Today: Requirements Engineering: Starting points for elicitation

adapted from Steve Easterbrook’s material on Requirements Engineering

Requirements Elicitation

• Starting point
 • Some notion that there is a “problem” that needs solving
 • e.g. dissatisfaction with the current state of affairs
 • e.g. a new business opportunity, or a potential saving of cost, time, resources, etc.
 • Collect enough information to:
 • Identify the “problem”/“opportunity”
 • Which problem needs to be solved? (identify problem Boundaries)
 • Where is the problem? (understand the Contact/Problem Domain)
 • Whose problem is it? (identify Stakeholders)
 • Why does it need solving? (identify the stakeholders’ Goals)
 • How does the problem manifest itself? (collect some Scenarios)
 • When does it need solving? (identify Development Constraints)
 • What might prevent us solving it? (identify Feasibility and Risk)
 • become an expert in the problem domain
 • Learn how to find your way round a new problem area quickly
 • Use your (initial) ignorance as an excuse to ask (dumb?) questions
 • Recognize the domain expertise of the people you talk to

• Where do we start?
 • Identify the problem
 • What is the objective of the project?
 • the “vision” of those who are pushing for it?
 • e.g., “Scheduling meetings is too costly right now”
 • Scope the problem
 • given the vision, how much do we tackle?
 • e.g. “Build a system that schedules meetings”, …or…
 • e.g. “Build a system that maintains people’s calendars” …or…
 • Identify solution scenarios
 • given the problem, what is the appropriate business process for solving it?
 • e.g., “Anyone who wants to schedule a meeting goes to the secretary, gives details and the
 secretary handles the rest”, …or…
 • Scope the solution
 • Given a business process, what parts should be automated, and how?
 • e.g., “Computer takes in scheduling request details, outputs a solution” …or…
 • e.g., “Solution arrived at interactively by secretary and computer” …or…

• Identifying the problem
 • Vague problem stated by the customer:
 • E.g. university textbook store:
 • Manager wants to computerize the book order forms filled out by instructors;
 • E.g. A large insurance company:
 • Claims manager wants to cut down the average time it takes to process an insurance
 claim from 2 months to 2 weeks
 • E.g. Large Government Aerospace Agency:
 • The president wants to send a manned mission to Mars by the the year 2020
 • Often you only see symptoms rather than causes:
 • E.g. “Ontario patients needing X-ray scans have to wait for months”
 • The long wait is the symptom, not the problem. The problem may be:
 • Shortage of X-ray machines;
 • Shortage of trained staff;
 • Shortage of doctors to process the data
 • Inefficient scheduling procedures
Stakeholders

- Stakeholder analysis:
 - Identify all the people who must be consulted during information acquisition

- Example stakeholders
 - Users
 - concerned with the features and functionality of the new system
 - Designers
 - want to build a perfect system, or reuse existing code
 - Systems analysts
 - want to "get the requirements right"
 - Training and user support staff
 - want to make sure the new system is usable and manageable
 - Business analysts
 - want to make sure "we are doing better than the competition"
 - Technical authors
 - will prepare user manuals and other documentation for the new system
 - The project manager
 - wants to complete the project on time, within budget, with all objectives met.
 - "The customer"
 - Wants to get best value for money invested!

Types of stakeholders:

- Levels of authority
 - Top management
 - establishes goals
 - does long-range planning
 - determines new market & product developments
 - decides on mergers & acquisitions.
 - Middle management
 - sets objectives
 - allocates & controls resources
 - does planning
 - measures performance
 - Lower management
 - supervises day-to-day operations
 - takes corrective action when necessary.
 - Operational level
 - performs day-to-day operations

Identifying stakeholders’ goals

- Approach
 - Focus on *why* a system is required
 - Express the ‘why’ as a set of stakeholder goals
 - Use goal refinement to arrive at specific requirements
 - Goal analysis
 - document, organize and classify goals
 - Goal evolution
 - refine, elaborate, and operationalize goals
 - Goal hierarchies show refinements and alternatives
- Advantages
 - Reasonably intuitive
 - Explicit declaration of goals provides sound basis for conflict resolution
- Disadvantages
 - Captures a static picture - what if goals change over time?
 - Can regress forever up (or down) the goal hierarchy

Scoping decision 1

- Decide the scope of the problem:
 - “Textbooks are often not ordered in time for the start of classes”
 - But that’s just a symptom. (So you ask the manager ‘why?’)
 - “Because we don’t receive the booklists from instructors early enough”
 - Is that just a symptom of some other problem? (…so ask the instructors “why?”)
 - “Because the instructors aren’t allocated to courses early enough”
 - Is that just a symptom of some other problem? (…so ask the UG office “why?”)
 - “Because we never know who’s available to teach until the last minute”
 - Is that just a symptom of some other problem? (…so ask the dept chair “why?”)
 - “Because there’s always uncertainty about who gets hired, sabbaticals, etc.”
 - Is that just a symptom of some other problem? (…so ask the dept chair “why?”)
 - “Because instructors we want to hire don’t accept our offers early enough!”
 - Is that just a symptom of some other problem? (…so ask the new recruits “why?”)
 - “Because some other universities seem to wait for ages before making offers”
 - Is that just a symptom of some other problem? (…so ask U of Waterloo, etc. “why?”)
 - “Because it takes our department a long time to reach consensus on hiring”
 - Is that just a symptom of some other problem? (…so ask U of Waterloo, and that will help us get our textbooks for the start of class…)

- "The customer"
 - Wants to get best value for money invested!

