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Figure 1: Our linear subspaces are very fast to compute. This enables the users to add (or remove) control handles very quickly, allowing
them to realize their creative intent in a single interactive session.

Abstract

We propose a method to design linear deformation subspaces, uni-
fying linear blend skinning and generalized barycentric coordi-
nates. Deformation subspaces cut down the time complexity of
variational shape deformation methods and physics-based anima-
tion (reduced-order physics). Our subspaces feature many desirable
properties: interpolation, smoothness, shape-awareness, locality,
and both constant and linear precision. We achieve these by min-
imizing a quadratic deformation energy, built via a discrete Lapla-
cian inducing linear precision on the domain boundary. Our main
advantage is speed: subspace bases are solutions to a sparse lin-
ear system, computed interactively even for generously tessellated
domains. Users may seamlessly switch between applying transfor-
mations at handles and editing the subspace by adding, removing
or relocating control handles. The combination of fast computation
and good properties means that designing the right subspace is now
just as creative as manipulating handles. This paradigm shift in
handle-based deformation opens new opportunities to explore the
space of shape deformations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation.

Keywords: Deformation modeling, skinning, subspace methods,
reduced-order physics.

1 Introduction

Shape deformation brings life to animated characters and trans-
forms existing geometric designs into novel variations. As shape
complexities grow, so does the need for high-quality real-time
shape deformation methods. Successful real-time deformation re-
lies on building a subspace of admissible deformations, controlled
by a small number of intuitive parameters. Previous attempts to de-
sign such subspaces achieve one or more desirable qualities, but no
method achieves all of them.

Subspace bases derived from Euclidean-distances often boast sim-
ple, closed-form expressions, but do not respect the semantic in-
formation defined by the shape’s boundary. A basis should adapt
to the given input shape: it should be shape aware [Joshi et al.
2007]. Recent research demonstrates the effectiveness of a variety
of control structures or handles used to parameterized real-time de-
formations. Isolated point constraints, rigid bones, selected regions
and exterior cages each have tasks for which they excel and those
for which they fail. A good subspace should unify all handle types
or combination thereof [Jacobson et al. 2011]. Finally, a deforma-
tion subspace should reproduce simple affine transformations (i.e.
translations, rotations and scales) if applied uniformly to all han-
dles [Hildebrandt et al. 2011]. This ensures intuitive control via
simpler position constraints rather than requiring explicit full linear
transformations at each handle.

Superficially, our subspace design is similar to existing variational
methods: we optimize a smoothness energy within the shape with
appropriate boundary conditions to support a variety of handle
types. However, we make an important observation that has dras-
tic effects on the utility of our bases. This observation begins by
acknowledging the property most responsible for the success of
cage-based “generalized barycentric coordinates:” linear precision
or, equivalently, rest-pose reproduction. Existing variational meth-
ods inherit the lack of linear precision of their quadratic smoothness
energies, constructed with discrete Laplacians lacking linear preci-
sion along the shape boundary. Instead, our carefully constructed
volumetric Laplacian retains linear precision on the boundary of the



domain, thus implying a linearly precise deformation subspaces,
i.e., subspaces which contain the rest pose.

In this way, we bake linear precision into our energy, rather than
enforce it via additional constraints or force the user to provide full
linear transformations at all handles. This means subspace com-
putation and re-computation is faster and subspace design is more
flexible. The computational efficiency invites new user experiences
and in general turns the subspace definition process into a creative
task. New subspaces are computed rapidly enough for users to
explore different handle placements interactively. The freedom to
specify simple position constraints at points may be combined with
the power of traditional transformation-based handle types such as
rigid bones and selected regions. This combination enables new
workflows for direct shape manipulation and more effective re-
duced domains for variational modeling (Figure 1) or physical sim-
ulations with dynamics (Figure 23).

2 Related work

The need for low-dimensional control of deformation fields was
identified early in computer graphics. Among the first approaches
was Free-Form Deformation [Sederberg and Parry 1986], which re-
lied on regular lattices to specify spatial deformations. Cage-based
deformation methods (see [Nieto and Susin 2013] for a recent sur-
vey) were an important step forward, because control polytopes
offer much better adaptability to the input shape. The underlying
theme of many cage-based methods is to generalize barycentric co-
ordinates from simplices to general polytopes. Mean value coordi-
nates for closed polyhedrons [Ju et al. 2005] offer many desirable
properties and can be calculated using closed-form expressions, but
are not fully shape-aware. This shortcoming has been addressed by
harmonic coordinates [Joshi et al. 2007]. While many new intrigu-
ing coordinates and their underlying mathematical properties have
been studied in recent years [Hormann and Sukumar 2008; Weber
et al. 2011; Li and Hu 2013], a problem common to all cage-based
method remains: the design of control cages requires experience
with polygonal modeling. Any change, such as adding or deleting
vertices, requires the user to update the cage connectivity.

While cage-based techniques are an important class of linear de-
formation methods, several other linear approaches have been ex-
plored both for surfaces [Sorkine et al. 2004; Botsch and Kobbelt
2004; Sorkine and Alexa 2007] as well as for volumetric (spatial)
deformations [Bookstein 1989; Botsch and Kobbelt 2005]. An-
other popular linear deformation model is linear blend skinning
[Magnenat-Thalmann et al. 1988], where the deformation degrees
of freedom contain not only translations, but also local rotations.
Jacobson [2013] showed that linear blend skinning is equivalent
to higher-order barycentric coordinates [Langer and Seidel 2008].
With region controls only, our subspace becomes equivalent to An-
imation Space [Merry et al. 2006], but without the reliance on input
training animations to derive the skinning weights.

