ECE450 — Software Engineering Il

Today: Lifecycles and Methodologies

ECEA450 - Software Engineering Il 1

Lifecycle of Software Projects

« Lifecycle models are useful to compare project
management strategies in abstract terms
— Birds-eye view strategy
— Detect strengths and weaknesses
— ... but reality is always more messy

ECEA450 - Software Engineering Il

Waterfall Model

material adapted from Steve Easterbrook

* View of development:

— A process of stepwise
refinement

— High-level
management view

e Problems:

— Static view of
requirements (ignores
volatility)

— Lack of user
involvement once
spec is written

— Unrealistic separation
of spec from design

— Doesn't accomodate
prototyping, reuse

1 3

A

V Model

material adapted from Steve Easterbrook

3

£ system system

S requirements integration
Jv:.

Ee]

o
y software acceptance
_§ requirements

3

preliminary | N\ o software
\ design integration
“analyze
and detailed | | component integrate
design” design test 9
\ code and unit /
debug test

time

Prototyping Model

material adapted from Steve Easterbrook

Preliminary design build evaluate

requiremeni prototype | prototype | prototype

Phased Models

material adapted from Steve Easterbrook

Specify ful
requirement:

design code test integrate

* Prototyping is used for:
— Understanding the requirements for the user interface
— Examining feasibility of a proposed design approach
— Exploring system performance issues
* Problems
— Users treat the prototype as the solution
— A prototype is only a partial specification
ECEA450 - Software Engineering Il 5

Releose 1 = Incremental development
design | code l test [mfegrufel 0&M ‘ (each release adds more
% release 2 functionality)
®
2 —" designl code l test Iinfegrufel 0&m ‘
release 3
—" design l code l test [infegrufel O&M ‘
release 4.
| design l code l test [infegrufel 0&m ‘
version 1
reqts I design l code l test lintegr‘afel 0&m ‘
lessons legrnt
version 2
reqts I design l code l test Iinfegrufel O&M ‘
Evolutionary development yersigr s l"“””’/‘i”' " 1
q (each version reqts I design l code l test linfegrufe[
incorporates new
requirements)

Spiral Model

material adapted from Steve Easterbrook

De*rermme. goals, Evaluate
aITerna‘h'ves, alternatives
constraints and risks

Develop
and
test

acceptance

implem, 9
entation pign test

Agile Model (XP)

material adapted from Steve Easterbrook

o

Collect
User stories _\
Planning
Each cycle: game
Release approx 2 weeks

Write test
cases

R

ECE450 - Software Engineering Il 8

Project lifecycle choices

* Which lifecycle model to choose?
— First of all, CHOOSE ONE!
« Too many projects drift aimlessly without this kind of strategy
— Second, if possible, AVOID WATERFALL

« Most derided, error-prone lifecycle
« Though still the lifecycle of choice in many corporations

— Third, prototypes and iterations are good for you

« Sanity checks
« Almost never a waste of time/resources

— Fourth, choose based on context and convenience

ECEA450 - Software Engineering II 9

Software Methodologies

« Reminder: A lifecycle is an abstract description
of the life of a project

* A methodology is a set of techniques that work
well together

« Lifecycles '= Methodologies

— Methodologies are usually (but not exclusively) built
upon a lifecycle strategy

ECEA450 - Software Engineering II 10

Methodology Types

* Main distinction: Sturdy vs. Agile

» Key difference is how they handle
uncertainty
— Sturdy approaches attempt to minimize the
amount of uncertainty
« Planning, risk prevention
— Agile approaches attempt to minimize the
impact of uncertainty
« Adaptatability, incremental processes

ECE450 - Software Engineering Il 11

CMM

¢ CMM: Capability Maturity Model
— (now CMMI, where “I” stands for “integration”)

— Developed by Watts Humphrey and the Software
Engineering Institute (SEI) at CMU

