
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Key Principles of
Software Architecture and Design

(I)

adapted from Dave Penny’s
CSC407 material ECE450 - Software Engineering II 2

Broad history of
architecture and design

• 1960’s: Structured Programming
– Response to spaghetti code
– “GOTO Considered Harmful”, Dijkstra

• Why?

– It took a while to convince people that coding without GOTOs was
• Possible
• Desirable

• 1970’s: Structured Design
– There are good ways and bad ways to divide programs in subroutines
– See coming KWIC example

• 1980’s and 1990’s: Modular Programming and Object Orientation
– Move away from structured languages and into object-oriented programming
– Object-oriented analysis and design as a way to make sense of the world

ECE450 - Software Engineering II 3

Broad history of
architecture and design (cont)

• 2000’s: Several current trends. Three examples:
– Aspect-orientation

• Identify “aspects” of the system, and work on them separately
• Common example: logging
• Still mostly experimental

– Agent-orientation
• Think of “agents”, each trying to accomplish its particular goals
• Allows for better design of autonomic and flexible systems

– Web Services architectures
• REST
• AJAX

ECE450 - Software Engineering II 4

Module Structure

• Classic paper:
– “On the Criteria to be Used in Decomposing Systems into Modules”, by David 

Parnas
• Discusses modularization (where “module” = collection of subroutines and data elements)
• Critiques design by flowchart
• Hints towards object-oriented approaches to design
• Key lessons still overlooked by most of us!

• KWIC = Key word in context
– Input is a set of lines of text

• Software Engineering II
• Mary had a little lamb

– Output:
• Engineering II Software
• II Software Engineering
• Mary had a little lamb
• Software Engineering II
• a little lamb Mary had
• had a little lamb Mary
• lamb Mary had a little
• little lamb Mary had a



2

ECE450 - Software Engineering II 5

Define its modules!

• How would you modularize it?

• Again:
– Input is a set of lines of text

• Software Engineering II
• Mary had a little lamb

– Output:
• Engineering II Software
• II Software Engineering
• Mary had a little lamb
• Software Engineering II
• a little lamb Mary had
• had a little lamb Mary
• lamb Mary had a little
• little lamb Mary had a

ECE450 - Software Engineering II 6

KWIC Modularization 1

Master control

Input medium Output medium

Characters Index Alphabetized
Index

Input Circular Shift Alphabetizer Output

ECE450 - Software Engineering II 7

KWIC Modularization 2

Master control

Input medium Output medium

Input Output

Lines

se
tc

(i,
w,

j,c
)

ge
tc

(i,
w,

j)

nW
or

ds
(i)

Circular Shifter

ge
tc

(i,
w,

j)

nW
or

ds
(i)

cs
se

tu
p

Alphabetizer

do
Al

ph

Ith
(i)

ECE450 - Software Engineering II 8

Analysis of the modularizations

• Modularization 1
– Based on the sequence of steps of the program

• Each major step in the processing was a module

• Modularization 2
– Based on the principle of information hiding
– Each module has one or more “secrets”

• Lines: How characters and lines are stored
• Circular shifter: Algorithm for shifting and storage of shifts
• Alphabetizer: Algorithm for alphabetization, when to alphabetize

• Note how both systems might share the same data structures and 
algorithms
– They might be identical in their executable representations!

• The difference is in how to divide them in work assignments
– There are many representations other than the executable one:

• For documentation
• For understanding
• For modifying
• ...



3

ECE450 - Software Engineering II 9

Comparison of changeability

• What design decisions might change? How do they affect each 
modularization?
– Format of the input

• Affects one module in each

– All lines stored in memory?
• Affects ALL modules in Mod 1, one module in Mod 2!

– Pack characters 4 to a word
• Affects ALL modules in Mod 1, one module in Mod 2!

– Make an index for circular shifts, rather than store them
• Affects three modules in Mod 1, one module in Mod 2

– Alphabetize once, rather than searching for items as needed (or partially 
alphabetize)

• Affects three modules in Mod 1, one module in Mod 2

ECE450 - Software Engineering II 10

Other comparisons

• Independent development?
– Modularization 1

• Must design all data structures before parallel work can proceed
• Complex decisions if you’re new to the problem domain

– Modularization 2
• Must design interfaces before parallel work can begin
• ...which need only be simple descriptions

• Efficiency?
– Modularization 1 might actually be more efficient

• Less method calls
• Depends on the decisions at each module in Modularization 2

• Comprehensibility?
– According to Parnas, Modularization 2 is better

• You may have a different judgment
• ...but remember that each module only needs to “know” very little about the others