Analogously to generalized barycentric coordinates, automatic
methods for calculating linear blend skinning weights exist. The
heat-diffusion method of [Baran and Popović 2007] pioneered the
field of automatic skinning weights. The more recent bounded bi-
harmonic weights (BBW) [Jacobson et al. 2011] feature superior
smoothness and generalize to different control structures, includ-
ing scattered control points. However, note that the underlying
deformation model is linear blend skinning, which requires affine
transformations even at control points. Without full transforma-
tions, point handles will produce unappealing results (see Figure 2).
Also, the combination of smoothness, non-negativity, and interpo-
lation of BBW can result in compromised fairness of the resulting
deformations. Our weights avoid the fairness issues (Section 4) and

rest pose LBS with 
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our method

Figure 2: Linear blend skinning requires full transformations spec-
ified even at isolated point handles. Deformations look awkward
when only specifying translations.

support both true control points (translation-only handles) as well
as affine transformations. This allows us to combine the advantages
of generalized barycentric coordinates and linear blend skinning in
a single linear subspace.

However, linear deformation methods have certain inherent limita-
tions [Botsch and Sorkine 2008] which lead to the development of
non-linear techniques [Botsch et al. 2006; Sorkine and Alexa 2007;
Botsch et al. 2007; Chao et al. 2010]. Non-linear methods guaran-
tee high quality even for large deformations, but they are slow due
to the underlying non-convex optimization problems. The com-
plexity of non-linear variational methods can be dramatically re-
duced by restricting the available degrees of freedom to a carefully
designed low-dimensional subspace. An early example of this im-
portant idea are variational harmonic maps [Ben-Chen et al. 2009]
which employ a cage as a tool to generate suitable linear deforma-
tion subspaces. In linear blend skinning, the necessity of specifying
local affine transformations for each control handle can be burden-
some. This motivated Jacobson et al. [2012a] to develop a method
to automatically compute a subset of the degrees of freedom of lin-
ear blend skinning by minimizing as-rigid-as-possible energies in a
linear blend skinning subspace, assuming the linear blend skinning
weights are given. In this paper we address precisely this assump-
tion: we contribute a method to design a suitable linear subspace.
To provide a complete deformation system, we also implement sub-
space as-rigid-as-possible deformations, but only as an application
of our subspace.

Subspace design has been extensively studied in the context of
physics-based simulation [Gilles et al. 2011; Faure et al. 2011]. Per-
haps the simplest approach is to design a subspace for small defor-
mations [James and Pai 2002; Hauser et al. 2003], leading to bases
analogous to harmonic modes [Vallet and Lévy 2008]. Large defor-
mations can be accommodated by applying Principal Component
Analysis on pre-existing simulation data [Krysl et al. 2001], or us-
ing modal derivatives [Barbič and James 2005]. Modal derivatives
have also been employed for shape design [Hildebrandt et al. 2011].
All of these methods create a global basis of deformations, whereas
our subspace leads to local deformations, allowing us to control in-
dividual parts of the shape. Locality can be achieved via sparsity in-
ducing norms [Neumann et al. 2013; Ozolinš et al. 2013]. The most
recent method due to Zhang et al. [2014] achieves locality along
with non-negativity and interpolation, however, their weights are
very slow to compute and compromise smoothness. Our weights
require only a solution of a relatively small linear system, which is
many orders of magnitude faster. A special type of localized bases
was presented by [Harmon and Zorin 2013], by using the Boussi-
nesq static deformation response to indentation of a few vertices.
In our work, we aim to design general-purpose bases which are lin-
early precise and can be used for large deformations of the input
shape.

Our subspaces are derived by minimizing a quadratic fairness func-
tional, analogously to thin-plate splines [Bookstein 1989] or more



general radial basis functions [Botsch and Kobbelt 2005]. In both
cases, the deformation energies are minimized over the entire Eu-
clidean space Rd , which implies the resulting deformations are
oblivious to the shape. The same limitation is inherent also to
Voronoi-based methods [Bobach et al. 2006]. Instead, our method
utilizes a quadratic deformation energy which respects the domain
including its deep concavities. In one dimension, our method is
equivalent to natural cubic splines (we elaborate on this in Sec-
tion 3.2). Our method can be seen as generalization of the same
idea to general shapes.

3 Method

We will define our basis for a possibly non-convex input subregion
⌦ 2 Rd , discretized as a triangle mesh (d = 2) or tetrahedral mesh
(d = 3). We store the vertices of the rest pose as rows of matrix
V 2 Rn ! d , where n is the number of vertices. The deformed
vertices will be denoted as V 2 Rn ! d .

