
Escaping Heuristic Hollows in Real-Time Search without Learning

Carlos Hernández

Departamento de Ingenierı́a Informática

Universidad Católica de la Santı́sima Concepción

Concepción, Chile

Jorge A. Baier

Departamento de Ciencia de la Computación

Pontificia Universidad Católica de Chile

Santiago, Chile

Abstract—Real-time search is a standard approach to solving
search problems in which agents have limited sensing capabil-
ities and must act quickly. It is well known that real-time
search algorithms like LRTA∗ and RTA∗ perform poorly in
regions of the search space in which the heuristic function is
very imprecise. Approaches that use lookahead or learning
are used to overcome this drawback. They perform more
computation in the planning phase compared to LRTA∗ and
RTA∗. In this paper we propose Path Real-Time A∗ (PRTA∗),
an algorithm that, like LRTA∗, performs little computation
in the planning phase, but that, unlike LRTA∗, terminates
even if the problem does not have a solution. We show that
our algorithm outperforms LRTA∗ and RTA∗ in standard
real-time benchmark problems. Furthermore, we show that
in some cases, PRTA∗ may also outperform lookahead- or
learning-enabled algorithms but carrying out significantly less
computation.

I. INTRODUCTION

Autonomous agents acting in dynamic, previously un-

known domains, often have to make decisions quickly. Real-

time (e.g., [1]) or agent-centered search [2] is the standard

paradigm for solving search problems in those settings.

Instead of building a conditional plan at the outset, real-

time algorithms interleave planning and execution. As such,

they usually run a computationally inexpensive sense-plan-

act cycle, in which the environment is observed, an action

is selected, and then executed. The cycle is executed until

a solution is found. Just as in standard A∗ search [3], a

heuristic function is used to guide action selection.

LRTA∗ and RTA∗ [4] are examples of real-time search

algorithms. Their planning phase takes little time; indeed,

bounded by a constant. Nonetheless, such a reduced com-

putational effort comes at a price: in problems with heuristic

hollows or depressions, they perform poorly [5]. Intuitively,

a heuristic hollow is a closed region of the search space in

which the heuristic is unrealistic with respect to the heuristic

value of the states in the border of the region. In problems

with hollows, LRTA∗ and RTA∗ usually become “trapped”,

and sometimes re-visit several states before exiting the

hollow.

Approaches to overcome this pitfall exist and can be

grouped in two categories. First, algorithms that do addi-

tional lookahead (e.g., [6], [7], [8], [9]), which provide a

more elaborate action selection mechanism. Second, algo-

rithms that do extended learning (e.g., [10], [11], [12]),

which involves updating the heuristic value of several states

in one cycle. Compared to LRTA∗ and RTA∗, these ap-

proaches perform more extensive computation in the plan-

ning phase but generally perform better in presence of

heuristic hollows.

In this paper we propose Path Real-Time A∗ (PRTA∗), a

real-time search algorithm that, like LRTA∗, requires little

computation in the planning phase, but that, unlike LRTA∗,

requires fewer moves to exit heuristic hollows. The key idea

in PRTA∗ is to avoid re-visiting states identified as part of a

heuristic hollow. We show that PRTA∗ outperforms LRTA∗

and RTA∗ in standard benchmarks, and that in some cases it

outperforms algorithms that perform much more computa-

tion in the planning phase. In addition PRTA∗ has interesting

theoretical properties: it is sound and complete even when

the problem has no solution. To our knowledge, this property

is not enjoyed by any existing real-time algorithm.

The paper is organized as follows. We explain the basic

concepts of real-time search in the next section. We continue

explaining the concept of heuristic hollow in more detail. We

then describe our algorithm and continue with a theoretical

and experimental analysis. Finally, we briefly sketch our

conclusions.

II. PRELIMINARIES

We carry out our search in undirected search spaces with

positive-cost actions. A search problem is defined by the

tuple P = (X,A, c, s0, G), where (X,A) is a digraph that

represents the search space. The set X represents the states

and the arcs in A represent all available actions. We assume

A does not contain elements of form (x, x). In addition, the

cost function c : A 7→ R
+ associates a positive cost to each

of the available actions. Finally, s0 ∈ X is the start state, and

G ⊆ X is a set of goal states. We say that a search space is

undirected if whenever (u, v) is in A then so is (v, u). Unless

specified otherwise, we assume that in undirected spaces

c(u, v) = c(v, u), for all (u, v) ∈ A. We define k(u, v) as

a function that returns the cost of the minimum-cost path

between states u and v. The successors of a state u are

defined by Succ(u) = {v | (u, v) ∈ A}. A heuristic function

h : X 7→ [0,∞) associates to each state x an approximation

h(x) of the cost of a path from x to a goal state g. The



minimum cost incurred by achieving a goal state from x

is denoted by h∗(x). We say that h is admissible iff ∀x ∈
X,h(x) ≤ h∗(x). h is consistent iff 0 ≤ h(x) ≤ c(x,w) +
h(w) for all states w ∈ Succ(x). If s′ ∈ Succ(s) we say

that s and s′ are neighbors.

