
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Design Issues

adapted from Greg Wilson’s
CSC407 material ECE450 - Software Engineering II 2

What’s wrong with this?

public class PizzaMaker {
public void cookPizzas(List pizzas) {

for (int i=0; i<pizzas.size(); ++i) {
Object pizza = pizzas.get(i);
if (pizza instanceof ThinCrustPizza) {

((ThinCrustPizza)pizza).cookInWoodFireOven();
}
else if (pizza instanceof PanPizza) {

((PanPizza)pizza).cookInGreasyPan();
}
else {

// OH NO! What is this thing?
}

}

}
}

ECE450 - Software Engineering II 3

The Open-Closed Principle

• Classes should be open for extension, but closed for modification
– You should be able to extend a system without modifying the existing code

• The type-switch in the example violates this
– Have to edit the code every time the marketing department comes up with a

new kind of pizza

ECE450 - Software Engineering II 4

Abstraction is the solution

• Solve the problem by creating a Pizza interface with a cook method
– Or an abstract base class whose cook method must be overridden by every child

• The Template Method design pattern is used to set up the skeleton of an
algorithm
– Details then filled in by concrete subclasses

2

ECE450 - Software Engineering II 5

Cooking a generic pizza

public abstract class Pizza {
public final void cook() {

placeOnCookingSurface();
placeInCookingDevice();
int cookTime = getCookTime();

letItCook(cookTime);
removeFromCookingDevice();

}

protected abstract void placeOnCookingSurface();
protected abstract void placeInCookingDevice();
protected abstract int getCookTime();

protected abstract void letItCook(int min);
protected abstract void removeFromCookingDevice();

}

ECE450 - Software Engineering II 6

Is this general enough?

• But what if someone wants to do something you didn’t anticipate?
– E.g. wants to add a PancakePizza that has to be flipped over halfway through

the cooking process

• What are the options?

ECE450 - Software Engineering II 7

Override the Template Method?

• But cook was final

• And it’s storing up trouble for the future

public final void cook() {

placeOnCookingSurface();
placeInCookingDevice();
int cookTime = getCookTime();
letItCook(cookTime/2);
flip();
letItCook(cookTime/2);
removeFromCookingDevice();

}

ECE450 - Software Engineering II 8

Squeeze it somewhere else?

• removeFromCookingDevice shouldn’t be doing other things
– Think about the documentation

• Once again, we’re storing up trouble for the future

protected void removeFromCookingDevice() {

flip();
letItCook(cookTime);
…remove from skillet…

}

3

ECE450 - Software Engineering II 9

Leave space for future growth?

public final void cook() {
beforePlacingOnCookingSurface();
placeOnCookingSurface();
beforePlacingInCookingDevice();
placeInCookingDevice();

beforeCooking();
for (int i=0; i<getCookingPhases(); i++) {

letItCook(getCookTime(i));
afterCookingPhase(i);

}
beforeRemovingFromCookingDevice();
removeFromCookingDevice();
afterRemovingFromCookingDevice();

}

ECE450 - Software Engineering II 10

And the answer is...

• Plan for reasonable future growth
– “Reasonable” means “guided by your experience, and the experience of others”

• Note: compliance with the Open-Closed principle is a matter of judgment
– No algorithm or code analyzer can make a definitive ruling

ECE450 - Software Engineering II 11

Liskov substitution principle

• Anywhere you specify a base type, you should be able to use an instance
of a derived type
– This one is checkable, if you provide the system with enough information

• Polymorphism that obeys the rules of Design by Contract
– Allowed to weaken preconditions and strengthen postconditions, but not

viceversa

ECE450 - Software Engineering II 12

Is Vegan Pizza really pizza?

public interface Pizza {
public Cheese getCheese();

}

public class SimplePizza implements Pizza {

public Cheese getCheese() {
return new Mozzarella();

}

}

public class VeganPizza implements Pizza {

public Cheese getCheese() {
return null;

}

}

4

ECE450 - Software Engineering II 13

But then...

• Returning null violates the contract

• The problem is, that contract was implicit
– Which is why languages like Ada allow programmers to make contracts explicit

class Customer {

public boolean decideToBuy(Pizza p) {
Cheese c = p.getCheese();
return c.smellsGood();

}

ECE450 - Software Engineering II 14

This is not a solution!

• Why is this bad?

class Customer {

public boolean decideToBuy(Pizza p) {
Cheese c = p.getCheese();
if (c != null) {

return c.smellsGood();
}
else {

return false;
}

}

ECE450 - Software Engineering II 15

Possible solutions

• Weaken or remove the supertype contract
– Only if you have a strategy for updating existing code
– Remember, the contract was there for a reason...

• Remove or replace the operation
– Add a smellsGood method to pizza

ECE450 - Software Engineering II 16

Possible solutions (cont)

• Modify the inheritance hierarchy
– Only works if the code that calls getCheese knows if it has a real pizza or a

vegan pizza

«interface»
Pizza

«interface»
CheesePizza

SimplePizza

VeganPizza

5

ECE450 - Software Engineering II 17

Possible solutions (cont)

• Modify subtype behaviour
– In this case, use the Null Object Pattern to return an instance of NullCheese

• Null Object Pattern: Having a non-null object whose job is to take the place of null, and
whose methods all return 0, null, not-interesting, empty string, etc.

• A bit of a hack

• Opinions?

ECE450 - Software Engineering II 18

It’s not my job

• Single Responsibility Principle: A class or interface should only be
responsible for one thing
– Alternative phrasing: A class or interface should have only one reason to change

• Count responsibilities:

public interface Pizza {
public List<Topping> getToppings();
public void setToppings(List<Topping> tops);

public PizzaSize getSize();
public void setSize(PizzaSize size);
public PizzaCrust getCrust();

public void setCrust(PizzaCrust crust);
pub void cook(int temp, int minutes);
public TasteRating rateTaste();

public SmellRating rateSmell();
public boolean isBurnt();

}

building

cooking

ECE450 - Software Engineering II 19

Law of Demeter

• A method M of an object O may only invoke methods of:
– Itself
– Its parameters
– Objects it creates
– Its members

• In particular, methods should not invoke methods of other objects’
members

• A violation:

• This method depends on Pizza having a Cheese member, and Cheese
having a smellsGood method
– All these things might change.
– The more indirect connections the code has, the harder it is to understand, test,

and change

public boolean buyPizza(Pizza p) {
return p.getCheese().smellsGood();

}