Control points and regions Our basis will interpolate isolated
control points and affine transformations applied to selected control
regions. Generic region handles are familiar to variational model-
ing [Botsch and Kobbelt 2004]. Regions also encompass rigidly
deforming bones common in classical skinning. The combination
of positional constraints at isolated points (i.e. pure translations)
and full affine transformations at handles generalizes previous sub-
space formulations. Previous cage-based methods (e.g. [Huang
et al. 2006; Ben-Chen et al. 2009]) could implicitly achieve this
combination, but cages are difficult to create and the resulting sub-
spaces are merely cage-aware, rather than truly shape-aware. With
only region handles, our subspace resembles traditional skinning.
With only point handles, our subspace corresponds to generalized
barycentric coordinates (without the requirement that points form a
cage). Our method allows users to combine the benefits of region
and point handles in a single linear subspace.

Assuming the user selected mp control points and r regions, we
gather the rest positions of all mesh vertices incident on handles
in the rows of C 2 Rm ! d , where m = mp + mr includes mp

vertices at control points and mr vertices found within the r re-
gions. Typically, m is much smaller than n. Each of the mp iso-
lated control point contributes d dimensions to our subspace. A
single affine transformation controls all the vertices of each region
and contributes (d + 1)d dimensions. The total dimension of our
subspace will be mpd+ r(d+ 1)d. We gather the target positions
of the control points in the rows of C 1 2 Rm p ! d and we stack
the transposed affine transformations of the regions in a matrix
H 2 2 Rr (d+1)! d . We can then write the target positions of vertices
in the regions as C 2 = J2H 2 2 Rm r ! d , where J2 2 Rm r ! r (d+1)

is a rigid skinning matrix [Kavan et al. 2010]: a block matrix stack-
ing homogeneous coordinates of rest positions for vertices in each
region.

We can combine the influence of control point target positions and
region transformations into one matrix equation:

✓
C 1

C 2

◆

| {z }
C

=

✓
I m p 0
0 J 2

◆

| {z }
J

✓
C 1

H 2

◆

| {z }
H

(1)

where I m p 2 Rm p ! m p is an identity matrix. The resulting matrix
C 2 Rm ! d contains target positions of all vertices at points or in
regions. The matrix H 2 Rh ! d gathers all parameters spanning
our subspace, where h = mp + r(d+ 1).
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Figure 3: Our region handles (blue) have vector-valued weights, in
2D corresponding to x,y, and w homogeneous coordinates (clock-
wise). Points have scalar-valued weights.

Variational form Equation (1) provides a succinct way to ex-
press the subspace degrees of freedom. We now review how to
derive a linear deformation subspace from the variational form of
a quadratic energy minimization problem subject to constraints en-
suring interpolation of point and region handles.

For now, let us consider a generic quadratic mesh deformation en-
ergy subject to satisfying constraints at vertices lying at control han-
dles:

V = argmin
X" Rn⇥d

1
2 trace(X T AX ) subject to SX = JH , (2)

where A is for now a generic positive semi-definite quadratic form
measuring the fairness of X (we propose a specific energy in 3.1),
and S 2 Rm ! n is a binary selector matrix, i.e., matrix such that
SX selects m rows of X in the order implied by Equation (1). By
definition, A has constant precision iff A1 n = 0, where 1n 2
Rn ! 1 is a vector of ones, and linear precision iff A V = 0.

Equation (2) specifies an equality constrained convex quadratic op-
timization problem, solved as a linear system via several standard
methods. We choose direct substitution. Let T 2 R(n # m )! n be the
complementary selector matrix of S, i.e., corresponding to free ver-
tices. This allows us to sort the variables of X into knowns SX and
unknowns TX . After rearranging terms, and setting the derivatives
of Equation (2) with respect to TX to zero, we have:

V = (ST J � T T
(TAT T

)

# 1TAS T J)
| {z }

W

H (3)

The columns of W form the basis of our deformation subspace
and we call them “weights”, because they are analogous to weights
used in linear skinning methods (for control regions) and general-
ized barycentric coordinates (for control points), see Figure 3. Pro-
vided that there exists at least one region or d+1 affine independent
points, the matrix TAT T 2 R(n # m )! (n # m ) is symmetric positive
definite and therefore invertible. The main bottleneck consists in
computing (TAT T

)

# 1TAS T J , i.e., solving a linear system with
h right hand sides (because TAS T J has h columns). We precom-
pute its Cholesky factorization once and apply it to compute each
column of W in parallel, which is very fast.

With only region controls, the equation V = WH resembles the
matrix form of classical linear skinning. However, we note that
our W is more general than linear blend skinning and is analogous
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Figure 4: Notation used in derivations.

to the “Animation Space” method [Merry et al. 2006], related to
“Multi-weight Enveloping” [Wang and Phillips 2002]. More details
on different linear skinning methods can be found in [Jacobson et al.
2014].

AfÞne invariance The columns of W form a linear deformation
subspace with several desirable properties. First, if R 2 SO(d)
is a rotation matrix, then W (HR ) = (WH )R , i.e., the result-
ing deformation is rotation invariant for arbitrarily large rotations
of the handles. This property follows from our separable formula-
tion in Equation (2), i.e., each column of X is independent. While
this is a desirable property, we caution that the same equality holds
for arbitrary R 2 Rd! d , i.e., the resulting deformation is also lin-
early invariant. This is an inherent limitation of linear deformations:
Igarashi et al. [2005] proved that linear rotation invariant deforma-
tions must be also linearly invariant. In practice, it is often desirable
to penalize non-rigid deformations; we achieve this by combining
our subspace with minimization of advanced non-quadratic defor-
mation energies (see Section 3.1).

