1

HTN Planning with Preferences

Shirin Sohrabi

Jorge A. Baier

Sheila A. Mcllraith

Department of Computer Science
University of Toronto
{shirin, jabaier, sheilg@cs.toronto.edu

Abstract

In this paper we address the problem of generat-
ing preferred plans by combining the procedural
control knowledge specified by Hierarchical Task
Networks (HTNs) with rich user preferences. To
this end, we extend the popular Planning Domain
Definition Language, PDDL3, to support specifica-
tion of simple and temporally extended preferences
over HTN constructs. To compute preferred HTN
plans, we propose a branch-and-bound algorithm,
together with a set of heuristics that, leveraging
HTN structure, measure progress towards satisfac-
tion of preferences. Our preference-based planner,
HTNPLAN-P, is implemented as an extension of
thesHoP2 planner. We compared our planner with
SGPlars and HPLAN -P- the top performers in
the 2006 International Planning Competition pref-
erence trackddTNPLAN -P generated plans that in
all but a few cases equalled or exceeded the qual-
ity of plans returned byHPLAN -P and SGPlan.
While our implementation builds osHOP2, the
language and techniques proposed here are relevant
to a broad range of HTN planners.

Introduction

properties that constitute a high-quality plan. For examnpl

if one were generating an air travel plan, a high-qualitynpla
might be one that minimizes cost, uses only direct flights,
and flies with a preferred carrier. PBP attempts to optimize
the satisfaction of these preferences while achievingtipe s
ulated goals of the plan. To develop a preference-based HTN
planner, we must develop a specification language thatrefer
ences HTN constructs, and a planning algorithm that com-
putes a preferred plan while respecting the HTN planning
problem specification.

In this paper we extend the Planning Domain Definition
Language, PDDL8Gereviniet al,, 2009, with HTN-specific
preference constructs. This work builds on our recent work
on the development of PH [Sohrabi and Mcllraith, 2048
a qualitative preference specification language designed to
capture HTN-specific preferences. PDDL3 preferences are
highly expressive, however they are solsfsite centriciden-
tifying preferred states along the plan trajectory. To dtgve
a preference language for HTN we addtion-centriccon-
structs to PDDL3 that can express preferences over the-occur
rence of primitive actions (operators) within the planeraj
tory, as well as expressing preferences over complex action
(tasks) and how they decompose into primitive actions. For
example, we are able to express preferences over which sets
of subtasks are preferred in realizing a task (&\¢hen book-
ing inter-city transportation, | prefer to book a flighand

Hierarchical Task Network (HTN) planning is a popular preferr_ed parameters to use when choo_sing a set of subtasks
and W|de|y used p|anning paradigm, and many domain.to realize a task (e.gl,prefer to book a ﬂlght with Un|t8)j
independent HTN planners exist (e.gHopP2, SIPE-2, I-X/I-
PLAN, O-PLAN) [Ghallabet al, 2004. In HTN planning, the
planner is provided with a set of tasks to be performed, pos2g€e HTN structure.

sibly together with constraints on those tasks. A plan isthe The main contributions of this paper are: (1) a language
formulated by repeatedly decomposing tasks into smallér anthat supports the specification of temporally extended-pref
smaller subtasks until primitive, executable tasks aretred.
A primary reason behind HTN'’s success is that its task netef a plan, and (2) heuristics and an algorithm that exploit

To compute preferred HTN plans, we propose a branch-and-
bound algorithm, together with a set of heuristics thatideve

erences over complex action- and state-centric properties

works capture useful procedural control knowledge—adviceHTN procedural preferences and control to generate pesferr

on how to perform a task—described in terms of a decompoplans that under some circumstances are guaranteed optimal

sition of subtasks. Such control knowledge can signifigantl The notion of adding advice to an HTN planner regarding

reduce the search space for a plan while also ensuring thabw to decompose a task network was first proposed by My-

plans follow one of the stipulated courses of action. ers (e.g.[Myers, 2000). Recently, there was another attempt
While HTNs specify a family of satisfactory plans, they to integrate preferences into HTN planniwghoutthe provi-

are, for the most part, unable to distinguish between sucsion of action-centric language construfitin et al, 2004.

cessful plans of differing quality. Preference-basedmlagn ~ We discuss these and other related works in Section 7. PBP

(PBP) augments a planning problem with a specification ohas been the topic of much research in recent years, and there



has been a resurgence of interest in HTN planning. Experiarrange-transinto the subtaskof booking a flight and pay-
mental evaluation of our planner shows that HTN PBP gening, with the constraintqonst) that the booking precede pay-
erates plans that, in all but a few cases, equal or exceed thmeent. An operatos may also accomplish a ground primitive
best PBP planners in plan quality. As such, it argues for HTNask¢ if their names match.

PBP as a viable and promising approach to PBP. Definition 2 (Task Network) A task network is a pair
w=(U, C) where U is a set of task nodes and C is a set of
2 Background constraints. Each task nodeauU contains a task,,. If all of
. the tasks are primitive, then w is called primitive; othesei
2.1 HTN Planning it is called nonprimitive.

Informally, an HTN planning problem can be viewed as a In our example, we could have a task netwdik C)
generalization of the classical planning paradigm. An HTNwhereU = {u;,us}, u; =book-car andu,= pay, andC
domain contains, besides regular primitive actions, a et dis a precedence constraint such thatmust occur before,
tasksor high-level actions. Tasks can be successively reand a before-constraint such that at least one car is al@ilab
fined ordecomposedby the application of so-calleshethods  for rent beforeu;.

