
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Estimation

“It’s tough to make predictions,
especially about the future”

-Yogi Berra

ECE450 - Software Engineering II 2

Software Estimation
• What is an estimate?

– A prediction regarding the effort required to complete a project
– Might take one of several forms:

• Person-months: Project X will need 26 person-months to complete
• Dollars: Project X will cost $2 million
• Time: Project X will be finished in one year
• Features: Given the time and money we have, we will deliver

features a,b,...,g in this release of project X
– All of the above can also be given as intervals

• E.g., Project X will cost between $1.8 and 2.5 million

ECE450 - Software Engineering II 3

Software Estimation
• What is an estimate?

(cont.)
– An essential but overlooked

characteristic of estimates is
that they have a probability
of being true

– This is a source of conflict:
• Academics often mean

“estimate = 50% likelihood”
• Managers often mean

“estimate = 80% likelihood”
• Developers often mean

“estimate = most optimistic
outcome” (about 10%
likelihood!)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ECE450 - Software Engineering II 4

Software Estimation Woes
• Estimation woes 1 – Estimates as wishful thinking

– “When will my car be ready?”
– “By tomorrow afternoon. Thursday morning for sure.”

• Meaning: In theory, I could fix your car by tomorrow afternoon. This
implies:

– ...that I can find supplies
– ...that no urgent jobs come up
– ...that I diagnosed your car’s problem correctly
– ...that I don’t get lazy or sick tomorrow, and arrive here on time
– ...that none of my tools breaks down
– ...that there won’t be weather problems, nor electrical blackouts

• “And since I can’t guarantee all of that, I’m giving myself a half-day
buffer. Should be enough.”

– Real meaning: It’ll be ready in two months.

2

ECE450 - Software Engineering II 5

Software Estimation Woes
• Estimation woes 2 – Estimates as guessing games

– “Scotty, what’s the problem with the warp drive?”
– “It’s broken, captain.”
– “How long will it take to fix it?”
– “Seven hours. Maybe eight.”
– “Seven hours?! You got fifteen minutes.”
– “Yes sir.”

• Meaning: I didn’t really want an estimate. I wanted you to guess the
answer I was thinking of, you fool.

– I assume your estimate was a bargaining chip. Maybe you’re lazy and
wanted to buy some procrastination time.

– I can make you bend reality if I pressure you hard enough.

– Real meaning: It’ll be fixed in eight hours. Maybe twenty.

ECE450 - Software Engineering II 6

Software Estimation Woes
• Estimation woes 3 – Estimates as negotiation tools

– “Scotty, now what’s the problem with the warp drive?”
– “It’s broken again, captain.”
– “How long will it take to fix it this time?”
– “... ehem... Twelve days, captain. This one is hard.”
– “What?! That’s insane! You got ten hours!”
– “OK sir.”

• Meaning: I learned to play the game. Whatever I tell you you’ll just
cut it down irrationally. So I’ll blow it up irrationally too.

– NOW my estimate was a bargaining chip. I won’t ever give a candid
estimate anymore, thanks for the lesson.

– Real meaning: It’ll be fixed in eight hours, again. Maybe twenty.

ECE450 - Software Engineering II 7

Software Estimation Woes
• Estimation woes 4 – Self-fulfilling prophecies

– “Hmm, what do you know, the warp drive thing seems simpler
than I thought this time. This one could actually be fixed in under
four hours!”

• So that means I have six extra hours. Let’s see if I can also fix that
rattling sound that’s been bugging me. And I’ll bring the new guy to
train him on how to fix the warp drive. And...

• Meaning: The captain said I had ten hours, so I’ll use ten hours.
• Parkinson’s law: Work expands to fill the time available.

– The reason why almost no project ends before its estimated time

– Real meaning: It’ll be fixed in eight hours, maybe twenty.

ECE450 - Software Engineering II 8

Why is it hard?
• As we’ve seen, estimates (which are predictions with a certain

degree of probability) are often treated as
– Wishful thinking
– Guessing games
– Negotiation tools
– Self-fulfilling prophecies

• Other problems:
– The Mythical Man-Month
– Just about everything can go wrong
– Huge variability in individual and team performances
– Radical design can’t be estimated properly
– Poorly stated requirements, moving goalposts
– Really, software developers are romantics at heart!