Translation invariance imposes additional constraints on W , or
equivalently on A as we will see. Consider some arbitrary transla-
tion t 2 R1! d as a row vector. Fill the column vector e 2 Rh ! 1

with ones for the first mp entries followed by blocks of d zeros and
one 1 for each of the r transformation handles. With this setup,
H + t ⌦ e corresponds to translating all of the handles by t (⌦ is
the Kronecker product). Let us examine the corresponding defor-
mation within our subspace:

W (H + t ⌦ e) = WH + Wt ⌦ e = WH + t ⌦ We

where the last equality follows from the properties of the Kronecker
product. To complete the proof of translation invariance, it is suf-
ficient to show that We = 1n . For an arbitrary quadratic energy
A , this equality will not hold, and translation invariance will be
elusive. However, if we craft A to contain 1n in its null space the
equality will hold and we will achieve translation invariance (see
proof in Appendix A).

Exact reconstruction of the rest-pose from undeformed handles H

Figure 5: Our method exactly reproduces the Armadillo’s rest
pose, while the standard volumetric Laplacian (middle) and least-
squares meshes [Sorkine and Cohen-Or 2004] (standard Laplace-
Beltrami, right) do not.

implies V = W H . Again, this fundamental property is not true in
general. We achieve it by crafting A such that the columns of V
are in the null space of A . This important property called “linear
precision” (or rest-pose reproduction) ensures that our deformation
subspace contains the undeformed shape (Figure 5).

The key to obtaining rest-pose reproduction and translation invari-
ance are our assumption on the null space of A . Unfortunately,
common quadratic energies used in previous work [Sorkine and
Cohen-Or 2004; Jacobson et al. 2011] fail to satisfy our null space
assumptions. We initially attempted to avoid the null space re-
quirements by imposing additional constraints when computing our
weights W . Specifically, we explicitly imposed additional equality
constraints V = W H [Zhang et al. 2014]. This approach produces
desirable weights, but incurs significant computational penalty, be-
cause the constraint V = W H couples individual columns of W .
This means solving for all entries of W in a nh ⇥ nh linear sys-
tem. Solving this linear system quickly becomes prohibitive even
for moderate resolutions and small handle sets. Even on the mea-
ger 2D alligator example of 5945 triangles and 33 control points this
global solve using MATLAB’s backslah operator takes two minutes
and 10 GB memory (compared to our 8 milliseconds and 2.7 MB).
Fortunately, it is possible to design operators A which satisfy our
null space requirements and therefore reduce the problem to solving
an (n�m)⇥ (n�m) sparse linear system with h right hand sides.
This lead to dramatic improvements in computation time, allowing
our method to scale to generous resolutions.

3.1 Linearly precise smoothness energy

Previous works have highlighted the advantages of minimizing the
the squared Laplacian energy to encourage smoothness:

x T L T M # 1T
MM # 1Lx = x T L T M # 1Lx , (4)

where L 2 Rn ! n is a discrete Laplacian (typically the “cotan-
gent Laplacian”) and M 2 Rn ! n is a mass matrix (often a diag-
onal lumped matrix of barycentric or Voronoi volumes per vertex).
Clearly, x T L T M # 1Lx = 0 for constant and linear x if and only if
the discrete Laplacian L measures zero on such functions.

All reasonable definitions of discrete Laplacians achieve constant
precision: L1 n = 0. The ubiquitous choice of L (see [Sorkine
et al. 2004; Botsch and Kobbelt 2004; Vallet and Lévy 2008; Xu
et al. 2009; Lipman et al. 2010; Finch et al. 2011; Kavan et al.
2011; Jacobson et al. 2011; Jacobson et al. 2012b] etc.) is linearly
precise for interior vertices but fails on the boundary. For triangle
meshes in R2, these methods define the contents of L as:

L ij =

8
><

>:

1
2 (cot↵ij + cot�ij ) if {ij} is an interior edge,
1
2 cot↵ij if {ij} is a boundary edge,
0 otherwise,

(5)

where ↵ij is the angle opposite the edge {ij} and �ij is the other
angle for interior edges (see Figure 4 left).



Colloquially, this definition simply ignores the “missing cotangent”
for boundary edges. More rigorously, if we consider a differ-
ent energy—the squared gradient of x—then this L appears (un-
squared) as the quadratic form when imposing Neumann boundary
conditions rx · n = 0 on @⌦ (e.g. [Vallet and Lévy 2008]). These
boundary conditions are “natural” or “implicit” as they minimize
the squared gradient energy [Desbrun et al. 2002].

Using this L as our discrete Laplacian in our squared Laplacian en-
ergy does have advantages: it is convergent, well behaved for rea-
sonable meshes, positive semi-definite, and symmetric [Wardetzky
et al. 2007]. Unfortunately, it is not linearly precise at boundary
vertices. Effectively, the row L i corresponding to a boundary ver-
tex i measures the integrated Laplacian in the small region around
vertex i minus the integrated normal derivative along the small por-
tion of boundary near vertex i. The Laplacian portion is linearly
precise, but the normal derivative is not.