When this happens, the task is replaced by a new, intuitivelyyefinition 3 (Plan) 7 = 0105 .. .0y is a plan for HTN plan-
more specific¢ask networkIn short, a task network is a set of ning programP = (so, wo, D) if there is a primitive decom-
tasks plus a set of restrictions (often ordering constsaihiat g)osition,w, of wg of whichr is an instance.

its tasks should satisfy. The HTN planning problem consist Finally, to define the notion gfreference-baseglanning

?;lwgmg a primitive decomposition of a given (initial) tas we assume the existence of a reflexive and transitive ralatio
) =< between plans. i, andny are plans fofP andw; < 7o

Example 1 (Travel Example) Consider the planning prob- \ve say thatr, is at least as preferred as,. We user; < s
lem of arranging travel in which one has to arrange accomas an abbreviation far; < 7> andms 2 ;.
modation and various forms of transportation. This prob- y

lem can be viewed as a simple HTN planning problem, i Definition 4 (Preference-based HTN Planning)An  HTN

; . . “ » : n lanning problem with user preferences is described as a
which there is a single task, arrange t_ravel , Which can beﬁ-tuple? — (50, w0, D, <) where= is a preorder between
decomposed into arranging transportation, accommodation lans. A planr is a solution toP if and only if: 7 is a plan
and local transportation. Each of these more specific tas rP’. — (s0, w0, D) and there does not exisfs a platfor
can successively be decomposed based on alternative mo Ssuch th a?b}’ i’w
of transportation and accommodations, eventually reducin . ' ) .
to primitive actions that can be executed in the world. Ferth 1€ = relation can be defined in many ways. Below we
constraints can be imposed to restrict decompositions. desc_rlt;e PDDL3, which defines quantitatively through a

A formal definition of HTN planning with preferences metric function.

Z:”?;\(I)Sdéﬂ Most of the basic definitions follow Ghallaét 5 > Byjef Description of PDDL3
Definition 1 (HTN Planning Problem) An HTN planning
problem is a 3-tupleP = (sg,wp, D) wheresy is the ini-

The Planning Domain Definition Language (PDDL) is the
de facto standard input language for many planning systems.

tial state,wy is a task network called the initial task network, PDDL3 [Gerevini et al, 2009 extends PDDL2.2 to sup-

X ; . . ; port the specification of preferences and hard constrauets o
gggg tlc;sr;h:nQTmNeﬁigggmg domain which consists of a set Ofstateproperties of a trajectory. These preferences form the

o ) ) building blocks for definition of a PDDL#&etric functiorthat
A domain is a paitD = (O, M) whereO is a set of oper-  defines the quality of a plan. In this context PBP necessitate
ators and\/ is a set of methods. An operator is a primitive mayimization (or minimization) of the metric function. In

action, described by a tripte=(name(0), pre(0), eff(o)xor-  \yhat follows, we describe those elements of PDDL3 that are
responding to the operator’s name, preconditions andtsffec ,ost relevant to our work.

In our example, ignoring the parameters, operators might in
clude: book-train, book-hotelandbook-flight

A taskconsists of a task symbol and a list of arguments.
task is primitive if its task symbol is an operator name and it
parameters match, otherwise itienprimitive In our exam-

Temporally extended preferences/constraints PDDL3
Aspecifies temporally extended preferences (TEPs) and tempo
rally extended hard constraints in a subset of linear teaipor
logic (LTL). Preferences are given names in their declarati

ple, arrange-transand arrange-accare nonprimitive tasks, to allow for later reference. The following PDDL3 code il-
while book-flightandbook-carare primitive tasks. lustrates one preference and one hard constraint.

A method,m, is a 4-tuple fame(m), task(m),subtasks(m), (forall (?I - light) _
constr(m))corresponding to the method’s name, a nonprimi- ~ (Preference p-light (sometinme (turn-off 21))))
tive task and the method’s task network, comprising sulstask (&l ways (forall ?x - explosive)
and constraints. Methogh is relevant for a task if there (not (holding ?x)))
is a substitutiorr such thatr(¢) =task'm). Several methods Thep-1i ght preference suggests that the agent eventually
can be relevant to a particular nonprimitive taskeading to  turn all the lights off. The (unnamed) hard constraint estab
different decompositions of. In our example, the method lishes that an explosive object cannot be held by the agent at
with name by-flight-trangan be used to decompose task  any point in a valid plan.



When a preference iexternallyuniversally quantified, it non-functional properties that distinguish them (e.geddr
defines a family of preferences, comprising an individualcards accepted, country of origin, trustworthiness, eandl
preference for each binding of the variables in the quantifie that influence user preferences.

Therefore, preference- | i ght defines an individual pref- In designing a preference specification language for HTN
erence for each object of typeé ght in the domain. planning, we made a number of strategic design decisions.

Temporal operators cannot be nested in PDDL3. Our apWe first considered adding our preference specifications di-
proach can however handle the more general case of nesteektly to the definitions of HTN methods. This seemed like
temporal operators. a natural extension to the hard constraints that are already

Precondition Preferences Precondition preferences are part of method definitions. Unfortunately, this precludasye
atemporal formulae expressing conditions that shouldlidea contextualization of methods relative to the task the metho
hold in the state in which the action is performed. They ards realizing. For example, in the travel domain, many meth-
defined as part of the action’s precondition. ods may eventually involve the primitive operation ey-
Simple Preferences Simple preferences are atemporal for- ing, but a user may prefer different methods of payment de-

mulae that express a preference for certain conditionsltb ho pendent upon the high-level task being realized (aihen

in the final state of the plan. They are declared as part of thBOOking a Car‘:’ pag w||(th am?l)'( tﬁtepr0|t %rr]nex’sAfree CIOH'S'.On
goal. For example, the following PDDL3 code: coverage, when booking a thight, pay with my Aeropian-visa
(: goal to collect travel bonus pointsetc.). We also found the op-

(and (delivered pkgl depot 1) tion of including preferences in method definitions unappea
(preference p-truck (at truck depot1)))) ing because we wished to separate domain-specific, but user-
specifies both a hard goapKgl must be delivered at independent knowledge, such as method definitions, from

; : user-specific preferences. Separating the two, enables use
ggggi 3 g?rgplz psrler?(frISncpersfce;ﬁnaclgo ggiglrj;gtli(ﬁelg at to share method definitions but individualize preferen¥és.