- "Top management"
 - establishes goals
 - does long-range planning
 - determines new market & product developments
 - decides on mergers & acquisitions.

- "Middle management"
 - sets objectives
 - allocates & controls resources
 - does planning
 - measures performance

- "Lower management"
 - supervises day-to-day operations
 - takes corrective action when necessary.

- "Operational level"
 - performs day-to-day operations
How to scope the problem

- **Difficulty:**
 - Every problem can be seen as a symptom of some other (larger) problem
 - You can keep on tracing root causes forever if you're not careful

- **Approach:** (…ask yourself these questions…)
 - Is there a reasonable expectation that this problem can be solved?
 - (…independently of the larger problem?)
 - Is there a reasonable expectation that solving this problem will help?
 - (…without also solving the larger problem?)
 - Is this a problem that the stakeholders want solved?
 - (do the "local experts" think this problem is the one that matters?)
 - Is this a problem that someone will pay you to solve?
 - (Hint: a feasibility study should quantify the return on investment)

How to scope the solution

- **Difficulty:**
 - We could keep on throwing more technology at the problem forever
 - It's hard to decide when to stop adding extra "bells and whistles"

- **Approach:** (…select among alternatives carefully…)
 - Is there a reasonable expectation that this alternative can be implemented?
 - (…independently of all the other options?)
 - Is there a reasonable expectation that implementing this alternative will (help to) solve the original problem?
 - (…without also having to address other aspects of the problem?)
 - Is this a solution that the stakeholders can live with?
 - (do the "local experts" think they would use all these functions?)
 - Is this a solution that someone will pay you to build?
 - (Hint: a feasibility study should quantify the return on investment for each alternative)

Scoping decision 2

- ** Decide the scope of the solution**
 - Say you decided that delay in processing booklists from instructors is the right level of problem to tackle.
 - "So, let's computerize the submission of textbook forms from instructors"
 - But while we're at it:
 - "It would help if we also computerized the submission of orders to the publishers"
 - …and of course:
 - "we ought to computerize the management of book inventories too, so we can quickly check stock levels before ordering new books"
 - …and in that case:
 - "we might as well computerize the archives of past years booklists so that we can predict demand better"
 - …and therefore:
 - "I would also make sense to provide a computerized used book exchange, because that has a big effect on demand for new books"
 - …and then of course there's … oh, wait, this is going to cost millions!
 - Bookstore manager: "tell me again how this automated used book exchange will help me order books faster?"

Scenarios

- **Scenarios**
 - Specific sequence of interaction between actor and system
 - Tend to be short (e.g. between 3 and 7 steps)
 - May be:
 - positive (i.e. required behavior)
 - negative (i.e. an undesirable interaction)
 - May be indicative (describe current system) or optative (how it should be)

- **Advantages**
 - Very natural: stakeholders tend to use them spontaneously
 - E.g. "suppose I'm admitted to hospital - what happens during my admission?"
 - Typical answer: "You, or the person accompanying you would talk to the person at the admissions desk. You have to show your OHIP card and explain who referred you to the hospital. Then you…" [and so on]

- **Disadvantages**
 - Lack of structure
 - Hard to check for completeness
Example Scenario

<table>
<thead>
<tr>
<th>Action</th>
<th>Goals satisfied</th>
<th>Obstacles / Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice requests meeting, specifying participants, timeframe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS sends participant requests to Bob, Carlo, and Daphne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS sends announcement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob reads announcement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlo reads announcement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne reads announcement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attendees preferences known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meeting announced; attendance confirmed (?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room availability determined; room booked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meeting requested; attendee list obtained</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob replies with preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne replies with preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlo replies with preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attendees preferences known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne reads message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob reads message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS sends participant requests to Bob, Carlo, and Daphne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did we miss a goal?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary

- **Scoping is important**
 - What is the scope of the problem should you tackle?
 - What is the scope of the desired solution?

- **Ask Who and Why questions**
 - Who are the key stakeholders?
 - Why do they want this problem solved?
 - Analyze their goals.

- **Ask How questions**
 - How is each goal satisfied?
 - How might a new system improve things?
 - Develop scenarios.