To fix this, we add the normal derivative to all rows correspond-
ing to boundary vertices and construct a linearly precise cotangent
Laplacian:

K = L + N , (6)

where N measures a discrete normal derivative at boundary ver-
tices:

N i x =

cot �ik

2

(x i � x k ) +
cot �jk

2

(x j � x k )+ (7)

cot �iq

2

(x i � x q) +
cot �pq

2

(x p � x q) (8)

where j and k are neighboring boundary vertices, p and q form their
respective triangles with i, and �ab is the angle opposite the edge
{ab}

The derivation for tetrahedral meshes in R3 is completely analo-
gous. In this case, the discrete Laplacian L is defined in terms of
cotangents of dihedral angles and edge lengths:

L i x =

X

T " N (i )

X

j $=i " T

`ij

6

cot �ij (x j � x j ), (9)

where `ij is the length of the edge opposite edge {i, j} in tetrahe-
dron T and �ij is the dihedral angle along that edge (see Figure 4
right). The normal derivative matrix N is similarly defined:

N i x =

X

F " N (i )%! ⌦

X

j " F

`f j

6

cot �f j (x j � x f ), (10)

where F is a triangular boundary facet incident on i and f is the
vertex opposite F .

Having defined K as our linearly precise Laplacian, we can now
define a squared Laplacian smoothness energy with constant and
linear functions in its null space:

x T K T M # 1K| {z }
A

x (11)

The normal derivative matrix N is not symmetric so neither is K ,
but our energy is positive semi-definite as A is symmetric.

Minimizing the continuous analog of this energy
R
⌦
(�x)2 dV cor-

responds to solving a biharmonic equation �

2x = 0 subject to
second- and third-order boundary conditions: �x = r�x · n = 0

on @⌦ (derived via calculus of variations after applying Green’s
first identity twice). Viewed as an application of finite volume
method, our discretization also captures these boundary conditions.
Previously, Jacobson et al. [2010] discretized the same energy using
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Figure 6: We generalize natural cubic splines (left) to higher di-
mensions and non-Euclidean domains. In 1D, natural cubic splines
have exponential decay in magnitude (right).
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Figure 7: Non-negative weights lead to ripples near interpolated
values; negativity allows extrapolation for better fairness.

piecewise linear elements in a mixed formulation and considered a
variety of boundary conditions, but unfortunately not the combina-
tion required here. Higher-order elements should, in theory, support
direct discretization of these boundary conditions. Using discrete
exterior calculus, Fisher et al. [2007] employed a squared diver-
gence energy for tangent vector field design. After their boundary
modification and substituting their unknown vector field for the gra-
dient of an unknown scalar field we obtain the same discrete oper-
ator A .

3.2 Note about non-negativity

Our weights (columns of W ) are bounded, but they can be nega-
tive. Negative weights have been condemned in recent works [Lip-
man et al. 2007; Joshi et al. 2007; Hormann and Sukumar 2008;
Jacobson et al. 2011; Jacobson et al. 2012b] because they can lead
to counter-intuitive behavior, e.g., moving a control point to the
right results in parts of the shape moving to the left. In this sec-
tion, we highlight the fact that non-negative weights have certain
important trade-offs, typically under-emphasized in previous work.
Specifically, allowing negative weights is a necessary condition for
achieving fairness and extrapolation.

The fairness issues are easiest to explain in d = 1. In one di-
mension, our method is equivalent to natural cubic splines: let
us assume ⌦ is an interval with regularly spaced control points
x1, . . . , xN 2 R. In this didactic setting, we can obtain an in-
terpolation basis corresponding to both natural cubic splines and
our method by finding functions f : [x1, xN ] ! R which mini-
mize

R
(f&&

)

2 subject to f(xi ) = �ij , where j = 1, . . . , N is the
index of our basis functions and �ij is the Kronecker delta. One
such function is shown in Figure 6 (left). Note that the function
is bounded (and in fact quickly converges to zero), but it is cer-
tainly not non-negative. This negativity is essential to obtaining fair
interpolation curves. If we impose non-negativity constraints, we
will obtain the one-dimensional analogue of Bounded Biharmonic
Weights [Jacobson et al. 2011]. Unfortunately, the combination of
smoothness, interpolation, and non-negativity forces the derivatives
of the reconstructed functions to vanish at the control points. This
results in ripples, exemplified in Figure 7. We note that both func-
tions are C1 continuous; in fact, they minimize the same energy
(
R
(f&&

)

2) but with respect to different constraints: the result in Fig-
ure 7 (left) appends non-negativity constraints. Similar effects can

Alec Jacobson
See erratum “Error in ‘Linear Subspace Design for Real-Time Shape Deformation’” [Wang et al. 2017]



!"#$%&'#" �¨���P�R("# )*!#+,+-

Figure 8: Harmonic modes (top 100 eigenvectors of the standard Laplacian, augmented with the input’s rest pose coordinates) induce a
global deformation even if the guiding energy would be most satisfied with a local one. Our weights are local, so they do not hinder ARAP’s
locality.
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Figure 9: Non-negative weights (such as [Jacobson et al. 2011],
left) result in ripples when bending a 2D rectangle. These “fairness
issues” shrink but remain with more handles. Our weights provide
pleasingly fair deformations with any number of handles.

be observed in higher dimensions, see Figure 9.

Putting quality of deformations aside, negative weights are also
necessary to achieve extrapolation of control points. Extrapola-
tion is an important asset because constraining the entire boundary
or designing control cages may be impractical for more complex
shapes. All reasonable definitions of generalized barycentric coor-
dinates reduce to classical barycentric coordinates if the input shape
is a simplex, i.e., convex set with d + 1 control points. However,
outside of the convex hull, barycentric coordinates are negative.

