
1

ECE450 - Software Engineering II 1

ECE450 – Software Engineering II
-new and improved-

Today: Why Software Engineering?

ECE450 - Software Engineering II 2

Reminder

• Form teams of 3-4 people
• Fill in the Team Formation sheet
• Return by Monday at the latest
• Assignment 1 is out

ECE450 - Software Engineering II 3

Why Software Engineering?

• You’re engineers...

• Frankly, aren’t you offended?

• Can you approach building software as building 
a bridge? Why? Why not?

• How is software engineering like other 
engineering disciplines?

ECE450 - Software Engineering II 4

Software Engineering:
Origins of the term

• Back in the 60’s, hardware was much more 
expensive than software

• 1968 NATO Software Engineering Conference
– To imply “the need for software manufacture to be 

based on the types of theoretical foundations and 
practical disciplines that are traditional in the 
established branches of engineering”

– Term caught on instantaneously
• We’ve been using it since



2

ECE450 - Software Engineering II 5

Interpretations of the term

• Wishful thinking
– “I wish software development was as structured and 

professional as the engineering disciplines”
– Translation: We have a mess over here. Our 

neighbours seem to have their place all tidied-up. 
Let’s become like them!

– Risk: “Cargo cult” engineering

ECE450 - Software Engineering II 6

Interpretations of the term
(cont)

• Application of the “parent” science
– For other engineers, the “parent” may be Physics, 

Chemistry, etc.
– For software, the “parent” is Mathematics

• Formal Methods
– Translation: Just as mankind reached applicability of 

science through engineering, we should reach the 
applicability of math and computer science through 
software engineering

– Risk: Assumes “parent” science is math!

ECE450 - Software Engineering II 7

Interpretations of the term

• Metaphor
– Treat requirements and developers as you would 

treat the components of a manufacturing line
– Metaphorist utopia: Developers are interchangeable 

pieces, development process is a production line
• Measure >> Improve >> Measure >> ...

– Risk: Bad metrics; creative minds don’t respond well 
when treated like cogs.

ECE450 - Software Engineering II 8

“Engineering” = “we’re serious”?

• Confusion over the term as academics and 
industry use it to refer to any serious approach 
to a soft field:
– Software Engineering
– Requirements Engineering
– Knowledge Engineering
– Usability Engineering
– Information Engineering
– Cognitive Engineering
– ...!?!?!



3

ECE450 - Software Engineering II 9

The many worlds of
Software Engineering

• When was the last time a chemical engineer 
designed a building?
– Specialization

• Software engineers often switch domains
– Enterprise systems
– Web development
– Videogames
– Custom-made database applications
– Manufacturing software
– ...

ECE450 - Software Engineering II 10

Is there engineering in SE?

• IEEE definition
– Software engineering: The application of a 

systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of 
software, that is, the application of engineering to 
software.

• Necessary?
• Desirable?
• Possible?

ECE450 - Software Engineering II 11

Software Engineering – Yea!

• Do you want to put your life in the hands of 
informal, chaotic processes?
– Would you ride an airplane if you knew its spec was 

described in a napkin?
• A person kills retail, we can kill wholesale!
• We depend on correct software:

– Airplanes
– Medical software
– Dams, nuclear plants
– Military equipment

ECE450 - Software Engineering II 12

Software Engineering – Yea!
(cont)

• Less dramatically
– Bad software leads to miscommunications, money 

loss, frustration, productivity loss, and a long etcetera.
• You can’t control what you can’t measure

• Not only desirable, but possible
– Programs are mathematical entities

• We can prove them right or wrong
– Projects are akin to manufacturing

• State requirements carefully and in detail, and any developer 
can code them and deliver the system



4

ECE450 - Software Engineering II 13

Software Engineering – Nay!

• Do you want to put your life in the hands of 
people who believe they can prove the 
correctness of complex software systems?
– Your record is missing, which means you don’t exist
– Cold War missile radar incident

• Keep humans “in the loop”!
• We do not need “correct” software

– Google
– Microsoft
– Your favourite start-up

ECE450 - Software Engineering II 14

Software Engineering – Nay!
(cont)

• Rigid approaches make for unappealing 
products
– Creativity sucked out of the code and developers

• You control what you can’t measure, all the time

• Not only undesirable, but impossible
– Programs are not mathematical entities

• Since they need to respond to an uncertain world
– Projects are not akin to manufacturing

• Can we specify precisely the next killer app?

ECE450 - Software Engineering II 15

Software Engineering
Yea or Nay?

• Your thoughts?

ECE450 - Software Engineering II 16

Radical vs. Normal Design

• Normal design
– We know how the 

device works, when 
does it work, what 
makes it fail

• Cars
• Computers
• Email clients



5

ECE450 - Software Engineering II 17

Radical vs. Normal Design

• Radical design
– Innovative practices, 

novel requirements
• First cars
• First computers
• First email clients

– Error-prone!

