— ~ 3 =) = =
[1L MEED To wNOW FIRST OF ALL f
VBOR REBUTRERERTS b WHAT WRE YOU et RS
BEFORE 1 START 10 [fy TRYTHE T MY BOFTWIARE
|, DESTGN T SOFTIIARE ! |, ARCOMPLIEH!). = A
L i ——
|

{ TRY TO GET THIS)| s ™
T LJONT KNOWI LHAT " | CAN YOU DESTON
3 R A
| Y N

B

THICK SKULL THE

SOFTWAKE CAN 0O
WHATEVIA 1 DESIGN

\. IT TO DO y

1 ChH 1
UMTIL YOU TELL ME
LIAT THE SOFTLUARE
CAN GO, !

© Seolt Admes, Inc /DAL by UFS, Inc,

ECEA450 - Software Engineering Il 1

ECE450 — Software Engineering Il

Today: Introduction to
Requirements Engineering

adapted from Steve Easterbrook's
material on Requirements Engineering

ECEA450 - Software Engineering Il 2

Building software
for a reason

Software (on its own) is useless
— Software is an abstract description of a set of computations
— Software only becomes useful when run on some hardware
« we sometimes take the hardware for granted
— Software + Hardware = “Computer System”
A Computer System (on its own) is useless
— Only useful in the context of some human activity that it can support
* we sometimes take the human context for granted
— A new computer system will change human activities in significant ways
— Software + Hardware + Human Activities = “Software-Intensive System”
‘Software’ makes many things possible
— Itis complex and adaptable
— It can be rapidly changed on-the-fly

— It turns general-purpose hardware into a huge variety of useful machines
ECE450 - Software Engineering Il 3

Quality = Fitness for purpose

Software technology is everywhere
— Affects nearly all aspects of our lives
— But our experience of software technology is often frustrating/disappointing
Software is designed for a purpose
— Ifit doesn’t work well then either:
« ...the designer didn’'t have an adequate understanding of the purpose
« ...or we are using the software for a purpose different from the intended one
— Requirements analysis is about identifying this purpose
« Inadequate understanding of the purpose leads to poor quality software
The purpose is found in human activities
— E.g. Purpose of a banking system comes from the business activities of banks and
the needs of their customers
— The purpose is often complex:
« Many different kinds of people and activities
« Conflicting interests among them

ECE450 - Software Engineering Il 4

Interaction loop

Application Domain ﬁ{?ﬂ@@&i@ Machine Domain
@ PrOgFamns

computers

: Engineering Il

Complexity of purpose

« People and software are closely-coupled
— Complex modes of interaction
— Long duration of interaction
— Mixed-initiative interaction
— Socially-situated interaction
— ...software systems and human activity shape each other in complex ways

* The problems we'd like software to solve are “wicked”
— No definitive formulation of the problem
— No stopping rule (each solution leads to new insights)
— Solutions are not right or wrong
— No objective test of how good a solution is (subjective judgment needed)
— Each problem is unique (no other problem is exactly like it)
— Each problem can be treated as a symptom of another problem
— Problems often have strong political, ethical or professional dimensions

ECEA450 - Software Engineering Il

Dealing with problem
complexity

* Abstraction
— Ignore detail to see the big picture
— Treat objects as the same by ignoring certain differences
— (beware: every abstraction involves choice over what is important)
* Decomposition
— Partition a problem into independent pieces, to study separately
— (beware: the parts are rarely independent really)
* Projection
— Separate different concerns (views) and describe them separately
— Different from decomposition as it does not partition the problem space
— (beware: different views will be inconsistent most of the time)
¢ Modularization
— Choose structures that are stable over time, to localize change
— (beware: any structure will make some changes easier and others harder)

ECE450 - Software Engineering Il 7

Designing for people

* What is the real goal of software design?
— Creating new programs, components, algorithms, user interfaces,...?
— Making human activities more effective, efficient, safe, enjoyable,...?
* How rational is the design process?
— Hard systems view:
« Software problems can be decomposed systematically
« The requirements can be represented formally in a specification
This specification can be validated to ensure it is correct
A correct program is one that satisfies such a specification
— Soft systems view:
« Software development is embedded in a complex organizational context
« There are multiple stakeholders with different values and goals
« Software design is part of an ongoing learning process by the organization
Requirements can never be adequately captured in a specification
Participation of users and others throughout development is essential
— Reconciliation:
« Hard systems view okay if there is local consensus on the nature of the problem
ECE450 - Software Engineering Il

Which systems are soft?