A. Real-Time Search

The objective of a real-time search algorithm is to make an

agent travel from an initial state to a goal state performing,

between moves, an amount of computation bounded by

a constant. An example real-time situation is the one we

discuss throughout the rest of the paper: an agent moving

in a grid-like environment in which cells may be blocked or

unblocked. The agent has a memory capable of storing its

current belief about the structure of the search space, which

it initially regards as obstacle-free (this is usually referred

to as the free-space assumption [13]). The agent is capable

of a limited form of sensing: only obstacles in the neighbor

cells can be detected. When obstacles are detected, the agent

updates its memory map accordingly.

1 s← s0
2 while s 6∈ G do

3 for each w ∈ Succ(s) do update c(s, w)
4 y ← argmin

w∈Succ(s)c(s, w) + h(w)

5 h(s)← max{h(s), c(s, y) + h(y)}
6 Move the agent to y and do s← y

7 end

Figure 1. Pseudo code for LRTA∗.

Learning Real-Time A∗ (LRTA∗) [4] (Fig. 1) is an algo-

rithm that solves real-time search problems. It iteratively

executes an observe-lookahead-update-act cycle until the

goal is reached. The procedure has three local variables.

Variable s stores the current position of the agent. Variable

c(s, s′) contains the cost of moving from state s to a

successor s′. Variable h is such that h(s) contains the

heuristic value for the state. All three variables may change

over time. Initially c is such that no obstacles are assumed;

i.e., c(s, s′) < ∞ for any two neighbor states s, s′. The

initial value of h is given as a parameter.

In the observation phase (Line 8), LRTA∗ updates the cost

to reach each of the neighbors of the current position; this

essentially involves setting c(s, w) to infinity if a successor

w of s is blocked. In the lookahead phase (Line 4), it

determines where to proceed next based on the heuristic

value of the neighbor states and the cost to reach them.

In the update phase (Line 5), it updates (i.e., learns) the

heuristic function of the current state based on the heuristics

of its successors and the cost of reaching them. The update

is intuitively correct in terms of a consistency criterion: if h

is consistent, then the value of h is changed to the highest

possible value that would allow h(s) to remain consistent.

This update is also a limited form of learning (hence the

name of the algorithm). Finally, in the acting phase (Line 6)

it changes the position of the agent to the best selected state.

LRTA∗ has interesting properties. If the initial heuristic is

consistent, then it remains consistent throughout execution.

If a solution exists, then its learning mechanism guarantees

that such solution will be found [4]. However, if a solution

does not exist, the algorithm enters into an infinite loop.

III. HEURISTIC HOLLOWS

LRTA∗ performs poorly when it visits a state in a heuristic

hollow. Intuitively, a heuristic hollow is a bounded region of

the search space containing states whose heuristic value is

unrealistically low with respect to the heuristic values in the

border of the hollow. More precisely, a hollow is a connected

component of states completely surrounded by a set of states

we call border. For any state s in the hollow there is a state

s′ in the border such that h(s) is lower than the sum of h(s′)
and the optimal cost of reaching s′ from s. Our definition

of hollow is similar to Bulitko’s notion of γ-traps [14], and

is related to the concept of heuristic depressions [5]; both

of these authors discuss the (poor) performance of LRTA∗

in similar circumstances.

The upper left grid in Fig. 2 sketches a real-time search

problem in which we assume that the cost of moving to

an adjacent cell is 1. The shaded region shows a heuristic

hollow in which the heuristic value of all its search nodes

are unrealistic underestimations with respect to the border

(cell C6). For example, the heuristic value for state A3 (2)

is lower than the sum of the heuristic value of state C6 (7)

and the cost of reaching state C6 (5) from A3.