Finally, achieving non-negativity is often computationally expen-
sive, e.g., Bounded Biharmonic Weights [Jacobson et al. 2011] re-
quire solutions of quadratic programs, which is orders of magnitude
slower than our method and typically mandates off-line precompu-
tation. Our weights can be computed much faster, allowing the user
to explore different deformation subspaces interactively.

Smoothness Like all piecewise linear deformations, our
smoothness is limited by the mesh resolution. In the limit of refine-
ment our weights are C1 near handles as is typical for biharmonic
solutions [Jacobson et al. 2010], see Figure 3.

3.3 Domain reduction for non-linear optimization

Linear subspaces are ideal for reducing the computational com-
plexity of non-linear optimizations [Barbič and James 2005; Hilde-
brandt et al. 2011; Jacobson et al. 2012a]. An ideal domain reduc-
tion untethers complexity from the discretization resolution without
significantly reducing the quality of solutions.

In Section 4, we demonstrate the effectiveness of our particular sub-
space in two practical scenarios: 1) non-linear variational modeling
for design tasks and 2) elastic physically based simulations with dy-
namics. We now briefly explain how we apply our linear subspace
in each scenario.

As-rigid-as-possible deformation The so-called as-rigid-as-
possible (ARAP) methods have earned popularity in geometric
modeling due to their robust handling of large, localized rotations
[Igarashi et al. 2005; Sorkine and Alexa 2007]. These methods
minimize a local rigidity energy integrated over the domain. In the
discrete setting, the energy is a sum over r local regions defined by
edge-sets Ek , k = 1 . . . r:

V = argmin
X

rX

k=1

min

Rk" SO (d)

X

{ i,j }"E k

k(v i �v j )�R k (v i �v j )k2,

where R k is thought of as the “best-fit” rotation matching the rest
edge vectors (v i � v j ) of Ek to their deformations (v i � v j ). In
R2, Ek is usually taken as the edges of the kth triangle [Igarashi
et al. 2005; Liu et al. 2008]. In R3, Ek could be overlapping per-
vertex patches defining a surface energy or could be the edges of
a tetrahedron inside the shape defining a volumetric energy [Chao
et al. 2010]. A popular method for optimizing this energy is the
“local/global” or block coordinate descent approach: alternate be-
tween 1) fixing all rotations R k and solving globally for positions
X via a Poisson equation and 2) fixing all X and solve for each R k

via singular value decomposition.

Recently, linear subspaces brought the optimization of these ARAP
energies to interactive levels [Hildebrandt et al. 2011; Jacobson
et al. 2012a]. The first change is to substitute the full-resolution op-
timization with the linear subspace X = WH [Hildebrandt et al.
2011]. This reduces the complexity of the global step. To achieve
truly real-time rates, the local step is reduced by clustering rotations
into meaningful super-edge-sets or “rotation clusters” [Müller et al.
2005; Jacobson et al. 2012a].

In contrast to previous subspaces, we argue that our proposed sub-
space is much better suited for domain-reduced ARAP minimiza-
tions. Modal analysis produces very effective subspaces in terms of
energy value [Barbič and James 2005; Hildebrandt et al. 2011], but



Extra points A Extra points B

Extra points C ARAP

Figure 10: Our results are not particularly sensitive to specific lo-
cations of auxiliary control points. The three different configura-
tions (A,B,C) lead to similar results.
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Figure 11: Caterpillar deformed using two region and four point
handles. Adding 8 extra points is not enough, 32 produces results
similar to full-space ARAP.

the global nature of the subspace weights is often undesirable. Even
if the ARAP energy would be satisfied with local deformation, the
global modes affect distant, unrelated parts of the shape (see Fig-
ure 8). Instead, our weights achieve locality due to their natural fall
off when interpolating our control points (see Figure 16). The “ad-
ditional weight functions” of [Jacobson et al. 2012a] are localized
and fast to compute, but the underlying assumption of their method
is that the user has brought as input a fixed set of linear blend skin-
ning control handles. Presumably the skinning weights could be
computed automatically, but state-of-the-art methods are too slow
to recompute primary handle weights interactively [Jacobson et al.
2011]. The user is stuck with the input handle set. In contrast, our
users may quickly add, remove, or edit handle constellations.

Elastic deformations with dynamics Many physics-based sim-
ulations rely on realistic looking deformations of elastic objects.
Our linear subspace can be directly applied in any simulator which
supports model reduction [Sin et al. 2013]. In our system we opted
for a simpler yet effective approach: we augment the ARAP energy
above with a momentum term [Chao et al. 2010; Martin et al. 2011;
Jacobson 2013]. The implementation is straightforward because the
extension amounts to adding a convex quadratic term to our energy.

Auxiliary control points To enrich the subspace we propose to
place auxiliary control points throughout the domain. Unlike han-
dles, these auxiliary control points are not intended to be directly
controlled by the user. The user may view and adjust these points
at any time, but we have found that it is most effective to hide the
points once satisfied and interact only with a sparse set of handles.