. . i . ) ) also wished to leverage the popularity of PDDL3 as a lan-
Metric Function The metric function defines the quality of guage for preference specifications.

aplan, generally depending on the preferences that have t_)ee Here, we extend PDDL3 to incorporate complex action-
achieved by the plan. To this end, the PDDL3 expressionentric preferences over HTN tasks. This gives users the
(i s-violated nane), returns the number of individual gty to express preferences over certain parametésizat
p.references in theamre family of preferences that have been ¢ 5 135k (e.g., preferring one task grounding to anothet) an
violated by the plan. . ) over certain decompositions of nonprimitive tasks (i.ee-p

Finally, it is also possible to define whether we want t0fer 1o apply a certain method over another). To support pref-
maximize or minimize the metric, and how we want to weigh grences over task occurrences (primitive and nonprimitive
its different components. For example, the PDDL3 metricyng a5k decompositions, we added three new constructs to
function: PDDL3: ocda), initiate () and terminate(z), wherea is
(tmetric mninze §+ 40 (is-violated p-light)) a primitive task (i.e., an action), andis either a task or a

: Lo i name of methodocca) states that the primitive taskoc-

o . (r 20 (is-violated p-truck))))  oyqin the presento'(stz;te. On the other hanitiate () and
specifies that it is twice as important to satisfy preferencgerminate(¢) state, respectively, that the tasls initiated or
p-1i ght as to satisfy preferenqe t r uck. _ terminated in the current state. Similaihyitiate (n) (resp.

Since it is always possible to transform a metric that reterminate(n)) states that the application of method named
quires maximization into one that requires minimizatio®, W s jnjtiated (resp. terminated) in the current state. These
will assume that the metric is always beimgnimized constructs can be used within simple and temporally exénde

Finally, we now complete the formal definition for HTN preferences and constraints, but not within preconditiesp
planning with PDDL3 preferences. Given a PDDL3 metric grences.
function M theHTN preference-based planning problemwith 110 following are a few temporally extended preferences
PDDL3 preferencess defined by Definition 4, where the re- from our travel domaihthat use the above extension.

lation < is such thatr; < o iff M (7)) < M(72).
(preference pl

3 PDDL3 Extended to HTN (always (not (occ (pay MasterCard)))))
. . . . (preference p2 (sonetime (occ
In this section, we extend PDDL3 with the ability to ex- (book-flight SA Eco Direct WndowSeat))))

press preferences over HTN constructs. As argued in Section (preference p3 (inply (close origin dest)

1, supporting preferences over how tasks are decomposed, (sonetine (initiate (by-rail-trans)))))
their preferred parameterizations, and the conditioneund  (preference p4

which these preferences hold, is compelling. It goes beyond  (sonetine-after (terminate (arrange-trans))

the traditional specification of preferences over the pridge (initiate (arrange-acc))))
of states within plan trajectories to provide preferencesr o
non-functional properties of the planning problem inchgli ~ Thep1 preference states that the user never pays by Mas-

howsome planning objective is accomplished. This is partictercard. Thep2 preference states that at some point the user
ularly useful when HTN methods are realized usingwebser-
vice software components, because these services have many*For simplicity many parameters have been suppressed.



books a direct economy window-seated flight with a Star Al-t occurring in the preferences, we extend the compiled prob-
liance (SA) carrier. Th@3 preference states that thg-rail-  lem with a newocc-t predicate, such thatc-t is true iff ¢ has
trans method is applied when origin is close to destination.just been performed.

Finally p4 states thaarrange-transtask is terminated before Finally, we modify each methoéh whose name (i.e.,

the arrange-acctask begins (for example: finish arranging n = name(m)) that occurs in some preference. We use
your transportation before booking a hotel). two predicatexecuting-n andterminated-n, whose up-
Semantics: The semantics of the preference language comdates are realized analogously to their task versionsitbesicr
prises two parts: (1) a formal definition of the satisfactidn above.

individual preference formulae, and (2) a formal definitiin ~ Preprocessing the Modal Operators We replace each
the aggregation of preferences through an objective fancti occurrence obcd(t), initiate (¢), andterminate(t) by occ-t

The satisfaction of individual preference formulae is defin Whent is primitive. We replace the occurrenceioftiate (t)

by mapping HTN decompositions and LTL formulae into the by executing-t, andterminate(t) by terminated-t whent
situation calculugReiter, 2001 In so doing, satisfaction of iS non-primitive. Occurrences dfitiate (n) are replaced by

a preference formula is reduced to entailment of the formul&zecuting-n, andterminate(n) by terminated-n.

in a logical theory. A sketch of the situation calculus encod  Up to this point all our preferences exclusively reference
ing is found in Appendix A. Preference formulae are com-predicates of the HTN problem, enabling us to apply standard
posed into a metric function. The semantics of the metridechniques to simplify the problem further.

