
1

ECE450 - Software Engineering II 1 ECE450 - Software Engineering II 2

ECE450 – Software Engineering II

Today: Introduction to 
Requirements Engineering

adapted from Steve Easterbrook’s 
material on Requirements Engineering

ECE450 - Software Engineering II 3

Building software
for a reason

• Software (on its own) is useless
– Software is an abstract description of a set of computations
– Software only becomes useful when run on some hardware

• we sometimes take the hardware for granted
– Software + Hardware = “Computer System”

• A Computer System (on its own) is useless
– Only useful in the context of some human activity that it can support

• we sometimes take the human context for granted
– A new computer system will change human activities in significant ways
– Software + Hardware + Human Activities = “Software-Intensive System”

• ‘Software’ makes many things possible
– It is complex and adaptable
– It can be rapidly changed on-the-fly
– It turns general-purpose hardware into a huge variety of useful machines

ECE450 - Software Engineering II 4

Quality = Fitness for purpose
• Software technology is everywhere

– Affects nearly all aspects of our lives
– But our experience of software technology is often frustrating/disappointing

• Software is designed for a purpose
– If it doesn’t work well then either:

• …the designer didn’t have an adequate understanding of the purpose
• …or we are using the software for a purpose different from the intended one

– Requirements analysis is about identifying this purpose
• Inadequate understanding of the purpose leads to poor quality software

• The purpose is found in human activities
– E.g. Purpose of a banking system comes from the business activities of banks and 

the needs of their customers
– The purpose is often complex:

• Many different kinds of people and activities
• Conflicting interests among them



2

ECE450 - Software Engineering II 5

Interaction loop
Application Domain Machine Domain

ECE450 - Software Engineering II 6

Complexity of purpose
• People and software are closely-coupled

– Complex modes of interaction
– Long duration of interaction
– Mixed-initiative interaction
– Socially-situated interaction
– …software systems and human activity shape each other in complex ways

• The problems we’d like software to solve are “wicked”
– No definitive formulation of the problem
– No stopping rule (each solution leads to new insights)
– Solutions are not right or wrong
– No objective test of how good a solution is (subjective judgment needed)
– Each problem is unique (no other problem is exactly like it)
– Each problem can be treated as a symptom of another problem
– Problems often have strong political, ethical or professional dimensions

ECE450 - Software Engineering II 7

Dealing with problem
complexity

• Abstraction
– Ignore detail to see the big picture
– Treat objects as the same by ignoring certain differences
– (beware: every abstraction involves choice over what is important)

• Decomposition
– Partition a problem into independent pieces, to study separately
– (beware: the parts are rarely independent really)

• Projection
– Separate different concerns (views) and describe them separately
– Different from decomposition as it does not partition the problem space
– (beware: different views will be inconsistent most of the time)

• Modularization
– Choose structures that are stable over time, to localize change
– (beware: any structure will make some changes easier and others harder)

ECE450 - Software Engineering II 8

Designing for people
• What is the real goal of software design?

– Creating new programs, components, algorithms, user interfaces,…?
– Making human activities more effective, efficient, safe, enjoyable,…?

• How rational is the design process?
– Hard systems view:

• Software problems can be decomposed systematically
• The requirements can be represented formally in a specification
• This specification can be validated to ensure it is correct
• A correct program is one that satisfies such a specification

– Soft systems view:
• Software development is embedded in a complex organizational context
• There are multiple stakeholders with different values and goals
• Software design is part of an ongoing learning process by the organization
• Requirements can never be adequately captured in a specification
• Participation of users and others throughout development is essential

– Reconciliation:
• Hard systems view okay if there is local consensus on the nature of the problem



3

ECE450 - Software Engineering II 9

Which systems are soft?
• Generic software components

– E.g. Core operating system functions, network services, middleware, …
– Functionality relatively stable, determined by technical interfaces
– But note that these systems still affect human activity

• E.g. concepts of a ‘file’, a ‘URL’, etc.