!"#$%&'&()"*+,-

Figure 12: Auxiliary control points (purple) close to user-
manipulated handles (green) are not a problem (middle figure).
However, too close handles can lead to unpleasing deformations
(right figure).
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Figure 13: Time per subspace ARAP iteration (in milliseconds) vs.
the subspace dimension h.

We use farthest point sampling, observing the results are not very
sensitive to the exact locations of these points, see Figure 10. The
number of auxiliary control points must be chosen judiciously by
the user. Too few points do not produce appealing deformations;
too many points lead to diminishing returns, see Figure 11. The
proximity of auxiliary control points to user-controlled handles is
not a problem because the ARAP energy will make the auxiliary
control points move coherently with the handles. However, un-
pleasing deformations can occur if two handles are too close and
are pulled apart by the user, see Figure 12.

4 Results

We conducted a number of experiments to verify the properties of
our subspace and its effectiveness across a variety of models and
applications. All of our 3D examples use tetrahedral meshes. We
report computation times for the examples in this paper in Table 1,
conducted on an Alienware laptop with an Intel i7 4800MQ CPU.
Our basis computation involves a single linear system solve against
h right hand sides, which we compute in parallel using CHOLMOD
[Davis 2006]. In our experiments, CHOLMOD of SUITESPARSE
is significantly better at parallelizing its factorization and backsub-
stitution than, for example, MATLAB’s backslash or chol rou-
tines. The per-iteration time of subspace ARAP scales quadratically
with the subspace dimension h, e.g., with the Armadillo model our
system remains interactive until about h = 1000, see Figure 13.
The local/global optimization converges typically within 5 - 30 it-
erations, but we already display intermediate results to the user.
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Figure 14: Thin plate spline interpolation is not suitable for de-
forming non-convex shapes as it is not shape-aware.



Model d n #elem. #points #regions h tSS
our [s] tMAT

our [s] tbbw[s] tbbw/tSS
our #clusters iter [ms]

Alligator 2 3348 5945 33 0 33 0.000224 0.0014 0.151 672x - -
Octopus 2 4734 8778 100 10 130 0.000198 0.0012 0.187 944x - -
Bulldog-head 2 8602 16520 100 0 100 0.00056 0.004 0.54 965x 100 0.17
Woody-star 2 11290 22065 35 1 38 0.0013 0.006 0.731 542x 100 0.068
Elephant-2d 2 24928 49075 6 1 9 0.0094 0.0278 1.69 179x - -
Clam 2 27083 53335 6 4 18 0.005 0.0211 1.78 356x - -
Fatman 3 14266 52106 20 10 60 0.0015 0.0119 9.03 6018x 100 0.218
Cigar 3 17121 57125 2 2 10 0.0122 0.0458 32.21 2640x 20 0.024
Squirrel 3 41065 168117 100 2 108 0.0045 0.0591 176.1 39135x 100 0.374
Armadillo 3 47162 142685 120 2 128 0.0042 0.0472 9.94 2367x 100 0.44
Elephant 3 91637 396348 90 4 116 0.0102 0.1697 25.78 2527x 100 0.366

Table 1: Performance statistics: dimension (d), number of vertices (n), number of elements (triangles/tets, #elem.), number of control points,
control regions, dimension of our subspace (h), pre-compute time per weight with our method using SuiteSparse (tSS

our ) and MATLAB (tMAT
our ,

both in seconds), pre-compute time per weight for BBW (tbbw, in seconds), speedup of our method compared to BBW, number of ARAP
rotation clusters, and per iteration time of the local/global solver (in milliseconds).

Figure 15: Our intrinsic smoothness energy depends only on the
metric of the domain, not its embedding. This rest mesh is self-
overlapping (left). With our subspace we can unfold it smoothly.
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Figure 16: A height field plot of the 19th weight shows its locality
relative to the 39 other handles. The log-abs plot reveals that the
weight magnitude decreases exponentially.

Figure 17: Our system passes the standard benchmark of shape
deformation methods (cf. [Botsch and Sorkine 2008]).

Figure 18: The user begins manipulating two points and two re-
gions with the help of automatically positioned control points. Then
the user adds handles interactively to stretch the ears and the tail.

Figure 19: After straightening the Octopus’s tentacles, scaling the
eyes, don’t forget to make him smile!

As discussed in Section 3.2, our bases are an extension of natu-
ral cubic splines to irregular domains in R2 and R3. This shape-
awareness is essential for maintaining intuitive control over non-
convex shapes (Figure 14). The construction of our smoothness
energy is purely intrinsic and will even retain shape-awareness for
shapes with overlapping meshes [Sacht et al. 2013] (see Figure 15).

We do not explicitly ask for sparsity, yet we observe localized co-
ordinates similar to 1D cubic spline basis functions (see Figure 6,
right). Specifically, magnitudes decrease exponentially with each
“ripple” between control points (see Figure 16). Even though not
strictly sparse, for all practical purposes influence far away from
a control point is effectively zero. This local behavior is analo-
gous to Harmonic coordinates [Joshi et al. 2007] and heat diffusion
weights [Baran and Popović 2007]. Unlike harmonic coordinates,
we do not require an exterior cage, and our control points can be
placed directly on or in the shape.