function, including the aggregation of quantified prefees Temporally Extended and Precondition Preferences We

via thei s- vi ol at ed function, is defined in the same way use an existing compilation technig[®aieret al., 2009 to

as in PDDL3, following Gerevingt al.[2009. encode the satisfaction of temporally extended prefesence
into predicates of the domain. For each LTL preferepce
4 Preprocessing HTN problems in the original problem, we generate additional predicédes

. the compiled domain that encode the various ways in which
Before searching for a most preferred plan, we preprocess tho, hecome true. Indeed, the additional predicates refirase

original %rloblem. This i? needed in t())lrdtzr to macljkedthel Plansinite-state automaton fas, where the accepting state of the
ning problem more easlly manageable by standard planning, ;o maton represents satisfaction of the preference.rireeu

techniques. We accomplish_this objective by removing all o ulting domains, we axiomatically define aocepting pred-
the modal operators appearing in the preferences. Thevesul.aq for ., which represents the accepting condition.tsf

ing domain, has only final-state preferences, and all prefery ;jomaton. The accepting predicate is true at a stitand
ences refer to state properties. . onlyif pis satisfied at. Quantified preferences are compiled

_ By converting TEPs into final-state preferences, our heurisi,:q harametric automata for efficiency. Finally, precaioti

tic functions are only defined in terms of domain predicates ) oferences preferences that should ideally hold in thie st
rather than being based on non-standard evaluations of eﬁq which the action is performed, are compiled away as con-
LTL formula, such as the ones used by other approachegitional action costs, as is done in tH®LAN -P planner. For

[e.g. Bienvenwet al, 2006]. Nor do we need to implement qre getails refer to the original pag@aieret al, 2009.
specialized algorithms to reason about LTL formulae such as

Lh;ng;?glrgsﬁlon algorithm used byrLAN [Bacchus and Ka 5 Preference-based Planning with HTN's

Further, by removing the modal operators; initiate, and ~ We address the problem of finding a most preferred decom-
terminate we provide a way to refer to these operators viaposition of an HTN by performing a best-first, incremental
state predicates. This allows us to use standard HTN plgnninsearch in the plan search space induced by the initial task ne
software as modules of our planner, without needing specialork. The search is performed in a seriegpisodeseach of
modifications such as a mechanism to keep track of the taskghich returns a sequence of ground primitive operators (i.e
that have been decomposed or the methods that have bearplan that satisfies the initial task network). During each
applied. episode, the search performs branch-and-bound pruning—a

Preprocessing Tasks and Methods Our preferences can re- search node is pruned from the search space, if we can prove
fer to the occurrence of tasks and the application of methodghat it will not lead to a plan that is better than the one found
In order to reason about task occurrences and method applicé the previous episode. In the first episode no pruning is per
tions, we preprocess the methods of our HTN problem. In théormed. In each episode, search is guidediigdmissible
compiled problem, for each non-primitive taskhat occurs ~ heuristics designed specifically to guide the search quickly
in some preference of the original problem, there are two neWo a good decomposition. The remainder of this section de-
predicatesexecuting-t andterminated-t. If agay - - - a,, is scribes the heuristics we use, and the planning algorithm.

a plan for the problem, and anda; are respectively the first .

ar?d last primi?ive actions that resulted frcr))m decgmpoging 5.1 Algorithm

thenezecuting-t is true in all the states in between the ap- Our HTN PBP algorithm outlined in Figure 1, performs a
plication ofa; anda;, andterminated-t is true in all states best-first, incremental search in the space of decompositio
aftera;. This is accomplished by adding new actions at theof a given initial task network. It takes as input a planning
beginning and end of each task network in the methods thagiroblem (sq, wg, D), a metric function METRICFN, and a
decompose. Further, for each primitive task (i.e., operator) heuristic function HURISTICFN.



%3 func“otr,‘ HT_'\"(DBP(SOE]J;”O'D' M ETRK:FN‘Hiiﬁiilliszg(f:rlzc;\rlw)tier timate of the best metric value achievable by any plan that ca

3 J;Z?Aj[eegm :O\I’VQCI)};)S’t case upper boun dD result from the decomposition of the current task network

4: while frontier is not emptydo Its value is computed by evaluating the.metrlc functlo_r:s in

5 current — Extract best element frofrontier but assuming that (1) no further precondition preferenaéts w

6 (s, w, partial P) — current be violated in the future, (2) temporally extended prefeeen

7 Ibound — METRICBOUNDFN(s) that are violated and that can be proved to be unachievable

8 if lbound < bestMetric then > pruning by bounding  from s are regarded as false, (3) all remaining preferences

9 if w = 0 andcurrent’s metric< bestMetric then are regarded as satisfied. To prove that a temporally extende

10: Output plarpartial P preferencep is unachievable frons, OM uses a sufficient

11: bestMetric < METRICFN(s) condition: it checks whether or not the automaton jois

12: succ < successors ofurrent currently in a state from which there is no path to an accept-

13: frontier < mergesucc into frontier ing state. Recall that an accepting state is reached when the
Figure 1: A sketch of our HTN PBP algorithm. preference formula is satisfied.