3

ECE450 - Software Engineering II 9

Software Estimation
Strategies

• There are dozens of techniques, but only a few
strategies:
– Model-based strategies

• Fit software development into a mathematical model, use model’s
formulas to find estimate

– Analogy-based strategies
• We’ve done this before, it’s reasonable to expect we’ll perform

similarly
– Expert-based strategies

• Estimation is too complex to model, so use all the tacit knowledge in
experts’ heads instead

ECE450 - Software Engineering II 10

Software Estimation
Strategies

• Model-based techniques
– Examples: COCOMO, SLIM, Checkpoint
– Default academic idea of what estimation should be like
– Key ideas:

• Study the performance of previous projects around the world
• Find the relevant variables that predict performance
• (Essential variable is often a measure of size)
• Summarize your findings in a mathematical model

– Assumptions
• Software development fits a mathematical model
• ...and we can find the model’s equations
• Size and effort are strongly correlated
• People are better at estimating size than effort (proven wrong!)

– Results: Poor, although calibration is helpful

ECE450 - Software Engineering II 11

Software Estimation
Strategies

• Model-based techniques (cont)
– COCOMO

• Effort = a(KLOC)b

– (in person/months)
• Development time = c(Effort)d

– (in chronological months)
• People required = Effort / Development time
• a, b, c, and d depend on the characteristics of your project and personnel

– Details in “Software Engineering Economics”, by Boehm (1981)
• Note reliance on kilo-lines of code

– “The use of lines of code metrics for productivity and quality studies (should be)
regarded as professional malpractice” –Capers Jones

ECE450 - Software Engineering II 12

Software Estimation
Strategies

• Model-based techniques (cont)
– COCOMO2 fixes the LOC problem by switching to function points

• Function points are a much better technique to assess size than LOCs
• Still requires skill to learn how to do it
• Fundamentals: List number of instances of each of the following:

– External inputs
– External outputs
– External inquiries
– Internal logical files
– External interface files

• Each item should be classified as {high, medium, low} complexity
• Adjust for your team’s capabilities and project characteristics
• The process will output a number of FPs, which substitutes KLOCs
• Calibration is still essential!

– Be careful with outliers

4

ECE450 - Software Engineering II 13

Software Estimation
Strategies

• Analogy-based techniques
– Key idea:

• Look at our past performance to figure out our future performance
– Assumptions:

• We’re doing something similar to what we’ve done before
• Risks won’t bite us, just as they haven’t bitten us before
• Ceteris paribus

– Results: Much better than model-based techniques for known territory
(normal design), poor otherwise (radical design)

ECE450 - Software Engineering II 14

Software Estimation
Strategies

• Expert-based techniques
– Examples: Work Breakdown Structure, Delphi

• WBS: Partition, and estimate the pieces
• Delphi: Gather a group of experts, have each submit an estimate, announce

results, let them submit another estimate, keep the mean
– Key idea:

• Estimation is so complex, and it depends on so much tacit knowledge, that
we won’t attempt to model it – just leave it to the experts

– Assumptions:
• Humans are better at handling uncertainty than models or tools

– Widespread use in industry
• 62-85% use it as their primary estimation technique
• (versus 10% for models)

– Bad reputation in academia (often referred to as “mere guessing”)
– Results: Highly variable on the experts’ real estimation expertise

ECE450 - Software Engineering II 15

Software Estimation
Strategies

• Expert-based techniques (cont)
– There are several problems with software estimation and human

judgment:
• Estimators do not distinguish between 50%, 90%, 99% confidence intervals
• Managers prefer estimators that give narrow ranges, even if they are wrong!
• Customer expectations play a role in the outcome of estimation processes
• Anchors bias our responses (“will you be done in a week?”)
• Years of experience are not necessarily a good indicator of accuracy

– “Everyone complains of his memory, but nobody complains of his
judgment” – La Rochefoucauld

– However, expert-based estimation has been shown to be, on average,
at least as effective as model-based estimation

ECE450 - Software Engineering II 16

Suggestions
• Use more than one method!

– If possible:
• Use function points (or a similar metric)
• Compare vs. past performance
• Adjust if things seem off

• Shield yourself from anchors
– Try not to know what your customer is expecting to hear

• Choose a project lifecycle that manages schedule risk
– Incremental models

• Give estimates with wide margins, especially at the beginning
– You can also use coarser units (e.g., quarters instead of months,

months instead of weeks)
• At the end, analyze your estimation accuracy and adjust your

techniques. This feedback loop is essential to get better at it!

