
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: An Aside:
The Quickest Tour through

the UML that you will ever get

ECE450 - Software Engineering II 2

Warning: Europe in 5 days

ECE450 - Software Engineering II 3

What is UML and why should I care?

• The Unified Modeling Language is an industry standard for specifying and
visualizing the artifacts of software systems
– A collection of diagrammatic languages to express everything from class

structures to execution scenarios
– A joint effort by object-oriented modeling researchers to merge their different

approaches
• James Rumbaugh, Grady Booch, Ivar Jacobson
• UML 1.0 came out in 1997
• Current version, UML 2.0
• http://www.uml.org/

• If there is one modeling language that you need to know to get a job, this
is it
– Although frankly you may not need to use it once you get that job
– If “Model-Driven Development” takes off, you will need this

• Easy to learn the basics, very hard to master it
– Especially the newest version
– For now all you need are those easy-to-learn basics

ECE450 - Software Engineering II 4

The many diagrams of UML

2

ECE450 - Software Engineering II 5

Class Diagrams

• Class diagrams define the structure of the classes in a system, the
relationship between all classes, and the components of each class.

Class Name

A class is a general concept
(represented as a square box). A
class defines the structural
attributes and behavioural
characteristics of that concept.
Shown as a rectangle labeled with
the class name.

Class

Class 1 Class 2Association

A (semantic) relationship between
classes. A line that joins two
classes.

Association

ECE450 - Software Engineering II 6

Class Diagrams (cont)

• Types of associations

Person FoodEats

Class 1 Class 2

Class 3

n-ary

Team Member

Car Engine

Car Volvo

Binary

n-ary

Aggregation (has-a)

Composition (is-composed-of)

Generalization (is-a-kind-of)

ECE450 - Software Engineering II 7

Class Diagrams (cont)

• Types of associations (cont)

Dependency Realization

Project Manager

Project

Team

The source class depends on (uses)
the target class

Worker

«datatype»
Human Resources

«datatype»
Project Manager

«datatype»
System Administrator

Class supports all operations of
target class but not all attributes or
associations.

ECE450 - Software Engineering II 8

Class Diagrams (cont)

• Attributes and operations

• Multiplicity
– n, where n = {0, 1, x, *}
– m..n, where m,n = {0, 1, x, *}

Attributes are what is known about
each object of this class type.
Operations are what objects of this
class type do.+operation 1()

+operation 2()
+operation 3()

-attribute 1
-attribute 2
-attribute 3

class 1

-name
Department

-name
-employee id

Professor

1..*

1..*

assigned

-is chair
Chair

-name
-schedule
-term

Course

0..* 0..*

teaches

1

1..*
offers

1 1

manages

3

ECE450 - Software Engineering II 9

Class Diagrams (cont)

• Design patterns are usually expressed through their class diagrams. E.g.,
decorator:

ECE450 - Software Engineering II 10

Use Case Diagrams

• Just what is a “use case”?
– The answer to the question “What functions will the new system provide?”

• How will people interact with it?
• Describe the system in terms of its users and its boundary

• Normally, a use case shows:
– A function that the system will provide
– The actors that are involved in that function
– A sequence of related actions performed by an actor and the system via a

dialogue
• The sequence usually explains the “common use” scenario, and covers some of the

exceptional cases briefly

• What is an actor?
– Anything that needs to interact with the system

• A person
• A role that different people may play
• An external system

ECE450 - Software Engineering II 11

Use Case Diagrams (cont)

• A use case is not diagrammatic!
– We normally describe use cases textually
– But we may have diagrams that summarize the interactions between system and

actors
• That is what use case diagrams are about

Staff contact

Actor

Change client
contact

Communication
association System

boundary

Use case

ECE450 - Software Engineering II 12

Use Case Diagrams (cont)

• An example
Add new

staff member

Add new
staff grade

Calculate staff
bonuses

Change grade
for staff member

Accountant

Change rate
for staff grade

4

ECE450 - Software Engineering II 13

Use Case Diagrams (cont)

• <<extends>> and <<uses>>
– <<extends>> when one case adds behaviour to a base case

• Used to model a part of a use case that the user may see as optional system behaviour
• Also models a separate sub-case which is executed conditionally

– <<uses>>: one use case invokes another (like a procedure call)
• Used to avoid describing the same flow of events several times
• Puts the common behaviour in a use case of its own

<<extends>>

Check Campaign
Budget

Print
Campaign
Summary

<<uses>>

Find Campaign

ECE450 - Software Engineering II 14

Use Case Diagrams (cont)

• Meeting scheduler example

Provide
constraints

Edit
ConstraintsWithdraw

Validate
User

Schedule
meeting

Initiator Participant

<<uses>>

<<extends>>

<<uses>>

Generate
Schedule

<<u
ses

>>
<
<
u
s
e
s
>
> <<

us
es
>>

ECE450 - Software Engineering II 15

Use Case Diagrams (cont)

• Generalizations
– Actor classes: Actors inherit use cases from the class
– Use case classes: Generalizations of several use cases

Generalisation relations:
Read as: “is a member of”
or just “is a”

ECE450 - Software Engineering II 16

Sequence Diagrams

• Sequence diagrams provide a more detailed look of the sequence of steps
executed in a use case
– Normally used for lower-level design
– If you wanted to specify all of your application’s scenarios with sequence

diagrams, you would need one for each of its features’ ramifications
• So we are usually interested in key scenarios only

• Sequence diagrams show:
– The actors and software classes/objects that intervene in the scenario
– The step-by-step interactions between them

• Chronologically, from top to bottom

– Details regarding when objects are created and activated

5

ECE450 - Software Engineering II 17

Sequence Diagrams (cont)

• Example

ECE450 - Software Engineering II 18

Sequence Diagrams (cont)

• This is not the full story
– We can illustrate branching, guards (conditions necessary for the execution of a

call), asynchronous messaging, and more
– In UML 2.0, sequence diagrams went through a major overhaul

• Conditionals, loops, etc.

• We don’t need the full story for this course
– These basics are enough
– But if you want to invest time in learning more about UML, sequence diagrams

are the place to start
• Along with class diagrams, they are the most frequently used kind of model

ECE450 - Software Engineering II 19

What about the others?

• Every kind of diagram has a (sometimes slightly) different purpose
– There is probably one that matches what you are trying to express

• On the other hand, you may rightfully accuse UML of bloating
– Design by committee
– Trying to be all things for all people
– Attempts at formalizing semantics vs. attempts to maintain comprehensibility

• My advice:
– Invest some time learning the basic diagrams
– Try it out for a small application of your own

• You’ll learn to see when it is useful and when it is overhead

– Do not impose it on your team
• Use of UML should be agreed by all members

