
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Key Principles of
Software Architecture and Design

(III)

adapted from Dave Penny’s
CSC407 material ECE450 - Software Engineering II 2

Object-Oriented Design

• The object-oriented transformation of the 1980’s and 1990’s was 
particularly profound, but it wasn’t easy
– Object-oriented development salesmen took advantage of the wave of 

enthusiasm
• Objects were supposed to improve your performance tenfold
• Promise of reuse: Plug in your classes anywhere you need them

– Many people struggled to “get it”
• ...and wrote object-oriented programs just like they used to write structure-oriented 

programs
• I.e., programs -> classes; functions -> methods; or...
• I.e., copy all of your program and put it in the main() method of your class.

• Object modeling in the 1990’s
– The best organization for a software system is one that is cohesive in the 

problem domain, not in the solution space
• Tends to isolate changes
• Tends to make the program easier to understand

ECE450 - Software Engineering II 3

Object-Oriented Principles

• Encapsulation
– Which embodies one of our now-familiar principles (information hiding)
– Modern languages allow us to enforce encapsulation through access declaration 

(example: public vs. protected attributes)

• Inheritance
– Declare new classes by extending old ones
– We inherit all of the old attributes and methods, but are free to modify/override 

any of them, and to add new ones

• Polymorphism
– Substitute one type for another without the caller needing to know

• We can make a Student.getGrade() call without worrying if we’re dealing with an 
UndergraduateStudent, a GraduateStudent, or a generic Student.

ECE450 - Software Engineering II 4

Object Modeling Method

• How do we even come up with the classes we will use in our system?

• Step 1: Object-Oriented Analysis
– Analyze the problem domain

• Identify problem domain classes and relationships between classes
• Identify attributes and methods
• Identify states and transitions
• Sample object structures and interactions

– At this level we are not programming! We are abstracting the real world

• Step 2: Object-Oriented Design
– Use the analysis as the core of a solution to:

• User interface design
• Database design
• Program design



2

ECE450 - Software Engineering II 5

Can we model everything?

• I’d like to see you try...
– But the world is too complex for us to model it completely

• A full model of you should include:
– Your basic information (name, gender, etc.)
– Your background
– Your family background and a trace to your ancestors
– Your medical history
– Your record of marks
– Your fingerprints and other bio-prints
– Your financial information
– A list of your friends, crushes, enemies, and acquaintances
– Your DNA
– ...

• We only model that which is relevant to the problem domain that we face
– Though there is such a thing as the CYC project...

ECE450 - Software Engineering II 6

Limitations of the Object-Oriented
Paradigm

• Fluids
– Need to be handled with amounts, but amounts vary with temperature/pressure

• Temporal concepts
– If we represent them with objects, we end up with awkward processes to handle 

them
• Is a year the accumulation of 365 day objects?

– If we don’t, we may lose other advantages of object-orientation (such as 
encapsulation)

• Abstract concepts
– Can we reduce “preference” to an object or attribute?

• And sometimes objects just get in the way
– You need a quick script and Java insists on a full object structure
– Hence the rise of non-dogmatic object oriented languages (e.g. Python)

ECE450 - Software Engineering II 7

Trying it out:
A meeting scheduler

• Here’s a relatively concrete problem. We have the task of developing a 
meeting scheduler. 
– Meetings have an organizer that may or may not attend the meeting, and a 

number of attendees
– Some of the attendees are essential to the meeting, others are optional
– Everyone has some preferences about when to meet, and some constraints
– Some of the attendees are Big Cheeses and we want the scheduler to satisfy 

their preferences over those of others
– Meetings usually have an agenda. Often, somebody takes the role of secretary, 

and produces the meeting’s minutes
– Arrangements for the meetings should usually happen electronically. Some 

people are annoyed by this and take a long time to respond to invitations
– Meetings require a space, a duration, and in some occasions equipment (such as 

a projector or a company-owned laptop)

• What are the classes in this problem domain?
– What are their attributes and methods?

ECE450 - Software Engineering II 8

Some observations...

• There was some unnecessary information that should not be modeled
• Not all of our classes will become classes in the system

– But many of them will

• So far we’re dealing with the business logic
– Later on we should also consider how the system is going to support the 

methods of these classes
• User interface objects
• Databases
• ...

• Most likely we got some classes wrong and we didn’t plan for change
– E.g. the meeting is a videoconference and we need to book rooms both in 

Toronto and in Vancouver
• And we’re on different timezones

– This is where patterns will come in handy

• PRACTICE THAT EXERCISE IN OTHER DOMAINS
– I guarantee you it’s going to come up in your exam



3

ECE450 - Software Engineering II 9

Summary of design principles

• Decomposition
– Avoid workflow-based decomposition

• Information hiding
– Each module/class hides its own secrets (data representations, algorithms, 

formats, lower-level interfaces)

• Minimize coupling
– If we talk/share information, it’s because the problem demands it

• Maximize cohesion
– Each module/class does (close to) one thing only

• Extensibility
– Open for extension, closed for modification
– No, we haven’t talked about this one

• We will get back to it


