
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II

Today: Lifecycles and Methodologies

ECE450 - Software Engineering II 2

Lifecycle of Software Projects

• Lifecycle models are useful to compare project 
management strategies in abstract terms
– Birds-eye view strategy
– Detect strengths and weaknesses
– ... but reality is always more messy

ECE450 - Software Engineering II 3

Waterfall Model
material adapted from Steve Easterbrook

• View of development:
– A process of stepwise 

refinement
– High-level 

management view
• Problems:

– Static view of 
requirements (ignores 
volatility)

– Lack of user 
involvement once 
spec is written

– Unrealistic separation 
of spec from design

– Doesn’t accomodate
prototyping, reuse

requirements

design

code

integrate

test

perceived
need

ECE450 - Software Engineering II 4

V Model
material adapted from Steve Easterbrook

system
requirements

software
requirements

preliminary
design

detailed
design

code and
debug

unit
test

component
test

software
integration

acceptance
test

system
integration

“analyze 
and 

design”

“test
and 

integrate
”

time

Le
ve

l 
of

 a
bs

tr
ac

ti
on



2

ECE450 - Software Engineering II 5

Prototyping Model
material adapted from Steve Easterbrook

• Prototyping is used for:
– Understanding the requirements for the user interface
– Examining feasibility of a proposed design approach
– Exploring system performance issues

• Problems
– Users treat the prototype as the solution
– A prototype is only a partial specification

Specify full
requirements design code test integrate

Preliminary
requirements

design
prototype

build
prototype

evaluate
prototype

ECE450 - Software Engineering II 6

Phased Models
material adapted from Steve Easterbrook

design code test integrate O&Mreqts

Requirem
ents

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

design code test integrate O&Mreqts

design code test integratereqts

version 1

version 2

version 3

Release 1

release 2

release 3

release 4

lessons learnt

lessons learnt

Incremental development
(each release adds more 

functionality)

Evolutionary development
(each version 

incorporates new 
requirements)

ECE450 - Software Engineering II 7

Spiral Model
material adapted from Steve Easterbrook

Determine goals,
alternatives,
constraints

Evaluate
alternatives
and risks

Plan
Develop

and
test

budget1budget2budget3budget4 prototype1 prototype2 prototype3 prototype4

alt
er
na
tiv

es
4

alt
er
na
tiv

es
3

Al
te
rn
-

at
ive

s 2

cons
train

ts4

cons
train

ts3

Cons
tr-

aints2

alte
rna

tive
s

con
str

ain
ts

risk analysis
4risk analysis

3riskanalysis2risk
analysis1

concept of
operation

so
ft
wa

re

re
qu
ire

me
nt
s

valida
ted

requir
ements

so
ft
wa

re
de

sig
n

valid
ated

,

verif
ied d

esign

de
ta

ile
d

de
si
gn

co
de

uni
t

tes
t

syste
m

testacceptance
test

requirements,lifecycle plandevelopment plan
integration and test plan

implementation plan ECE450 - Software Engineering II 8

Agile Model (XP)
material adapted from Steve Easterbrook

Planning
game

Collect
User stories

Write test
casescode

integrate

test

Release
Each cycle:

approx 2 weeks



3

ECE450 - Software Engineering II 9

Project lifecycle choices
• Which lifecycle model to choose?

– First of all, CHOOSE ONE!
• Too many projects drift aimlessly without this kind of strategy

– Second, if possible, AVOID WATERFALL
• Most derided, error-prone lifecycle
• Though still the lifecycle of choice in many corporations

– Third, prototypes and iterations are good for you
• Sanity checks
• Almost never a waste of time/resources

