
— Class patterns
= Focus on the relationships between classes and their subclasses
= Involve inheritance reuse
— Object patterns
= Focus on relationships between objects
= Involve composition reuse

= How would you classify the Template Method pattern?

ECEA450 - Software Engineering Il

Organizing Patterns...

The Sacred Elements of the Faith

the holy the holy
origing strugl

the holy 2
behaviors o 0

CP |

D [MD| O PX | FA

MM| ST | IT | V | FL | BR

ECEA450 - Software Engineering Il 10

Do | need to master them all?

= No —at least not now

= For the final, you're expected to:
— Superficially know of all of them
— Master in depth a few of each kind

= The patterns catalog doesn’t end with the Gang of Four book

— There are concurrency patterns, analysis patterns, etc.
— Unreasonable to know of all of them if they're out of your domain

ECE450 - Software Engineering Il

11

Maze example

= Building a maze for a computer game

= A maze is a set of rooms

= A room knows its neighbours
— Another room
— Awall
— Adoor

ECE450 - Software Engineering Il 12




Maze classes

Room Door
Enter() ‘ Enter() ‘ Enter(y
Maze SelSide()
roams Sidel) isOpen
AddRoom()
RoomNo(} roomNumber

ECEA450 - Software Engineering Il 13

Maze creation

public Maze createMaze () {
Room rl = new Room(1l) ;
Room r2 new Room(2) ;
Door d = new Door(rl, r2);

rl.setSide (Direction.North, new Wall());
rl.setSide (Direction.East, d);
rl.setSide (Direction.West, new Wall());
rl.setSide (Direction.South, new Wall());
r2.setSide (Direction.North, new Wall()) ;
r2.setSide (Direction.East, d);
r2.setSide (Direction.West, new Wall());
r2.setSide (Direction.South, new Wall()) ;

Maze m = new Maze() ;
m.addRoom (rl) ;
m.addRoom (r2) ;
return m;

ECEA450 - Software Engineering Il 14

That wasn’t fun

Fairly complex member just to create a maze with two rooms

Obvious simplification
— Room could initialize sides with four new Walls
— That (kind of) just moves the code elsewhere

Problem lies elsewhere: inflexibility
— Hard-codes the maze creation
— Changing the layout can only be done by rewriting, or overriding and rewriting

Plan for evolution
— Want to make the maze more flexible
= Easy to change the components of the game
— What to do about DoorNeedingSpell or EnchantedRoom?
= How can you change createMaze() so that it creates mazes with these different kinds of
classes?
= Biggest obstacle is hard-coding of class names

ECE450 - Software Engineering Il 15

Design pattern: Factory method

= Use when:
— Aclass can't anticipate the kind of objects to create
— Hide the secret of which helper subclass is the current delegate

Creator

FactoryMathoa()
Eomoraton)  o-p-—mem product = FactoryMethod{)

ConcreteCreator

) o [ ot o B

ECE450 - Software Engineering Il 16




Factory method (structure)

Product
— Defines the interface of objects the factory method creates
ConcreteProduct
— Implements the Product interface
Creator
— Declares the factory method which returns a Product type
— Defines a default implementation
— Calls the factory method itself
ConcreteCreator
— Overrides factory method: returns instance of ConcreteProduct

Creator

Product Facior
rybethod()
anOperationfy | O-p--mem product = FactoryMathodi)
1 l}

ConcreteProduct [ ~~~=""-—] ConcreleCreator

[ e B

Sample code

public class MazeGame {
public static void main(Stringl[] args)
Maze m = new MazeGame () .createMaze () ;

private Maze makeMaze() { return new Maze(); }
private Wall makeWall() { return new Wall(); }
private Room makeRoom(int r) { return new Room(r); }
private Door makeDoor (Room rl, Room r2) {

return new Door (rl, r2);

public Maze createMaze () {
// do what's needed

ECEA450 - Software Engineering Il 18

ECEA450 - Software Engineering Il 17
Sample code (cont)
public Maze createMaze() {
Room rl = makeRoom(1);
Room r2 = makeRoom(2) ;
Door d = makeDoor (rl, r2);
rl.setSide (Direction.North, makeWall());
rl.setSide (Direction.East, d);
rl.setSide (Direction.West, makeWall());
rl.setSide (Direction.South, makeWall());
r2.setSide (Direction.North, makeWall());
r2.setSide (Direction.Easte, makeWall());
r2.setSide (Direction.West, d);
r2.setSide (Direction.South, makeWall());
Maze m = makeMaze () ;
m.addRoom (rl) ;
m.addRoom (r2) ;
return m;
}
ECE450 - Software Engineering Il 19

Sample code (cont 2)

public class BombedMazeGame extends MazeGame {
private Wall makeWall() {
return new BombedWall () ;
}
private Room makeRoom(int r) {
return new RoomWithABomb (r) ;

public class EnchantedMazeGame extends MazeGame {
private Room makeRoom(int r)
{ return new EnchantedRoom(r, castSpell()); }
private Door makeDoor (Room rl, Room r2)
{ return new DoorNeedingSpell (rl, r2); }
private Spell castSpell()
{ return new Spell(); }

ECE450 - Software Engineering Il 20




Sample code (cont 3)

public static void main(String[] args) {

Maze m = new EnchantedMazeGame () .createMaze () ;

public static void main(String[] args) {
Maze m = new BombedMazeGame () .createMaze () ;

Consequences

= Advantage
— Eliminates the need to bind specific implementation classes
— Can work with any user-defined ConcreteProduct classes

= Disadvantage
— Uses an inheritance dimension
— Must subclass to define new ConcreteProduct objects
— Interface consistency required

ECEA450 - Software Engineering Il

22

ECEA450 - Software Engineering Il 21
Provides hooks for subclasses
— Always more flexible than direct object creation
Connects parallel class hierarchies
— Localizes knowledge of which classes belong together
Figure [ crient |
[ [ I
LineFigure TextFigure LineManipulator TextManipulator
CreateManipulator() GreateMan DewnClick() DownClick()
Drag( Drag()
UpClick(]
ECE450 - Software Engineering Il 23

Implementation

= Two major varieties
— Creator class is abstract
= Requires subclass to implement
— Creator class is concrete: provides a default implementation
= Optionally allows subclass to re-implement

= Parameterized factory methods
— Generic make() method takes class id as parameter

= Naming conventions
— Use makeXXX() names

= Return object of class to be created
— Or store as member variable

ECE450 - Software Engineering Il

24