OM provides a lower bound on the best plan extending

The main variables kept by the algorithm grentier and  the partial plampartial P assuming that the metric function is
bestMetric. frontier contains the nodes in the search fron- non-decreasing in the number of violated preferences.i$his
tier. Each of these nodes is of the forf® w, partialP),  the function used as ETRICBOUNDFN in our plannerO M
wheres is a plan statew is a task network, angartial P is a variant of “optimistic weight{Bienvenuet al., 2004.
is a partial plan. Intuitively, a search node w, partialP) ~ Pessimistic Metric Function (PM)  This function is the
represents the fact that task netwarkemains to be decom- dual of OM. While OM regards anything that is not prov-
posed in state, and that state is reached from the initial ably violated (regardless of future actions) as satisfiedt]
state of the planning problesy by performing the sequence regards anything that is not provably satisfied (regardiéss
of actionspartial P. frontier is initialized with a single node future actions) as violated. Its value is computed by evalua
(s0,wp, ), where() represents the empty plan. Its elementsing the metric function ins but assuming that (1) no further
are always sorted according to the functioBURISTICFN.  precondition preferences will be violated in the future) (2
On the other handpestMetric is a variable that stores the temporally extended preferences that are satisfied andahat
metric value of the best plan found so far, and it is initiédlz  be proved to be true in any successos afe regarded as sat-
to a high value representing a worst case upper bound. isfied, (3) all remaining preferences are regarded as eidlat

Search is carried out in the maimhile loop. In each To prove that a temporally extended preferepds true in
iteration, HTNPLAN -P extracts the best element from the any successor of, we check whether in the current state of
frontier and places it incurrent. Then, an estimation of the world the automaton fgrwould be in an accepting state
a lowerbound of the metric value that can be achieved byhat is also a sink state, i.e., from which it is not possible t
decomposingw — current’s task network — is computed escape, regardless of the actions performed in the future.

(Line 7) using the function MTRICBOUNDFN. Function For reasonable metric functions (e.g., those non-deargasi
METRICBOUNDFN will be computed using th@ptimistic  in the number of violated preferencesy,M is monotoni-
metricfunction described in the next subsection. cally decreasing as more actions are addegit®ial P. PM

The algorithmprunes current from the search space if provides good guidance because it is a measure of assured
lbound is greater than or equal thestMetric. Otherwise, progress towards the satisfaction of the preferences.
HTNPLAN-P checks whether or noturrent corresponds | ookahead Metric Function (LA) This function is an es-
to a plan (this happens when its task network is empty). ltimate of the metric of theest successdo the current node.
current corresponds to a plan, the sequence of actions in it is computed by conducting a two-phase search. In the first
tuple is returned and the value &fstMetric is updated. phase, a search for all possible decompositions @ per-

Finally, all successors teurrent are computed using formed, up to a certain depth In the second phase, for
the Partial-order Forward Decomposition procedure (PFD)ach of the resulting nodes, a single primitive decompmsiti
[Ghallabet al., 2004, and merged into the frontier. The al- js computed, using depth-first search. The resulLdf is
gorithm terminates whefrontier is empty. the best metric value among all the fully decomposed nodes.
. Intuitively, LA estimates the metric value of a node by first
5.2 Heuristics performing an exhaustive search for decompositions of the
Our algorithm searches for a plan in the space of all possibleurrent node, and then by approximating the metric value of
decompositions of the initial task network. HTNs that havethe resulting nodes by the metric value of the the first primi-
been designed specifically to be customizable by user prefetive decomposition that can be found, a form of sampling of
ences may contain tasks that could be decomposed by a fairtie remainder of the search space.
large number of methods. In this scenario, it is essential foDepth (D) We use the depth as another heuristic to guide
the algorithm to be able to evaluate which methods to use tehe search. This heuristic does not take into account ttfe pre
decompose a task in order to get to a reasonably good solérences. Rather, it encourages the planner to find a decompo-
tion quickly. The heuristics we propose in this section aresition soon. Since the search is guided by the HTN structure,
specifically designed to address this problem. All hewssti guiding the search toward finding a plan using depth is nat-
are evaluated in a search no@ew, partial P). ural. Other HTN planners such asiop2 also use depth or
Optimistic Metric Function ( OM) This function is an es-  depth-first search to guide the search to find a plan quickly.



Strategy  Check whether If tied If tied HTNPLAN-P

No-LA OM, < OM> PM,; < PM> - No-LA LA SGPlans | HPLAN-P

LA LAy < LA OM; <OM; PM; < PM> #Prb| #S| #Best| #S| #Best| #S| #Best| #S| #Best
Figure 2: Strategies to determine whether a nedeis better than travel | 41 |41 3 |41| 37 (41| 1 |41 17
a nodenz. OM is the optimistic-metric,PM is the pessimistic- rovers| 20 |20 4 |20 19 [20| 1 |11 2
metric, andL A is the look-ahead heuristic. trucks| 20 |20| 6 |20| 15 |20| 11 | 4 2

The HEURISTICFN function we use in our algorithm cor- Figure 3: Comparison between two configurationstifNPLAN -
responds to a@rioritized sequencef the above heuristics, in P, HPLAN-P, and SGPlans; on rovers, trucks, andtravel do-
which D is always considered first. As such, when compar—ma'”s- Entries shpw numbe_r of problems_ln each domain (#Prb),
ing two nodes we look at their depths, returning the one tha?“gqgﬁ%‘gesrog‘f’?ﬂq 'gstzggﬁsp;gniiﬁhffuonrgag”p(lzﬁ)o?ﬁgsgroﬁ'zg?tg?
has a hlgh_er.depth value. If the depths.are equal, we use t ality to those found by all other planners (#Best). All planners
other heuristics in sequence tp break tles. Figure 2 c’Bt“newere ran for 60 minutes, and with a limit of 2GB per process.
the sequences we have used in our experiments.

