
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Design Patterns I

ECE450 - Software Engineering II 2

The patterns ruckus

• We (software people) didn’t start the fire

• Christopher Alexander
– A Pattern Language
– A Timeless Way of Building

ECE450 - Software Engineering II 3

The patterns ruckus (more)

ECE450 - Software Engineering II 4

The patterns ruckus (even more)

2

ECE450 - Software Engineering II 5

Patterns in the world

• There are some problems that come up over and over again in a domain
– Architecture: How to provide easy access to an enclosed space selectively?
– Software: How to allow for open extension of classes without modifying their

currently accepted code?

• Each time a similar problem comes up, designers will typically start with
something that has worked before
– But then add a wrinkle inspired by something that works better for their current

context

• In the software field, an enthusiastic community has formed around the
concept of design patterns
– The “Gang of Four” (I hate that name) Design Patterns book really started it all

in 1995
– Architectures and designs are discussed using patterns terminology
– People won’t treat you with respect as a designer anymore if you’re not familiar

with at least some patterns

ECE450 - Software Engineering II 6

A pattern must...

• Solve a problem
– That is, it must be useful

• Have a context
– It must describe where the solution can be used

• Recur
– It must be relevant in other situations

• Teach
– It must provide sufficient understanding to tailor the solution

• Have a name
– It must be referred to consistently

ECE450 - Software Engineering II 7

Patterns craze

• Beware!
– It’s a sign of lack of expertise to think everything can be solved with patterns
– Or to believe that the more patterns one can stick into one’s design, the better

• Not everything is a pattern

• Patterns do not lead to direct code reuse

• Patterns are deceptively simple

• Even experts can disagree
– (ESPECIALLY experts can disagree)

• Designers’ key quality is good judgment
– Good judgment comes from experience
– Patterns are not a workaround to exercising good judgment

ECE450 - Software Engineering II 8

Design Pattern Descriptions

• Name and intent

• Problem and context
– What is the problem and the context where we would use this pattern?
– Under what specific conditions should this pattern be used?

• Solution
– A description of the elements that make up the design pattern
– Emphasizes their relationships, responsibilities, and collaborations
– Not a concrete design or implementation; rather an abstract description

• Positive and negative consequences of use
– The pros and cons of using the pattern
– Includes impact on reusability, portability, and extensibility

3

ECE450 - Software Engineering II 9

Organizing Patterns

• Organizing by purpose: What a pattern does
– Creational: Creating, initializing, and configuring classes and objects
– Structural: Composition of classes and objects
– Behavioral: Dynamic interactions among classes and objects

• Organizing by scope: What the pattern applies to
– Class patterns

• Focus on the relationships between classes and their subclasses
• Involve inheritance reuse

– Object patterns
• Focus on relationships between objects
• Involve composition reuse

• How would you classify the Template Method pattern?

ECE450 - Software Engineering II 10

Organizing Patterns...

ECE450 - Software Engineering II 11

Do I need to master them all?

• No –at least not now

• For the final, you’re expected to:
– Superficially know of all of them
– Master in depth a few of each kind

• The patterns catalog doesn’t end with the Gang of Four book
– There are concurrency patterns, analysis patterns, etc.
– Unreasonable to know of all of them if they’re out of your domain

ECE450 - Software Engineering II 12

Maze example

• Building a maze for a computer game

• A maze is a set of rooms
• A room knows its neighbours

– Another room
– A wall
– A door

4

ECE450 - Software Engineering II 13

Maze classes

ECE450 - Software Engineering II 14

Maze creation

public Maze createMaze() {
Room r1 = new Room(1);
Room r2 = new Room(2);
Door d = new Door(r1, r2);

r1.setSide(Direction.North, new Wall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, new Wall());
r1.setSide(Direction.South, new Wall());

r2.setSide(Direction.North, new Wall());
r2.setSide(Direction.East, d);
r2.setSide(Direction.West, new Wall());
r2.setSide(Direction.South, new Wall());

Maze m = new Maze();
m.addRoom(r1);
m.addRoom(r2);
return m;