• Is software mainly 
radical or normal 
design?

ECE450 - Software Engineering II 18

Doing it “more like engineering”

• “The trouble with using engineering as a reference is that 
we, as a community, don’t know what that means. (...) In 
my travels, people mostly use the word engineering to 
create a sense of guilt for not having done enough of 
something, without being clear what that something is. 
(...) When people say “Make software development more 
like engineering,” they often mean, “Make it more like 
running a plant, with statistical quality controls.”

– Alistair Cockburn, “Agile Software Development”

ECE450 - Software Engineering II 19

Engineering => Certification?

• Can we encapsulate all required facts on 
software engineering in a certification test?
– And do those facts exist?

• Will a certified software engineer be more 
trustworthy than an uncertified one?
– Should they work only in a prescribed domain?

• Perhaps when we have a real software 
catastrophe or two the pro-certification voices 
will prevail?

• Your thoughts?
ECE450 - Software Engineering II 20

Liability of Software
Engineers

• Should software engineers be liable for the 
errors in their systems?
– Lives lost?
– Monetary losses?
– Data loss?

• Current software licenses free software 
developers of any responsibility in the use of 
their products



6

ECE450 - Software Engineering II 21

ACM/IEEE Code of Ethics
(available at http://www.acm.org/serving/se/code.htm)

• PUBLIC: Act consistently with 
the public interest

• CLIENT AND EMPLOYER: Act 
in the best interest of client and 
employer, consistent with the 
public interest

• PRODUCT: Ensure product 
meets highest professional 
standards

• JUDGMENT: Maintain integrity 
and independence in 
professional judgment

• MANAGEMENT: Managers 
and leaders should promote an 
ethical approach to the 
management of software 
development

• PROFESSION: Advance the 
integrity and reputation of the 
profession

• COLLEAGUES: Be fair and 
supportive of colleagues

• SELF: Participate in lifelong 
learning, promote ethical 
approach to the profession

ECE450 - Software Engineering II 22

Alternative views

• Software Craftsmanship
– Apprenticeship tradition
– Develop your own style
– Find a niche and excel at it
– Become a mentor
– But

• Not consistent; dependent on human variability
• Not repeatable
• Not formalizable

ECE450 - Software Engineering II 23

Alternative views
(cont)

• Software Writing
– But one writes individually!

• Software Painting
– “Hacker” as an artist
– http://www.paulgraham.com/hp.html

• Software Accretion
– Oyster pearl growth, incremental development

• Software as Design
– Radical design, not repetition
– Architecture, not Civil Engineering

ECE450 - Software Engineering II 24

In this course...

• When I talk about Software Engineering I mean
– A careful approach to software development issues

• The “we’re taking it seriously” stance
• Synonym with “professional software development”
• Really what most people in industry/academia have in mind

• I do not mean
– That quantitative approaches are always necessary

• Or possible
– That software should be based on mathematics and 

proved correct to move on
• Your approach may vary



7

ECE450 - Software Engineering II 25

Software is not
what we think it is

• Software != Code
– Source code is a subset of the things that make a 

software project
• Requirements and specification documents
• Design documents
• Test suites, test plans
• Interfaces
• Documentation

– “For civilian projects, at least 100 English words are produced for every 
source code statement in the software. Many new software 
professionals are surprised when they spend more time producing 
words than code”

• Capers Jones, “Gaps in Programming Education”, IEEE Computer, 1995.

ECE450 - Software Engineering II 26

Large Software is not
what we think it is

• Large Software != Lots of Code
– You wish!
– Large software brings up several issues of scale:

• Total comprehensibility must be forfeited
• Solo programming becomes impossible
• Communication becomes an essential challenge
• Changing requirements are an everyday reality
• Lifetime is measured in years or decades
• People don’t know what they want

ECE450 - Software Engineering II 27

Ideal goals of
Software Engineering

• Correctness
– No errors

• Usefulness
– Does what we want it to do

• Minimal production effort
– And therefore,

• minimal cost
• minimal time
• maximum profit

• Minimal maintenance effort
ECE450 - Software Engineering II 28

Software Qualities

• Usefulness
• Modularization
• Reliability
• Robustness
• Usability
• Efficiency
• Flexibility
• Good internal documentation
• Good external documentation



8

ECE450 - Software Engineering II 29

Software Qualities
are conflicting

• First, they are all expensive
– So they all conflict with resource 

optimization
• Second, they are conflicting 

between each other
– Performance vs. Modularization
– Reliability vs. Flexibility

• Can’t have it all: need to make 
trade-offs
– Prioritization becomes essential