— Five levels

— Certification process
« Companies are evaluated as “CMM level 3", for example

— Mirrors Total Quality Management approaches

ECE450 - Software Engineering Il 12

CMM (cont)

e Pros:
— Proven techniques
— Self-sustained process
— Required for some
software contracts
* Cons:
— Fear of taking risks

— Not popular among
employees nor stellar

companies
— Doesn't get more rigid than
this!
« Unless you go for ISO ! .
Initial (1])]
ECEA450 - Software Engineering Il 13

CMM variants:
TSP and PSP

¢ TSP: Team Software Process

— Your company isn’t keen on the CMM?
« You can still embrace its processes at the team level
« Same recipe as CMM, but in smaller scale

e PSP: Personal Software Process
— No, not PlayStation Portable!
— Same story as TSP, on an individual scale
« “A Discipline for Software Engineering”, Humphrey
— Worth reading and doing the exercises, at least for
self-awareness

ECEA450 - Software Engineering Il 14

Cleanroom

» Best realization of “software engineering is formal
methods” concept
— Main idea: Don't let the bugs in in the first place
« To be added to product, piece of code must be proven correct
* Pros:
— Very high-quality software
— Optimal for mission-critical projects
* Cons:
— Slow, not cost-effective
— Good luck finding trained people

ECE450 - Software Engineering Il 15

RUP

* RUP: Rational } ; Phases §]
Disclplines || Inception || Flaboration |

Unified Process Business Modelng r___
— Propietary process, Requiremants =

|BM Analysis & Design e} B).
— Characterized by use e e - -
of UML (Unified — S E——

. Cordiguration
Modelling Language) e vam
. . Project — pr—
— Feels like a matrix
evolution on the
waterfall model

¢ “Phases” and
“Disciplines”

(I [l el Wl ol

Iterations

ECE450 - Software Engineering Il 16

RUP (cont)

e Pros:

— More relaxed, though still “sturdy” approach to
software projects

— Popular in some mid-large software companies
— Discards naive view of waterfall models

Cons:

— Need to train people in new modelling skills

— Controversy on cost-effectiveness of analysis and
modelling

— Doesn’t work well in changing environments

ECEA450 - Software Engineering Il 17

XP

* XP = eXtreme Programming
— Yes, terrible name
— Intuition: Requirements changes are inevitable;
emphasize adaptability
— Practices:
« User Stories
¢ Planning Game
« System Metaphor
« Test-Driven Development
* Small Releases
¢ Pair Programming

ECEA450 - Software Engineering Il 18

XP (cont)

» The most successful of the agile methodologies

— Though it's debatable whether people that say they follow XP
really are doing so

* Pros:
— Little spending in initial stages, results appear early
— Change is expected, software adapts faster
— Short feedback loops
* Cons:
— No time spent in analysis may mean lots of rework later on
— No clear end in sight, project may continue forever
— Pair programming feels awkward for most

ECE450 - Software Engineering Il 19

SCRUM

» An agile, lightweight “methodology” alternative

ever %

hours
s(rurm 15 minute daily megting.
Teams me mber respand 1o basics
‘H\M’va\dd)w do since last Scrum

-- Meeli
2) oo, yWM e any ob stacie

Eamaq

Sprini Backiog) Wil o oo Bl et

SDnays mesting

w%&’ .

Is demonstrated
at end of sprint
Product Backiog

Paostizad product festures desirad by the customer

ECE450 - Software Engineering Il 20

SCRUM (cont)

* Pros:
— Just about the easiest “methodology” to implement

— Spends little developer time in documentation and
meetings

— 15-minute daily meetings are a great practice

e Cons:
— Not every customer is agreeable
— Difficulties of scale
— Long-term planning concerns

ECEA450 - Software Engineering Il 21

Methodology choices

e THEY ALL WORK
— Really!
— They provide a framework for your project plans
— But you need to be committed to make it work

« Choice depends on personal/company/customer
preference

« What about Open Source projects?

ECEA450 - Software Engineering II 22