It is known that LRTA∗ behaves poorly in presence of

heuristic hollows [5]. To see this, assume that LRTA∗ visits

a state in a hollow and that the solution node lies outside the

hollow. To exit the hollow the agent must follow a path in its

interior, say, s1 . . . sn, finally choosing a state in the border

of the region, say se. While visiting sn the agent chooses

se as the next move, which means that se minimizes the

estimated cost to reach a solution among all the neighbors

of sn. In problems with uniform cost, this can only happen

if h(se) is lower or equal than the heuristic value of all other

neighbors of sn. This can only happen if the heuristic values

of all the neighbors of s inside the hollow have been updated

(increased) in previous iterations. For LRTA∗, the update

process may be quite costly: in the worst case, indeed, all

states in the depression may need to be updated and each

state may need to be updated several times.

Fig. 2 shows 6 agent moves of an execution of LRTA∗ in

our example. It can be observed that some states are visited

several times. LRTA∗ actually requires more than 20 agent

moves to exit the hollow, visiting the same states several

times.

There exist two main approaches that aim at reducing the

number of moves required to exit from heuristic hollows.



A

B

C

1 2 3 4 5 6

0 2 3 4 5

1 6

2 3 4 5 6 7

→
A

B

C

1 2 3 4 5 6

0 4 3 4 5

1 6

2 3 4 5 6 7

→
A

B

C

1 2 3 4 5 6

0 4 5 4 5

1 6

2 3 4 5 6 7

A

B

C

1 2 3 4 5 6

0 6 5 4 5

1 6

2 3 4 5 6 7

→
A

B

C

1 2 3 4 5 6

0 6 5 4 5

1 6

2 3 4 5 6 7

→
A

B

C

1 2 3 4 5 6

0 6 5 6 5

1 6

2 3 4 5 6 7

Figure 2. First 6 agent moves of LRTA∗ in our example problem: a 4-connected grid world defining an undirected space with uniform action costs equal
to 1, where the initial state is A3, and the goal state is A1. The number in each cell denotes the heuristic value for the corresponding state. The heuristic
used is the manhattan distance. We assume ties are broken by choosing first left then top then right then bottom adjacent cell. The position of the agent
is given by the dot.

The first and most common approach is to make a greater

lookahead. Essentially, this approach involves carrying out

a limited search before deciding where to move the agent.

LSS-LRTA∗ [6], LRTS [7], RTAA∗ [8] and TBA∗ [9] are

examples of lookahead algorithms. Another approach is

to make a larger number of updates in the update phase.

LRTA∗ (k) [10], P-LRTA∗ [11] and LRTA∗

LS(k) [12] are

examples such algorithms. We call these algorithms learning

algorithms. Some algorithms (e.g. LSS-LRTA∗) combine

lookahead and learning.

Lookahead and learning algorithms make a greater effort

in terms of number of state expansions than LRTA∗ before

the acting phase. Those algorithms can solve a search

problem with fewer agent moves than LRTA*, but their

techniques can be rendered infeasible in presence of very

tight real-time constraints.

IV. PATH REAL-TIME A∗

We have seen above that a major issue in solving real-time

search problems is the presence of heuristic hollows. This

issue is addressed by approaches that perform sometimes

significant additional computation before the acting phase.

This section presents PRTA∗, a real-time search algorithm

that allows escaping from hollows quickly performing little,

constant-time computation before the acting phase.

There are two main conceptual differences between

PRTA∗ and LRTA∗. The first difference is that once a state

is identified as being part of a heuristic hollow, it is marked

as not visitable; this means that the agent will not visit

that state in the future. The second main difference is that

PRTA∗ does not update the heuristic of the state, but rather

provides a mechanism to avoid entering infinite loops (recall

that learning in LRTA∗ is a mechanism that guarantees

termination). Specifically, PRTA∗ stores the sequence of

states visited by the agent in a path variable implemented

as a stack. If a state with no visitable successors is reached,

the agent goes back to its previously visited state.

Fig. 3 shows the pseudo code for PRTA∗. For any state

1 function PRTA∗ (P )
2 s← s0
3 path.PUSH(s)
4 seen← {}
5 for each s ∈ X do s.updaterule← false

6 while s 6∈ G do

7 s← seen ∪ {s}
8 for each w ∈ Succ(s) do update c(s, w)
9 N ← {w ∈ succ(s) |w.updaterule = false}

10 y ← argmin
w∈N

c(s, w) + h(w)
11 if y 6= Null then

12 if h(s) < c(s, y) + h(y) then

13 s.updaterule← true

14 end

15 Move the agent to y

16 s← y

17 path.PUSH(s)
18 else

19 s.updaterule← true

20 path.POP ()
21 if path = EmptyStack then

22 return no-solution

23 end

24 Move the agent to path.TOP ()
25 s← path.TOP ()
26 end

27 return solution-found

28 end

29 end

Figure 3. Pseudo-code for Path Real-Time A∗.