• Control Systems
– E.g. aircraft flight control, industrial process control, …
– Most requirements determined by the physical processes to be controlled
– But note that operator interaction is usually crucial

• E.g. accidents caused when the system doesn’t behave as the operator expected

• Information Systems
– E.g. office automation, groupware, web services, business support,…
– These systems cannot be decoupled from the activities they support
– Design of the software entails design of the human activity

• The software and the human activities co-evolve

ECE450 - Software Engineering II 10

Definition of
Requirements Engineering

Requirements Engineering (RE) is a 
set of activities concerned with 

identifying and communicating the 
purpose of a software-intensive 

system, and the contexts in which it 
will be used. Hence, RE acts as the 
bridge between the real world needs

of users, customers, and other 
constituencies affected by a software 

system, and the capabilities and 
opportunities afforded by software-

intensive technologies

Requirements Engineering (RE) is a 
set of activities concerned with 

identifying and communicating the 
purpose of a software-intensive 

system, and the contexts in which it 
will be used. Hence, RE acts as the 
bridge between the real world needs

of users, customers, and other 
constituencies affected by a software 

system, and the capabilities and 
opportunities afforded by software-

intensive technologies

Not a phase 
or stage!

Communication
is as important
as the analysis

Quality means 
fitness-for-purpose.
Cannot say anything

about quality unless you 
understand the purpose

Designers need to
know how and where

the system will be used

Requirements are
partly about what

is needed…

…and partly about
what is possible

Need to identify all the stakeholders - not just the 
customer and user

ECE450 - Software Engineering II 11

Cost of getting it wrong
• Cost of fixing errors

– Typical development process:
requirements analysis ⇒ software design ⇒ programming ⇒ development testing ⇒

acceptance testing ⇒ operation
– Errors cost more to fix the longer they are undetected

• E.g. A requirements error found in testing costs 100 times more than a programming error 
found in testing

• Causes of project failure
– Survey of US software projects by the Standish group:

28%31%Cancelled

46%53%Challenged

26%16%Successful

19981994

Top 3 success factors:
1) User involvement
2) Executive management support
3) Clear statement of requirements
Top 3 factors leading to failure:
1) Lack of user input
2) Incomplete requirements & specs
3) Changing requirements & specs

ECE450 - Software Engineering II 12

What do Requirements
Analysts do?

• Starting point
– Some notion that there is a “problem” that needs solving

• e.g. dissatisfaction with the current state of affairs
• e.g. a new business opportunity
• e.g. a potential saving of cost, time, resource usage, etc.

– A Requirements Analyst is an agent of change
• The requirements analyst must:

– identify the “problem”/”opportunity”
• Which problem needs to be solved? (identify problem Boundaries)
• Where is the problem? (understand the Context/Problem Domain)
• Whose problem is it? (identify Stakeholders)
• Why does it need solving? (identify the stakeholders’ Goals)
• How might a software system help? (collect some Scenarios)
• When does it need solving? (identify Development Constraints)
• What might prevent us solving it? (identify Feasibility and Risk)

– and become an expert in the problem domain
• although ignorance is important too -- “the smart ignoramus”



4

ECE450 - Software Engineering II 13

Separating the problem
from the solution

Problem
Statement

Implementation
Statement

System

C
or

re
sp

on
de

nc
e

C
or

re
ct

ne
ss Va

lid
at

io
n

Ve
rif

ic
at

io
n

• A separate problem description 
is useful:

– Most obvious problem might 
not the right one to solve

– Problem statement can be 
discussed with stakeholders

– Problem statement can be used 
to evaluate design choices

– Problem statement is a source 
of good test cases

• Still need to check:
– Solution correctly solves the 

stated problem
– Problem statement 

corresponds to the needs of the 
stakeholders

Problem
Situation

ECE450 - Software Engineering II 14

Intertwining of problems
and solutions

Implementation Dependence DependentIndependent

General

Detailed

Level
of

Detail

Implementation
Statement

Problem
Statement

Path of exploration

ECE450 - Software Engineering II 15

Observations about
Requirements Engineering

• It is not necessarily a sequential process:
– Don’t have to write the problem statement before the solution statement

• (Re-)writing a problem statement can be useful at any stage of development
– Requirements Eng. activities continue throughout the development process

• The problem statement will be imperfect
– Requirements models are approximations of the world 

• will contain inaccuracies and inconsistencies
– will omit some information. 

• analysis should reduce the risk that these will cause serious problems…

• Perfecting a specification may not be cost-effective
– Requirements analysis has a cost
– For different projects, the cost-benefit balance will be different

• Problem statement should never be treated as fixed
– Change is inevitable, and therefore must be planned for
– There should be a way of incorporating changes periodically

ECE450 - Software Engineering II 16

Revisiting Alice

• Nightmare scenario, yes, but the customer is not the only one at fault here!