Generic software components
— E.g. Core operating system functions, network services, middleware, ...
— Functionality relatively stable, determined by technical interfaces
— But note that these systems still affect human activity
« E.g. concepts of a file', a ‘URL’, etc.
Control Systems
— E.g. aircraft flight control, industrial process control, ...
— Most requirements determined by the physical processes to be controlled
— But note that operator interaction is usually crucial
« E.g. accidents caused when the system doesn’t behave as the operator expected
Information Systems
— E.g. office automation, groupware, web services, business support,...
— These systems cannot be decoupled from the activities they support
— Design of the software entails design of the human activity
« The software and the human activities co-evolve

ECEA450 - Software Engineering Il 9

Definition of
Requirements Engineering

Not a phase
or stage!
\Qquirements Engineering (RE) is a
set of activities concerned with Designers need to
C icati | i ifvi icati now how and where
ign.uy;;ﬁ;:;{;}ﬂr{ «—+—identifying and commun!catlng_ the /m ow how and where
as the analysis / purpose of a software»lrjte ve™
system, and the contexts in which it
will be used. Hence, RE acts as the
bridge between the real world need%\
Requirements are
" Quality means of users, customers, and other ‘:Zf-lll\',\' ot what
‘L'_“’“S*‘”“""‘"’({f“- constituencies affected by a software is needed-
annot say anything apees
about quality unless you system, and\the capabilities and
understand the purpose opportunities afforded by software- \
intensive tgchnologies --and partly about
what is possible

\

Need to identify all the stakeholders - not just the
customer and user

ECEA450 - Software Engineering Il 10

Cost of getting it wrong

Cost of fixing errors
— Typical development process:
requirements analysis = software design = programming = development testing =
acceptance testing = operation
— Errors cost more to fix the longer they are undetected
« E.g. A requirements error found in testing costs 100 times more than a programming error
found in testing
Causes of project failure
— Survey of US software projects by the Standish group:
Top 3 success factors:
1) User involvement
1o 1998 2) Executive management support
Successful 16% 26% 3) Clear statement of requirements
Top 3 factors leading to failure:
1) Lack of user input
Cancelled 31% 28% 2) Incomplete requirements & specs
3) _Changing requirements & specs

Challenged 53% 46%

ECE450 - Software Engineering Il 11

What do Requirements
Analysts do?

Starting point
— Some notion that there is a “problem” that needs solving
« e.g. dissatisfaction with the current state of affairs
* e.g. anew business opportunity
« e.g. apotential saving of cost, time, resource usage, etc.
— A Requirements Analyst is an agent of change
The requirements analyst must:
— identify the “problem”/"opportunity”
Which problem needs to be solved? (identify problem Boundaries)
Where is the problem? (understand the Context/Problem Domain)
Whose problem is it? (identify Stakeholders)
Why does it need solving? (identify the stakeholders’ Goals)
How might a software system help? (collect some Scenarios)
When does it need solving? (identify Development Constraints)
What might prevent us solving it? (identify Feasibility and Risk)
— and become an expert in the problem domain
« although ignorance is important too -- “the smart ignoramus”
ECE450 - Software Engineering Il 12

Separating the problem
from the solution

Problem
Situation

A separate problem description
is useful:
— Most obvious problem might
not the right one to solve

— Problem statement can be
discussed with stakeholders Problem
— Problem statement can be used Statement -
to evaluate design choices £
. < g
— Problem statement is a source @ g 5
of good test cases B $ e
Still need to check: 5| ¢ H
— Solution correctly solves the A Implementation
stated problem 3 Statement
— Problem statement
corresponds to the needs of the -
stakeholders
[/
— ’
ECEA450 - Software Engineering Il 13

Intertwining of problems
and solutions

Independent Implemenfaﬁoﬂ Dependeﬂce Dependent
General
Path of exploration
Level
of
Detail
Problem Implementation
. Statement Statement
Detailed

ECEA450 - Software Engineering Il 14

Observations about
Requirements Engineering

It is not necessarily a sequential process:

— Don't have to write the problem statement before the solution statement
« (Re-)writing a problem statement can be useful at any stage of development

— Requirements Eng. activities continue throughout the development process
The problem statement will be imperfect

— Requirements models are approximations of the world
« will contain inaccuracies and inconsistencies
— will omit some information.
« analysis should reduce the risk that these will cause serious problems...

Perfecting a specification may not be cost-effective

— Requirements analysis has a cost

— For different projects, the cost-benefit balance will be different
Problem statement should never be treated as fixed

— Change is inevitable, and therefore must be planned for

— There should be a way of incorporating changes periodically

ECE450 - Software Engineering Il 15

Reuvisiting Alice

BLL MEED TO WG ||
youm kcumneminTs (I
i

wrokr Tt el
otszom e sor s]

] |
£92
2=

prorsem e Tay 10867 THis
Lot T || |/ cometirr Tkt v Cam vou DEslON
17 7o T vou |

)

AT Yo TILL B i

AT THE BEETLAMAL Y REGTRIAINTS
AN DO =

* Nightmare scenario, yes, but the customer is not the only one at fault here!

ECE450 - Software Engineering Il 16

