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Today: Lifecycles and Methodologies
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Lifecycle of Software Projects

« Lifecycle models are useful to compare project
management strategies in abstract terms
— Birds-eye view strategy
— Detect strengths and weaknesses
— ... but reality is always more messy
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Waterfall Model

material adapted from Steve Easterbrook

* View of development:

— A process of stepwise
refinement

— High-level
management view

e Problems:

— Static view of
requirements (ignores
volatility)

— Lack of user
involvement once
spec is written

— Unrealistic separation
of spec from design

— Doesn't accomodate
prototyping, reuse
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Prototyping Model

material adapted from Steve Easterbrook
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Phased Models

material adapted from Steve Easterbrook

Specify ful
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* Prototyping is used for:
— Understanding the requirements for the user interface
— Examining feasibility of a proposed design approach
— Exploring system performance issues
* Problems
— Users treat the prototype as the solution
— A prototype is only a partial specification
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Spiral Model

material adapted from Steve Easterbrook
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Agile Model (XP)

material adapted from Steve Easterbrook
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Project lifecycle choices

* Which lifecycle model to choose?
— First of all, CHOOSE ONE!
« Too many projects drift aimlessly without this kind of strategy
— Second, if possible, AVOID WATERFALL

« Most derided, error-prone lifecycle
« Though still the lifecycle of choice in many corporations

— Third, prototypes and iterations are good for you

« Sanity checks
« Almost never a waste of time/resources

— Fourth, choose based on context and convenience
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Software Methodologies

« Reminder: A lifecycle is an abstract description
of the life of a project

* A methodology is a set of techniques that work
well together

« Lifecycles '= Methodologies

— Methodologies are usually (but not exclusively) built
upon a lifecycle strategy
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Methodology Types

* Main distinction: Sturdy vs. Agile

» Key difference is how they handle
uncertainty
— Sturdy approaches attempt to minimize the
amount of uncertainty
« Planning, risk prevention
— Agile approaches attempt to minimize the
impact of uncertainty
« Adaptatability, incremental processes
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CMM

¢ CMM: Capability Maturity Model
— (now CMMI, where “I” stands for “integration”)

— Developed by Watts Humphrey and the Software
Engineering Institute (SEI) at CMU

— Five levels

— Certification process
« Companies are evaluated as “CMM level 3", for example

— Mirrors Total Quality Management approaches
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CMM (cont)

e Pros:
— Proven techniques
— Self-sustained process
— Required for some
software contracts
* Cons:
— Fear of taking risks

— Not popular among
employees nor stellar

companies
— Doesn't get more rigid than
this!
« Unless you go for ISO ! .
Initial (1] )]
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CMM variants:
TSP and PSP

¢ TSP: Team Software Process

— Your company isn’t keen on the CMM?
« You can still embrace its processes at the team level
« Same recipe as CMM, but in smaller scale

e PSP: Personal Software Process
— No, not PlayStation Portable!
— Same story as TSP, on an individual scale
« “A Discipline for Software Engineering”, Humphrey
— Worth reading and doing the exercises, at least for
self-awareness
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Cleanroom

» Best realization of “software engineering is formal
methods” concept
— Main idea: Don't let the bugs in in the first place
« To be added to product, piece of code must be proven correct
* Pros:
— Very high-quality software
— Optimal for mission-critical projects
* Cons:
— Slow, not cost-effective
— Good luck finding trained people
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RUP
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RUP (cont)

e Pros:

— More relaxed, though still “sturdy” approach to
software projects

— Popular in some mid-large software companies
— Discards naive view of waterfall models

Cons:

— Need to train people in new modelling skills

— Controversy on cost-effectiveness of analysis and
modelling

— Doesn’t work well in changing environments
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XP

* XP = eXtreme Programming
— Yes, terrible name
— Intuition: Requirements changes are inevitable;
emphasize adaptability
— Practices:
« User Stories
¢ Planning Game
« System Metaphor
« Test-Driven Development
* Small Releases
¢ Pair Programming
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XP (cont)

» The most successful of the agile methodologies

— Though it's debatable whether people that say they follow XP
really are doing so

* Pros:
— Little spending in initial stages, results appear early
— Change is expected, software adapts faster
— Short feedback loops
* Cons:
— No time spent in analysis may mean lots of rework later on
— No clear end in sight, project may continue forever
— Pair programming feels awkward for most
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SCRUM

» An agile, lightweight “methodology” alternative
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SCRUM (cont)

* Pros:
— Just about the easiest “methodology” to implement

— Spends little developer time in documentation and
meetings

— 15-minute daily meetings are a great practice

e Cons:
— Not every customer is agreeable
— Difficulties of scale
— Long-term planning concerns
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Methodology choices

e THEY ALL WORK
— Really!
— They provide a framework for your project plans
— But you need to be committed to make it work

« Choice depends on personal/company/customer
preference

« What about Open Source projects?
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