s, the boolean s.updaterule may become true if s is

determined to be in a hollow. Hence s.updaterule is true

when a state is not visitable. Initially s.updaterule is set

to false for all states (Line 5). Immediately after a move

(Lines 2 and 16), the state the agent moves to is added to

the path. The algorithm selects the next node to visit using

the same rule as LRTA∗, but only states not in a hollow are

considered. If the current state is in a hollow the algorithm

marks it in Line 13. Here we determine that an agent is in

a hollow by considering the set of successors as the border

of the hollow. Finally, when no valid successors for a node

exist, the agent returns to the previously visited position,

marking the current state to avoid re-visiting it (Lines 19–

25).

The variable seen contains all states that have been

visited. It is only needed to simplify the proofs that come

in the next section, and thus it does not need to be included

in an implementation of PRTA∗.

Fig. 4 shows the execution of PRTA∗ on the same example

problem of Fig. 2. Six agent moves suffice to exit the hollow

in this situation.

V. EVALUATION

A. Theoretical Analysis

We first prove that PRTA∗ always terminates, independent

of whether or not P has a solution. Many real-time search

algorithms (e.g. LRTA∗, LSS-LRTA∗, RTA∗) do not have

such a property.

Lemma 1 PRTA∗ terminates on any search problem P .

Proof: We proceed by contradiction, assuming the

algorithm executes forever. In an infinite execution, a state

is visited by the algorithm infinitely often. This can happen

in two (non-exclusive) cases: (1) because a state is added

and removed infinitely often from path, or (2) because the

algorithm traverses a path that contains infinite copies of

a state. Case (1) is not possible since Line 19 prevents a

state from being selected in the future when it has been

popped from the stack. In case (2), variable path is equal to

σ′σσ · · · , were σ′ and σ are finite sequences of states. Let

σ = s1s2 · · · sn. Given the condition in Line 9, we have

that si.updaterule = false for any si in σ; otherwise,

the algorithm could have not moved to si infinitely often.

Thus we have that h(si) ≥ c(si, si+1) + h(si+1), for every

i ∈ [1, n], since the condition in Line 12 should evaluate

to false for every si in σ. Summing up the inequalities,

we obtain h(s1) ≥ K(s1, sn) + h(sn), where K(s1, sn)
represents the (positive) added cost of moving between s1
and sn. In particular, this means that

h(sn) < h(s1). (1)

When the algorithm has just moved to sn (s = sn), the

best successor y of sn is s1 (because of our assumption

that σ is visited infinitely often). Here, the condition in

Line 12 evaluates to true because of Inequality 1, and thus

sn.updaterule is set to true in Line 13, which contradicts

our initial assumption, finishing the proof.

Theorem 1 PRTA∗ is sound and complete.

Proof: We prove (1) that if the algorithm returns that a

solution exists, then there is a path from s to G in the input

problem, and (2) that if the algorithm returns “no solution”,

then no solution exists in P . (1) is trivial because if the

algorithm reaches Line 6, it has followed a path to a goal

state.

For (2) we prove the equivalent statement: if the algorithm

returns in Line 20, then variable seen contains all search

states in the search space reachable from s0.

Assume (2) is false. Then after returning seen does not

contain a state reachable from s0. Since seen only contains

states that are reachable from s0, after returning in Line 22,

there is a state t that is the successor of a state r ∈ seen

such that t 6∈ seen. Since r ∈ seen, r must have been in

the stack path at some point during the execution (note that

every time the agent moves to a position, such a position

is added to the stack). Furthermore, because the algorithm

returns in Line 22, r was eventually popped from path.

When r is popped in Line 20, y must have been equal to

Null, which means that either r has no successors (which

is not true by our assumption) or w.updatereule = true

for all w ∈ succ(r). In particular t.updaterule = true, and

thus at some point the algorithm executed Line 13 for s = t.

Hence t was added to seen in Line 6, which contradicts

our assumption. Since by Lemma 1, the algorithm always

terminates, we conclude that PRTA∗ is complete.

B. Experimental Evaluation

We compared the performance of PRTA∗, LRTA∗ and

RTA∗ [4] at solving real-time goal-directed navigation prob-

lems in initially unknown terrain. The three algorithms make

only one cell expansion in the lookahead phase. For fairness,

we use comparable implementations.

We assume the agent operates on undirected eight-

neighbor grids. Horizontal and vertical movements have

action cost 1, whereas diagonal movements have cost
√
2.