) ] ] jective, since we could not obtain a copy &tup, the only
5.3 Optimality and Pruning HTN PBP planner we know df.in et al, 2004. (See Section
Since we are using inadmissible heuristics, we cannot guar for a qualitative comparison.)
antee that the plans we generate are optimal. The only way to We used three domains for the evaluation: tiwers do-
do this is to run our algorithm until the space is exhausted. | main, thetrucks domain, both standard IPC benchmark do-
this case, the final plan returned is guaranteed to be optimalmains; and theravel domain, which is a domain of our own

Exhaustively searching the search space is not reasonabiaking. Both therovers and trucks domains comprised
in most planning domains, however here we are able to exthe preferences from IPC-5. hovers domain we used the
ploit properties of our planning problem to make this achiev HTN designed by the developers &fior2 for IPC-2 and in
able some of the time. Specifically, most HTN specifica-trucks we created our own HTN. We modified the HTN in
tions severely restrict the search space so that, relatiee t rovers very slightly to reflect the true nondeterminism in our
classical planning problem, the search space is exhalystiveHTNPLAN -P planner: i.e., if a task could be decomposed us-
searchable. Further, in the case where our preferencecmetiing two different methods, then both methods would be con-
function is additive, ouD M heuristic function enables us to sidered, not just the first applicable one. We also modified th
soundly prune partial plans from our search space. SpecitPC-5 preferences slightly to ensure fair comparison betwe
ically, we say that a pruning strategy is sound if and onlyplanners. Theovers andtrucks problems sets comprised 20
if whenever a node is pruned (line 8) the metric value ofproblems. The number of preferences in these problem sets
any plan extending this node will exceed the current boundanged in size, with several having over 100 preferences per
bestMetric. This means that no state will be incorrectly problem instance.
pruned from the search space. Thetravel domain is a PDDL3 formulation of the domain

Proposition 1 TheOM function provides sounds pruning if introduced in Example 1. Its problem set was designed in or-
the metric function is non-decreasing in the number of satisder to evaluate the PBP approaches based on two dimensions:

fied preferences, non-decreasing in plan length, and imlepe (1) scalability, which we achieved by increasing the branch
dent of other state properties. ing factor and grounding options of the domain, and (2) the
A metric is non-decreasing in plan length if one cannot make&Omplexity of the preferences, which we achieved by inject-
a plan better by increasing its length only (without satigfy "9 inconsistencies (i.e., conflicts) among the preferentre
additional preferences). particular, we create.d 41 probllems with pr.eferences gener-
Theorem 1 If the algorithm performs sound pruning, then ated automatically with Increasing complexny: For exaa'snpl
the last plan returned, if any, is optimal. problem 3 has 27 preferences with 8 conflicts in the choice of
Proof sketch: Follows the proof of optimality for the transportation whllg problem 40 has_ 134 preferences with 54
HPLAN -P plannerBaieret al, 2009 conflicts in the choice of transportation.

" ' Our experiments evaluated the performance of four
. . planners: HTNPLAN-P with the No-LA heuristic, and
6 Implementatlon and Evaluation HTNPLAN-P with the LA heuristic, SGPlary [Hsu et al,,
Our implemented HTN PBP plannédTNPLAN-P, has two 2007, and HPLAN-P- the latter two being the top PBP
modules: a preprocessor and a preference-based HTN plaperformers at IPC-5. Results are summarized in Figure 3,
ner. The preprocessor reads PDDL3 problems and generatesad show thaHTNPLAN -P generated plans that in all but
SHoP2 planning problem with only simple (final-state) pref- a few cases equalled or exceeded the quality of plans re-
erences. The planner itself is a modification of the LISP verturned byHPLAN -P and SGPlans. The results also show
sion of sHoP2 [Nau et al, 2009 that implements the algo- thatHTNPLAN -P performs better on the three domains with
rithm and heuristics described above. the LA heuristic.

We had three objectives in performing our experimental Conducting the search in a series of episodes does help in
evaluation: to evaluate the relative effectiveness of euris-  finding better-quality plans. To evaluate this, we calcdat
tics, to compare our planner with state-of-the-art PBP planthepercent metric improveme(®MI), i.e., the percent differ-
ners, and to compare our planner with other HTN PBP planence between the metric of the first and the last plan returned
ners. Unfortunately, we were unable to achieve our third obby our planner (relative to the first plan). The average PMI is



3000 or sound pruning techniques.

No-LA The most notable related work is that of Let al. [2009
2500 i who developed a prototype HTN PBP plannecup, tai-
2000 - LA i lored to the task of web service composition. Unfortunately
o ScuPis not available for experimental comparison, however
g 1500 - i there are fundamental differences between the plannets, th
limit the value of such a comparison. Most notably, len
1000 1 al. [2009 do not extend PDDL3 with HTN-specific prefer-
500 | ] ence constructs, a hallmark of our work. Further, their plan
ning algorithm appears to be unable to handle conflicting use
0 : — p— preferences since they note that such conflict detectioeris p
1 15 30 120 300 900 3600

formed manually prior to invocation of their planner. Opti-

Figure 4:Added metric vs. time for the two strategies in the trucks _mlzatlon of conflicting preferences is common in most PBP's,

domain. Recall that a low metric value means higher quality planincluding ours. Also, their approach to HTN PBP planning is
When a problem is not solved at timewe add its worst possible quite different from ours. In particular, they translateus

Time (sec.)

metric value (i.e. we assume no satisfied preferences). preferences into HTN constraints and preprocess the prefer
ences to check if additional tasks need to be addeg td his
40% inrovers, 72% intrucks, and 8% intravel. is well motivated by the task of web service composition, but