Combining our region handles with auxiliary control points guided
automatically by an ARAP minimization, we reproduce the quality
of nonlinear variational modeling techniques on the familiar bench-
mark shapes at real-time rates comparable to [Jacobson et al. 2012a]
(see Figure 17 and cf. [Botsch and Sorkine 2008]). Jacobson et al.
[2012a] assume skinning weights as input or presumably compute
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Figure 20: In a typical interactive sequence with our subspace, the user can freely add or adjust the control handle constellation without
incurring long wait times while weights recompute. Designing the right subspace is now just as much a creative task as handle manipulation.

bounded biharmonic weights [Jacobson et al. 2011], costing tens of
seconds for handle. This deteriorates the interactive experience as
the user must very carefully decide how many handles to place and
where. In stark contrast, our computation finishes several orders
of magnitude sooner. The user does not need to think twice about
adding or editing the handle arrangement (see Figure 18).
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Figure 21: Placing a region over Woody’s star and delegating it
to the ARAP minimization will maintain its shape without requiring
the user to control its transformation manually.

Figure 22: Linear skinning methods suffer from joint collapse: lin-
ear blend skinning with BBW (left) and Animation Space (middle).
Our subspace also suffers from linear artifacts, but these disappear
after adding two auxiliary control points (right).

Workflows are more natural when the subspace bases can be de-
signed by the user interactively. The user adds point or region han-
dles on an as-needed basis (see Figures 1 and 20). In both exam-
ples, automatically scattered auxiliary control points (shown in pur-
ple) improve the quality of deformations without excessively many
degrees of freedom. This natural workflow also assists 2D cartoon
editing (see Figure 19). Letting the ARAP minimization take con-
trol of region handles is useful to retain features of a shape without
forcing the user to control them (see Figure 21).

Our region handles can be also used to define bones, achieving
similar results as with traditional linear skinning methods. With-
out control points and ARAP energy minimization, our subspace
is equivalent to Animation Space [Merry et al. 2006]. However,
note that Merry et al. [2006] rely on input training data, whereas
we calculate our weights solely using the rest pose. Linear skin-
ning methods are prone to joint collapsing artifacts, see Figure 22.
Using our auxiliary control points and subspace-ARAP, it is easy to

Figure 23: The Fat Man’s belly jiggles due to inertia and gravity.

deal with these artifacts; in our example, the problems disappear al-
ready after adding two strategically placed auxiliary control points,
see Figure 22 (right).

Our subspaces allow us to seamlessly combine affine transforma-
tions with point displacements. We take advantage of this in our
Fat Man example in Figure 23, where we combine bones (region
handles) to drive the body and auxiliary control points to add
flexibility to his belly. We drive the bone transformations using
keyframe interpolation and we use our dynamic ARAP extension
to produce inertia and gravity effects, resulting in realistic jiggling
of the fat belly (see accompanying video).

5 Conclusions and Future Work

While our technique provides a very practical way of controlling
deformations, there are several limitations and opportunities for fu-
ture work. Our method requires discretization of the input domain.
In 3D, tet-meshing has been notorious for its difficulties, however,
recent tools enable us to create high-quality tet meshes even from
imperfect polygon models [Jacobson et al. 2013; Xu and Barbič
2014]. In the future, we would like to explore generalizations of
our method to simplicial meshes, combining features of different
dimensions. In this paper, we focus on deformation fields, but we
envision that similar methods could be used to interpolate arbitrary
quantities defined at control points, not just deformations [Finch
et al. 2011]. It will be interesting to apply advanced automatic
control points sampling strategy to our method. For handle addition
and removal, it is possible to combine our method with a fast bi-
harmonic system updating technique, to further boost performance
[Xu et al. 2009].

In summary, we presented a method to design quality deformation
subspaces, suitable for variational shape deformation methods and
dynamic simulation of elastic objects. The main advantage of our
approach is speed: our subspaces are found as solutions of a sparse
linear system with multiple right hand sides. Using modern linear
solvers, the bases of our subspaces can be computed without any
visible delay to the user, enabling new interactive experiences.
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Appendix A: Properties of the solution opera-
tor

We prove that We = 1n , assuming that W is a solution operator
corresponding to a positive semi-definite energy A which has 1n

in its nullspace. An elegant way to see this is via the variational
formulation, noting that We can be interpreted as:

We = argmin
x" Rn⇥1

trace(x T Ax ) subject to Sx = Je (12)

Note that due to the special structure of our extended skinning ma-
trix J , we have Je = 1m . However, the vector 1n leads to zero
energy, because A1 n = 0 and it clearly satisfies all of the con-
straints because S1n = 1m . This means that 1n is a solution of the
optimization problem from Equation (12). Assuming that we have
at least one region or d + 1 affine independent control points, the
solution is unique and therefore, We = 1n .

A similar argument reveals why W H = V , where H corresponds
to undeformed configuration. Specifically, the first mp rows of H
contain the rest-pose positions of the vertices, followed by r blocks
of (d+1)⇥d matrices of identity transformations (i.e. a d⇥d iden-
tity matrix followed by a row of zeros). This means the matrix J
retrieves the rest-pose positions of the constrained vertices (corre-
sponding to both point and region handles), formally: JH = SV .
This means that W H is the following minimizer:

W H = argmin
X" Rn⇥d

trace(X T AX ) subject to SX = SV (13)

Because we assume the columns of V are in the nullspace of A ,
we can see that V is the solution of the optimization problem from
Equation (13) and, as above, we can conclude that W H = V .
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