
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Key Principles of
Software Architecture and Design

(II)

adapted from Dave Penny’s
CSC407 material ECE450 - Software Engineering II 2

Structured Design

• Early work of software design (from 1979) that presented concepts such
as cohesion, coupling, and encapsulation.
– “Fundamentals of a Discipline of Computer Program and Systems Design”

• by Edward Yourdon and Larry Constantine

• Modules are not the same as for Parnas:
– Module: A lexically contiguous sequence of program statements, bounded by

boundary elements, having an aggregate identifier.
• A function, a procedure, a method

• Normal and pathological connections between modules:

normal
pathological

ECE450 - Software Engineering II 3

Human limitations on
dealing with complexity

• George Miller: The Magical Number Seven, Plus or Minus Two
– Can’t keep track of too many things at the same time
– Yourdon: Maximum number of subroutines called by a routine should be 5-9.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

Things to consider at once

E
rr

or
s

ECE450 - Software Engineering II 4

Two kinds of complexity

• Intra-module complexity
– Complexity within one module

• Inter-module complexity
– Complexity of modules interacting with one another

Inter-module effect grows as the
number of modules grow

Intra-module effect decrease as the
modules become smaller

Total errors is a combination

Errors

of modules

2

ECE450 - Software Engineering II 5

Overall cost

• The overall cost of a system depends on both:
– The cost of production (and debugging)
– And the cost of maintenance

• Both are approximately equal for a typical system

• These costs are directly related to the complexity of the code
– Complexity injects more errors and makes them harder to fix
– Complexity requires more changes and makes them harder to effect

• Complexity can be reduced by breaking the problem into smaller pieces
– (So long as the pieces are relatively independent of one another)

• But eventually the process of breaking pieces into smaller pieces creates
more complexity than it eliminates.
– 1970’s: Happens later than most designers would like to believe
– 2000’s: Happens sooner than most designers would like to believe

ECE450 - Software Engineering II 6

In case you don’t believe it...

ECE450 - Software Engineering II 7

Design approach

• Therefore, there is some optimal level of sub-division that minimizes
complexity
– But to reach it you need your judgment

• Once you know the right level, the key decision is to choose how to
divide:
– Minimize coupling between modules

• Reduces complexity of interaction

– Maximize cohesion within modules
• Keeps changes from propagating

– Duals of one another

ECE450 - Software Engineering II 8

Coupling

• Two modules are independent if each can function completely without
the presence of the other
– They are decoupled, or uncoupled

• Highly coupled modules are joined by many interconnections and
dependencies
– And loosely coupled modules have a few interconnections and dependencies

• Goal: Minimize coupling between modules in a system
– Coupling translates into “the probability that in coding/modifying/debugging

module A we will have to take into account something from module B”

• Note that a system that has only one module (function) is absolutely
uncoupled
– But that’s not what we want!
– (We’ll analyze cohesion, coupling’s complement, later)

3

ECE450 - Software Engineering II 9

Influences on coupling

• Type of connection
– Minimally connected: parameters to a subroutine
– Pathologically connected: non-parameter data references

• Interface complexity
– Number of parameters/returns
– Difficulty of usage

• Information flow
– Data flow: Passing data is handled uniformly
– Control flow: Passing of flags governs how data is processed

• Binding time
– More static = more complex

• E.g., literal “30” vs. pervasive constant N_STUDENTS, vs. execution-time parameter

ECE450 - Software Engineering II 10

Common-environment coupling

• A module writes into global data
• A different module reads from it (data or, worse, control)

Q

R S

T
U

V
W

X

ECE450 - Software Engineering II 11

Cohesion

• While minimizing coupling, we must also maximize cohesion
– How well a particular module “holds together”

• The cement that holds a module together

– Answer the questions:
• Does this make sense as a distinct module?
• Do these things belong together?

• Best cohesion is when it comes from the problem space, not the solution
space
– Echoed years later in OOA/OOD

ECE450 - Software Engineering II 12

Levels of lack of cohesion
(roughly from worst to best)

• Coincidental
– No reason for doing two things in the same routine

• double computeAndRead(double x, char c);

• Logical
– Similar class of things that still should be separated

• char input(bool fromFile, bool fromStdIn);

• Temporal
– The fact that things happen one after the other is no excuse to put them in the

same routine
• void initSimulationAndPrepareFirst();

• Procedural
– Operations are together because they are in the same loop or decision process,

but no higher cohesion exists
• typeDecide(m); // Decide type of plant being simulated and perform simulation part 1

4

ECE450 - Software Engineering II 13

Levels of lack of cohesion
(roughly from worst to best) (cont)

• Communicational
– Procedures that access the same data are kept together

• void printReports(data x); // Outputs day report and monthly summary

• Sequential
– A sequence of steps that take the output from the previous step as input for the

next step
• string compile(String program) {parse, semantic analysis, code generation}

• Functional
– That which is none of the above
– Does one and only one conceptual thing
– Equivalent to information hiding

• double sqrt(double x);

ECE450 - Software Engineering II 14

Implementation and cohesion

• No need to be dogmatic
• Consider module FG that does two things, F and G

– Chances are there is some code that can be shared between them
– If F and G have high cohesion, that’s OK
– Otherwise it will become difficult to work with

G

F

G

F