}

ECE450 - Software Engineering II 15

That wasn’t fun

• Fairly complex member just to create a maze with two rooms

• Obvious simplification
– Room could initialize sides with four new Walls

– That (kind of) just moves the code elsewhere

• Problem lies elsewhere: inflexibility
– Hard-codes the maze creation
– Changing the layout can only be done by rewriting, or overriding and rewriting

• Plan for evolution
– Want to make the maze more flexible

• Easy to change the components of the game

– What to do about DoorNeedingSpell or EnchantedRoom?
• How can you change createMaze() so that it creates mazes with these different kinds of

classes?
• Biggest obstacle is hard-coding of class names

ECE450 - Software Engineering II 16

Design pattern: Factory method

• Use when:
– A class can’t anticipate the kind of objects to create
– Hide the secret of which helper subclass is the current delegate

5

ECE450 - Software Engineering II 17

Factory method (structure)

• Product
– Defines the interface of objects the factory method creates

• ConcreteProduct
– Implements the Product interface

• Creator
– Declares the factory method which returns a Product type
– Defines a default implementation
– Calls the factory method itself

• ConcreteCreator
– Overrides factory method: returns instance of ConcreteProduct

ECE450 - Software Engineering II 18

Sample code
public class MazeGame {

public static void main(String[] args) {

Maze m = new MazeGame().createMaze();

}

private Maze makeMaze() { return new Maze(); }
private Wall makeWall() { return new Wall(); }

private Room makeRoom(int r) { return new Room(r); }

private Door makeDoor(Room r1, Room r2) {
return new Door(r1, r2);

}

public Maze createMaze() {

// do what's needed
}

}

ECE450 - Software Engineering II 19

Sample code (cont)

public Maze createMaze() {
Room r1 = makeRoom(1);

Room r2 = makeRoom(2);
Door d = makeDoor(r1, r2);

r1.setSide(Direction.North, makeWall());

r1.setSide(Direction.East, d);
r1.setSide(Direction.West, makeWall());
r1.setSide(Direction.South, makeWall());

r2.setSide(Direction.North, makeWall());
r2.setSide(Direction.East•, makeWall());
r2.setSide(Direction.West, d);

r2.setSide(Direction.South, makeWall());

Maze m = makeMaze();
m.addRoom(r1);

m.addRoom(r2);
return m;

}

ECE450 - Software Engineering II 20

Sample code (cont 2)

public class BombedMazeGame extends MazeGame {

private Wall makeWall() {

return new BombedWall();

}

private Room makeRoom(int r) {

return new RoomWithABomb(r);

}

}

public class EnchantedMazeGame extends MazeGame {

private Room makeRoom(int r)

{ return new EnchantedRoom(r, castSpell()); }

private Door makeDoor(Room r1, Room r2)

{ return new DoorNeedingSpell(r1, r2); }

private Spell castSpell()

{ return new Spell(); }

}

6

ECE450 - Software Engineering II 21

Sample code (cont 3)

public static void main(String[] args) {

Maze m = new EnchantedMazeGame().createMaze();
}

public static void main(String[] args) {
Maze m = new BombedMazeGame().createMaze();

}

ECE450 - Software Engineering II 22

Consequences

• Advantage
– Eliminates the need to bind specific implementation classes
– Can work with any user-defined ConcreteProduct classes

• Disadvantage
– Uses an inheritance dimension
– Must subclass to define new ConcreteProduct objects
– Interface consistency required

ECE450 - Software Engineering II 23

Other consequences

• Provides hooks for subclasses
– Always more flexible than direct object creation

• Connects parallel class hierarchies
– Localizes knowledge of which classes belong together

ECE450 - Software Engineering II 24

Implementation

• Two major varieties
– Creator class is abstract

• Requires subclass to implement

– Creator class is concrete: provides a default implementation
• Optionally allows subclass to re-implement

• Parameterized factory methods
– Generic make() method takes class id as parameter

• Naming conventions
– Use makeXXX() names

• Return object of class to be created
– Or store as member variable