To compare the relative performance betwedrandNo- ~ hot a practice found in classical HTN planning.
LA, we averaged the percent metric difference (relative to the Also related is thesPEN planner{Rabideatet al, 2004,
worst plan) in problems in which the configurations foundwhich performs a simple form of preference-based plan-
a different plan. This difference is 45% iovers, 60% in  ning, focused mainly on preferences over resources. It can
trucks, and 3% intravel, all in favour ofLA. plan with HTN-like task decomposition, but its preference
We created 18 instances of thevel domain where we language is far less expressive than ours. In contrast to
tested the performance betweeA andNo-LAon problems HTNPLAN-P, ASPEN performs local search for a local op-
that have preferences that use our HTN extension of PDDL3imum. It does not perform well when preferences are inter-
The average PMI for these problems is 13%, and the relativacting, nested, or not local to a specific activity.
performance between the two is 5%. It is interesting and important to note that the HTN plan-
Finally Figure 4 shows the decrease of the sum of the metrerssHopP2 [Nauet al., 200§ andENQUIRER [Kuter et al,
ric value of all instances of the trucks domain relative ttyso 2004 can be seen to handle some simple user preferences.
ing time. We observe a rapid improvement during the firstin particular the order of methods and sorted preconditions
seconds of search, followed by a marginal one after 900 se@ domain description specifies a user preference over which

onds. Other domains exhibit similar behaviour. method is more preferred to decompose a task. Hence users
may write different versions of a domain description to spec
7 Discussion and Related Work ify simple preferences. However, unlikdTNPLAN -P the

) _ user constraints are treated as hard constraints andafparti
PBP has been the subject of much interest recently, spurrgglans that do not meet these constraints will be pruned from
on by three IPC-5 tracks on this subject. A number of planthe search space.
ners were developed, all based on the competition's PDDL3 i1y observe that we approached HTN PBP by integrat-
language. Our work is distinguished in that it employs HTNing PBP into HTN planning. An alternative approach would
domain control extending PDDL3 with HTN-inspired con- 5"+, integrate HTN into PBP. Kambhampati al. [1994
structs. The planner itself then employs heuristics and-alg pints at how this might be done by integrating HTN into their
rithms that exploit HTN-specific preferences and contrek: E - 54 repair planning paradigm. For the integration of HTN
perimental evaluation of our planner shows tHaNPLAN - %r%o PBP to be effective, heuristics would have to be devel-

P generates plans that, in all but a few cases, equal or exceggheq that exploited the special compiled HTN structure: Fur
the best PBP in plan quality. As such, it argues generally foger such a compilation would not so easily lend itself to

HTN PBP as a viable and promising approach to PBP. mixed-initiative PBP, a topic for future investigation.

With respect to advisable HTN planners, Myers was the o ]
first to advocate augmenting HTN planning with hard con-Acknowledgements:We thank our colleague Christian Fritz
straints to capture advice drow todecompose HTNs, ex- for helpful discussion. We gratefully acknowledge funding
tending the approach to conflicing advice[Myers, 2000. from the Natural Sciences and Eng|.neer|r]g Research C(_)uncn
Their work is similar in vision and spirit to our work, but Of Canada (NSERC) and the Ontario Ministry of Innovations
different with respect to the realization. In their workepr ~ Early Researcher Award (ERA).
erences are limited to consistent combinations of HTN ad-
vise; they do no include the rich temporally extended state
centric preferences found in PDDL3, nor do they support theRG]cerences
weighted combination of preferences into a metric functiongacchus and Kabanza, 1998. Bacchus and F. Kabanza. Plan-
that defines plan quality. With respect to computing HTN  ning for temporally extended goal#nnals of Mathematics and
PBP, Myers’ algorithm does not exploit lookahead heursstic  Atrtificial Intelligence 22(1-2):5-27, 1998.



[Baieret al, 2009 J. A. Baier, F. Bacchus, and S. A. Mcllraith. A Formulae are satified if their translations are entailed by the SC log-
heuristic search approach to planning with temporally extendedcal theory representing the HTN planning problem and plan. The
preferencesArtificial Intelligence 173(5-6):593-618, 2009. translation of our HTN constructs are more complex, so we begin

[Bienvenuet al, 2004 M. Bienvenu, C. Fritz, and S. A. Mcllraith. Witlh t?he Oéiginal_elgtmentstpf PDDLS3. tant A situati
Planning with qualitative temporal preferences. Pioc. of the n the St, primitive actions are instantaneous. A situatian

10th Int’l Conference on Knowledge Representation and Reasorfs. ahistory of primiti\(e actiong performed at a disting.uishled initial
ing (KR), 134—144, 2006 situationSy. The logical functiordo(a, s) returns the situation that

o ] corresponds to performing actianin s. In the SC, thestate of
[Gabaldon, 200R A. Gabaldon. Programming hierarchical task net- the world is expressed in terms of functions and relations (fluents)
works in the situation calculus. KWIPS’'02 Workshop on On-line relativized to a particu|ar situation e_g_lF(i’" 5).
Planning and Schedulingipril 2002. The translation to SC proceeds as follows. Since we are operating

[Gabaldon, 2004 A. Gabaldon. Precondition control and the pro- Over finite domains, all universally quantified PDDL3 formulae are
gression algorithm. IrProc. of the 9th Int'l Conference on translated into individual grounded instances of the formulae. Sim-

