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ECE450 – Software Engineering II

Today: Lifecycles and Methodologies
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Lifecycle of Software Projects

• Lifecycle models are useful to compare project 
management strategies in abstract terms
– Birds-eye view strategy
– Detect strengths and weaknesses
– ... but reality is always more messy
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Waterfall Model
material adapted from Steve Easterbrook

• View of development:
– A process of stepwise 

refinement
– High-level 

management view
• Problems:

– Static view of 
requirements (ignores 
volatility)

– Lack of user 
involvement once 
spec is written

– Unrealistic separation 
of spec from design

– Doesn’t accomodate
prototyping, reuse
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V Model
material adapted from Steve Easterbrook
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Prototyping Model
material adapted from Steve Easterbrook

• Prototyping is used for:
– Understanding the requirements for the user interface
– Examining feasibility of a proposed design approach
– Exploring system performance issues

• Problems
– Users treat the prototype as the solution
– A prototype is only a partial specification
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Phased Models
material adapted from Steve Easterbrook
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Incremental development
(each release adds more 

functionality)

Evolutionary development
(each version 

incorporates new 
requirements)
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Spiral Model
material adapted from Steve Easterbrook
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Agile Model (XP)
material adapted from Steve Easterbrook
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Project lifecycle choices
• Which lifecycle model to choose?

– First of all, CHOOSE ONE!
• Too many projects drift aimlessly without this kind of strategy

– Second, if possible, AVOID WATERFALL
• Most derided, error-prone lifecycle
• Though still the lifecycle of choice in many corporations

– Third, prototypes and iterations are good for you
• Sanity checks
• Almost never a waste of time/resources

– Fourth, choose based on context and convenience
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Software Methodologies
• Reminder: A lifecycle is an abstract description 

of the life of a project

• A methodology is a set of techniques that work 
well together

• Lifecycles != Methodologies
– Methodologies are usually (but not exclusively) built 

upon a lifecycle strategy
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Methodology Types

• Main distinction: Sturdy vs. Agile
• Key difference is how they handle 

uncertainty
– Sturdy approaches attempt to minimize the 

amount of uncertainty
• Planning, risk prevention

– Agile approaches attempt to minimize the 
impact of uncertainty

• Adaptatability, incremental processes
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CMM
• CMM: Capability Maturity Model

– (now CMMI, where “I” stands for “integration”)
– Developed by Watts Humphrey and the Software 

Engineering Institute (SEI) at CMU
– Five levels
– Certification process

• Companies are evaluated as “CMM level 3”, for example
– Mirrors Total Quality Management approaches



4

ECE450 - Software Engineering II 13

CMM (cont)
• Pros:

– Proven techniques
– Self-sustained process
– Required for some 

software contracts
• Cons:

– Fear of taking risks
– Not popular among 

employees nor stellar 
companies

– Doesn’t get more rigid than 
this!

• Unless you go for ISO
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CMM variants:
TSP and PSP

• TSP: Team Software Process
– Your company isn’t keen on the CMM?

• You can still embrace its processes at the team level
• Same recipe as CMM, but in smaller scale

• PSP: Personal Software Process
– No, not PlayStation Portable!
– Same story as TSP, on an individual scale

• “A Discipline for Software Engineering”, Humphrey
– Worth reading and doing the exercises, at least for 

self-awareness
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Cleanroom
• Best realization of “software engineering is formal 

methods” concept
– Main idea: Don’t let the bugs in in the first place

• To be added to product, piece of code must be proven correct

• Pros:
– Very high-quality software
– Optimal for mission-critical projects

• Cons:
– Slow, not cost-effective
– Good luck finding trained people
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RUP
• RUP: Rational 

Unified Process
– Propietary process, 

IBM
– Characterized by use 

of UML (Unified 
Modelling Language)

– Feels like a matrix 
evolution on the 
waterfall model

• “Phases” and 
“Disciplines”
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RUP (cont)
• Pros:

– More relaxed, though still “sturdy” approach to 
software projects

– Popular in some mid-large software companies
– Discards naive view of waterfall models

• Cons:
– Need to train people in new modelling skills
– Controversy on cost-effectiveness of analysis and 

modelling
– Doesn’t work well in changing environments
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XP
• XP = eXtreme Programming

– Yes, terrible name
– Intuition: Requirements changes are inevitable; 

emphasize adaptability
– Practices:

• User Stories
• Planning Game
• System Metaphor
• Test-Driven Development
• Small Releases
• Pair Programming
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XP (cont)
• The most successful of the agile methodologies

– Though it’s debatable whether people that say they follow XP 
really are doing so

• Pros:
– Little spending in initial stages, results appear early
– Change is expected, software adapts faster
– Short feedback loops

• Cons:
– No time spent in analysis may mean lots of rework later on
– No clear end in sight, project may continue forever
– Pair programming feels awkward for most
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SCRUM
• An agile, lightweight “methodology” alternative
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SCRUM (cont)
• Pros:

– Just about the easiest “methodology” to implement
– Spends little developer time in documentation and 

meetings
– 15-minute daily meetings are a great practice

• Cons:
– Not every customer is agreeable
– Difficulties of scale
– Long-term planning concerns
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Methodology choices
• THEY ALL WORK

– Really!
– They provide a framework for your project plans
– But you need to be committed to make it work

• Choice depends on personal/company/customer 
preference

• What about Open Source projects?