– Fourth, choose based on context and convenience

ECE450 - Software Engineering II 10

Software Methodologies
• Reminder: A lifecycle is an abstract description 

of the life of a project

• A methodology is a set of techniques that work 
well together

• Lifecycles != Methodologies
– Methodologies are usually (but not exclusively) built 

upon a lifecycle strategy

ECE450 - Software Engineering II 11

Methodology Types

• Main distinction: Sturdy vs. Agile
• Key difference is how they handle 

uncertainty
– Sturdy approaches attempt to minimize the 

amount of uncertainty
• Planning, risk prevention

– Agile approaches attempt to minimize the 
impact of uncertainty

• Adaptatability, incremental processes

ECE450 - Software Engineering II 12

CMM
• CMM: Capability Maturity Model

– (now CMMI, where “I” stands for “integration”)
– Developed by Watts Humphrey and the Software 

Engineering Institute (SEI) at CMU
– Five levels
– Certification process

• Companies are evaluated as “CMM level 3”, for example
– Mirrors Total Quality Management approaches



4

ECE450 - Software Engineering II 13

CMM (cont)
• Pros:

– Proven techniques
– Self-sustained process
– Required for some 

software contracts
• Cons:

– Fear of taking risks
– Not popular among 

employees nor stellar 
companies

– Doesn’t get more rigid than 
this!

• Unless you go for ISO

ECE450 - Software Engineering II 14

CMM variants:
TSP and PSP

• TSP: Team Software Process
– Your company isn’t keen on the CMM?

• You can still embrace its processes at the team level
• Same recipe as CMM, but in smaller scale

• PSP: Personal Software Process
– No, not PlayStation Portable!
– Same story as TSP, on an individual scale

• “A Discipline for Software Engineering”, Humphrey
– Worth reading and doing the exercises, at least for 

self-awareness

ECE450 - Software Engineering II 15

Cleanroom
• Best realization of “software engineering is formal 

methods” concept
– Main idea: Don’t let the bugs in in the first place

• To be added to product, piece of code must be proven correct

• Pros:
– Very high-quality software
– Optimal for mission-critical projects

• Cons:
– Slow, not cost-effective
– Good luck finding trained people

ECE450 - Software Engineering II 16

RUP
• RUP: Rational 

Unified Process
– Propietary process, 

IBM
– Characterized by use 

of UML (Unified 
Modelling Language)

– Feels like a matrix 
evolution on the 
waterfall model

• “Phases” and 
“Disciplines”



5

ECE450 - Software Engineering II 17

RUP (cont)
• Pros:

– More relaxed, though still “sturdy” approach to 
software projects

– Popular in some mid-large software companies
– Discards naive view of waterfall models

• Cons:
– Need to train people in new modelling skills
– Controversy on cost-effectiveness of analysis and 

modelling
– Doesn’t work well in changing environments

ECE450 - Software Engineering II 18

XP
• XP = eXtreme Programming

– Yes, terrible name
– Intuition: Requirements changes are inevitable; 

emphasize adaptability
– Practices:

• User Stories
• Planning Game
• System Metaphor
• Test-Driven Development
• Small Releases
• Pair Programming

ECE450 - Software Engineering II 19

XP (cont)
• The most successful of the agile methodologies

– Though it’s debatable whether people that say they follow XP 
really are doing so

• Pros:
– Little spending in initial stages, results appear early
– Change is expected, software adapts faster
– Short feedback loops

• Cons:
– No time spent in analysis may mean lots of rework later on
– No clear end in sight, project may continue forever
– Pair programming feels awkward for most

ECE450 - Software Engineering II 20

SCRUM
• An agile, lightweight “methodology” alternative



6

ECE450 - Software Engineering II 21

SCRUM (cont)
• Pros:

– Just about the easiest “methodology” to implement
– Spends little developer time in documentation and 

meetings
– 15-minute daily meetings are a great practice

• Cons:
– Not every customer is agreeable
– Difficulties of scale
– Long-term planning concerns

ECE450 - Software Engineering II 22

Methodology choices
• THEY ALL WORK

– Really!
– They provide a framework for your project plans
– But you need to be committed to make it work

• Choice depends on personal/company/customer 
preference

• What about Open Source projects?