Knowledge Representation and Reasoning (6R3—-643. AAAl  Ple preferences (resp. constraints) are translated into corresgondin
Press, 2004. SC formulae. Temporally extended preferences (resp. constraints)
. . . are translated into SC formulae following the translation of LTL for-
[Gereviniet al, 2009 A. Gerevini, P. Haslum, D. Long, A. Saetti, a6 into SC by Gabalddi2004 and Bignvenuet al.[2004.
and Y. Dimopoulos. Deterministic planning in the fifth intema- 1 yefine the semantics of our HTN extension, we appeal to a
tional planning competition: PDDL3 and experimental evalua-yanjation of HTN planning into SC entailment of a ConGolog pro-
tion of the planners.Artificial Intelligence 173(5-6):619-668, gram that is again credited to Gabald@003. ConGolog is a logic

2009. programming language built on top of the SC that supports the ex-
[Ghallabet al, 2004 M. Ghallab, D. Nau, and P. Traversdierar- pression of complex actions. In short, the translation defines a way

chical Task Network Planning. Automated Planning: Theory andto construct a logical theory and formulg(s) such that¥(s) is en-

Practice Morgan Kaufmann, 2004. tailed by the logical theory iff the sequence of actions encoded by

[Hsuet al, 2007 C.-W. Hsu, B. Wah, R. Huang, and Y. Chen. Con- is a solution to the original HTN planning problem.

: P : : . : More specifically, the initial HTN state, is encoded as the initial
straint partitioning for solving planning problems with trajectory . - ! . o .
constr:fints and g?oal preferegngesﬂmgc.pof the 20th Int'l joint y situation,So. The HTN domain description maps to a corresponding

Conference on Atrtificial Intelligence (IJCAD924-1929, 2007. SC domaln_ desc_rlp_tl_orID, \_Nhere for every operatas t_here IS a
corresponding primitive actiom such that the preconditions and the

[Kambhampatét al, 1999 S. Kambhampati, A. D. Mali, and effects ofo are axiomatized irD. Every method and nonprimitive
B. Srivastava. Hybrid planning for partially hierarchical domains. task together with constraints is encoded as a ConGolog procedure.
In Proc. of the 15th National Conference on Artificial Intelligence R is the set of procedures in the ConGolog domain theory.
(AAAI), 882-888, 1998. In addition to this translation, we need to deal with the new el-

[Kuteretal, 2004 U. Kuter, E. Sirin, D. S. Nau, B. Parsia, and €ments of PDDL3 that we introducedicd(a), initiate (X), and
J. A. Hendler. Information gathering during planning for web terminate(X). To this end, following Gabaldon’s translation we

service composition. IRroc. of the 3rd Int| Semantic Web Con- add two new primitive actionstart(P(v)), end P(v)), to each pro-
ference (ISWG)335-349, 2004. cedureP that corrensponds to an HTN task or method. In addi-

_ ) . . tion, we add the fluentsxecutingP(v), s) andterminated.X, s),

[Lin etal, 2004 N. Lin, U. Kuter, and E. Sirin. Web service com- where P(7) is a ConGolog procedure antl is either P(4) or a
position with user preferences. IRroceedings of the 5th Euro- primitive actiona. executingP(v), s) states thaP(¥) is executing
pean Semantic Web Conference (ESY$C$-643, 2008. in situations, terminated X, s) states that\ has terminated in.

[Myers, 2000 K. L. Myers. Planning with conflicting advice. In executinda, s) wherea is a primitive action, is defined to be false.
Proc. of the 5th Int'l Conference on Atrtificial Intelligence Plan-  ocd(a), initiate (X'), andterminate(X) are translated into the
ning and Scheduling (AIPS355-362, 2000. situation calculus by building SC formulae that are evaluated when

[Nauetal, 2003 D. Nau, T.-C. Au, O. lighami, U. Kuter, J. Mur- the?/ appear in a ?r?ference fotr.rgllula..trl]?agogv \ll\ée c’leftlne tlhet.se fqr-
dock, D. Wu, and F. Yaman. SHOP2: An HTN planning system.vn\?#i?ﬁ lplfj'ng gennootaelso?hg(t)mpe)a(tlerﬁg:lalral) eip?esos%sné%nssgvgn' in
Journal of Artificial Intelligence ResearcR0:379-404, 2003. the situation fragment, that starts in situatioy’

[Rabideatet al, 2000 G. Rabideau, B. Engelhardt, and S. A.  ocqa) tells us the first action executedds
Chien. Using generic preferences to incrementally improve plan ocda)[s’, s] = do(a,s') C s
quality. InProc. of the 5th Int'l Conference on Artificial Intelli-
gence Planning and Scheduling (AIR336—245, 2000.

[Reiter, 2001 R. Reiter. Knowledge in Action: Logical Founda- initiate (X)[s', 5] = do(X,s") E s ifX eA
tions for Specifying and Implementing Dynamical Systevh3 ’ do(start(X),s') Cs ifX eR
Press, Cambridge, MA, 2001.

[Sohrabi and Mcllraith, 2048S. Sohrabi and S. A. Mcllraith. On

planning with preferences in HTN. IRroc. of the 12th Int!l
Workshop on Non-Monotonic Reasoning (NME)1-248, 2008.

initiate (X') andterminate(X) are interpreted as follows:

. /5 [ do(X,s)Cs ifX eA
terminate(X)[s’, s] = { do(end(X),s) Cs ifX € R,
wheres’ C s denotes that situatiosl is a predecessor of situation
. s, and.A is a set containing all primitive actions.
A Sketch of the Semantics Space precludes a full exposition of the translation. Details pro-

The satisfaction of all constraint and preference formulae is definedfided here and in Section 3, together with the details in Gabal-
by a translation of formulae into the Situation Calculus (SC), a log-don[2003 and Bienventet al.[2006 provide all the pieces.
ical language for reasoning about action and chdRggter, 2001



