
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Introduction to
Software Architecture

ECE450 - Software Engineering II 2

Software “Architecture”?

• We’re leaning on the construction metaphor
– What do people refer to when they talk about “architecture”?

ECE450 - Software Engineering II 3

Software Architecture Reminder

• Simple definition: A software 
architecture is the structure of a 
system
– Consider:

• Software components
• Their relationships
• Interfaces to the external world

• Dealing with components is an 
abstraction
– Ignore lower level details

• What is the color of the pillars?
• How does the sorting algorithm 

work?
• Who cares at this point?

ECE450 - Software Engineering II 4

Software Architecture Reminder

• Note that there is more than one structure in a system
– Module structure

• Which module uses which? who calls whom?

– Process execution structure
• What is the chain of events that occurs when we receive input?

– File structure
• Databases? Libraries?

– Physical structure
• Network layout? Types of computers?

• Types of structures crosscut each other, so they need to be considered 
and handled simultaneously



2

ECE450 - Software Engineering II 5

Architecture and Design

• Do not confuse them!
– When dealing with the system level we do architecture
– When dealing with code, classes, etc., we do design

• Architecture...
– Deals with the high-level construction of a system

• Technology choices (language, platform, database)
• System construction (overall structure –monolithic, 3-tiered?)
• Modules and programs

• Design...
– Deals with how and where to “lay down” code

• Classes, methods, and attributes
• Design patterns
• Dependencies among classes
• Subsystems, (Java) packages

• But note that the boundary between architecture and design is blurry

ECE450 - Software Engineering II 6

Why is architecture important?

• Set out the key elements and aspects of the software system
– The most difficult to correct, the hardest to change
– The ones that defines implementation constraints
– The ones that enables or inhibit quality attributes (e.g. security, performance)

• Treating a system as components allows for narrower focus
– Divide and conquer
– Easier organization (team A works on module X, team B works on module Y)
– Easier estimation

• Architecture documents enable early discussions on possible solutions

• Architecture documents allow for review
– Training tools
– Progress indicators

ECE450 - Software Engineering II 7

A word on documentation

• Does not have to be extremely detailed
– Most of the times, annotated boxes and arrows will do

• But it does have to be extremely clear
– For yourself
– For your future self
– For software designers
– For new developers learning about your system
– For the technical documentation

• Lack of detail != Lack of clarity
– For every component

• State its nature and main tasks

– For every relationship among components
• State who depends on whom, what sort of information is passed

– For every external interface
• Standards and protocols used, or at least a high-level description of the kinds of 

interactions

ECE450 - Software Engineering II 8

OK, OK, architecture is important.
How do I do it?

• Well...
– There’s really no structured way to do it
– All I can say is, if:

• You know and understand the requirements, AND
• Have some domain experience, AND
• Have paid attention to other systems’ architectures...

– ...then the shape of the system will start to form on your mind
• Yes, it’s a little bit of a black art

• But I can give you some tips
– Reading and studying other architectures is essential
– Iterations are good
– Documenting the iterations is better
– Getting feedback on each iteration is even better
– Trying out or simulating your latest iteration “in the small” is best



3

ECE450 - Software Engineering II 9

“Non-Functional” Requirements
must be satisfied

• Non-Functional Requirements (NFRs): All those system qualities that can’t 
really be expressed as features
– Performance
– Usability
– Security
– Availability
– Robustness
– ...

• The {browser, operating system, IM client} with the most features won’t 
take off if
– It’s slow
– We can’t make sense of it
– Has some glaring security holes
– ...

• Architectural work is the key time to address these problems

ECE450 - Software Engineering II 10

There are plenty of NFRs to 
consider

• The Usual Suspects
– Performance
– Usability
– ...

• Those that facilitate production and maintenance
– Conceptual integrity
– Modifiability
– Reusability
– Testability
– ...

• Those needed to keep the business running
– Cost
– Time
– Projected lifetime
– ...

ECE450 - Software Engineering II 11

Successful architectures
address two issues

• First issue: What is the best structure to satisfy the system’s functional 
and behavioral requirements?
– That is, so that it does everything it is supposed to do
– ...at the level of quality that we require?

• Second issue: What is the best structure to ensure that we can build the 
system given
– Our skills and assets
– Our business constraints (or assignment deadlines!)
– Our competitors’ offerings

• And the most important question, what is the best structure to satisfy 
both problems?