The agent does not know in advance which cells are blocked.

It always observes which unblocked cell it is in, observes

the blockage status of its eight neighboring cells and can

then move to any of the unblocked neighbor cells.

Since the existence of heuristic hollows depends on the

quality of the user-given heuristic (indeed, hollows are more

frequent in bad heuristics), we studied the performance

of our algorithm with heuristics of different quality. We

used three user-given heuristics: the octile distance [15]—a

high-quality heuristic for these problems—, the maximum



A

B

C

1 2 3 4 5 6

0 2 3 4 5

1 6

2 3 4 5 6 7

→
A

B

C

1 2 3 4 5 6

0 2 3 4 5

1 6

2 3 4 5 6 7

→
A

B

C

1 2 3 4 5 6

0 2 3 4 5

1 6

2 3 4 5 6 7

A

B

C

1 2 3 4 5 6

0 2 3 4 5

1 6

2 3 4 5 6 7

→
A

B

C

1 2 3 4 5 6

0 2 3 4 5

1 6

2 3 4 5 6 7

→
A

B

C

1 2 3 4 5 6

0 2 3 4 5

1 6

2 3 4 5 6 7

Figure 4. First 6 agent moves of PRTA∗ in our example problem. Shaded areas correspond to states marked as in a hollow.

of the absolute differences of the x and y coordinates of

two cells—a medium-quality heuristic—, and the minimum

of the absolute differences of the x and y coordinates of

two cells—a heuristic known to perform poorly on these

problems.

We use four computer game maps adapted from the game

World of Warcraft. The game map 1 has 169×169 cells, the

game map 2 has 134× 137 cells, and the game maps 2 and

3 have 128× 128 cells. Fig. 5 shows the four game maps.

For each test case in game maps, we choose the start cell

randomly from the cells whose x-coordinates range from 1

to 20 and the goal cell randomly from the cells whose x-

coordinates ranges from 150 to 169 in game map 1, from

115 to 134 in game map 2, and from 109 to 128 in game

map 3 and 4. In order to make the game map environment

navigation problem as difficult as possible, we choose the

start and goal cells from the left and right sides of the map,

respectively, to ensure that they are far apart. We average

our experimental results over 4000 test cases for the game

maps (1000 test cases for each particular game map).

Fig. 6 shows a measure for solution quality: the average

solution cost per test case. Furthermore, it shows two mea-

sures for the efficiency of the search: the average number

of expanded cells (per test case), and the total runtime (per

test case) in milliseconds. All experiments were run on a

Linux PC with a Pentium QuadCore 2.33 GHz CPU and 8

GB RAM.

As shown in Fig. 6, PRTA∗ yields a smaller solution cost,

a smaller average number of cells expansions and smaller

total runtime than LRTA∗ and RTA∗ for the three heuristic

qualities. In addition, Fig. 6 shows that PRTA∗ is more

reliable than LRTA∗ and RTA∗ in presence of bad heuristics.

In fact the solution cost of LRTA∗ with the medium-quality

heuristic is similar to solution cost of PRTA∗ with the

low-quality heuristic, and PRTA∗ with the medium-quality

heuristic yields a smaller solution cost, a smaller number of

cells expansions and smaller total runtime per test case than

LRTA∗ and RTA∗ used along with the high-quality heuristic.

We compared PRTA∗ with RTAA* and LRTA∗

LS(k), a

lookahead and learning algorithm respectively, using the

Figure 5. The four game maps used for experiments.

high-quality heuristic. Fig. 7 reports the results. RTAA*

and LRTA∗(k) use a parameter to control the amount of

lookahead and learning respectively. When the lookahead

parameter is increased, the quality of the solutions typically

improve; nonetheless, more nodes are typically expanded,

yielding a less efficient search. We set the parameter of

RTAA* and LRTA∗

LS(k) at 10. For that value, the solution

quality obtained by RTAA* and LRTA∗

LS(k) are similar

to that obtained by PRTA∗. With lower values for the

parameter, the solution quality of PRTA∗ is better than

that of RTAA* and LRTA∗

LS(k). The solution cost of the

three algorithms are similar, but PRTA∗ is more efficient.

To obtain a similar solution cost RTAA*(10) expands 4.6

times more cells and is 4.5 times slower than PRTA∗. On

the other hand, LRTA∗

LS(10) expands 4.4 times more cells

and is 6.0 times slower than PRTA∗.

VI. SUMMARY AND CONCLUSIONS

We have presented PRTA∗, a real-time search algorithm

that explicitly avoids visiting states in a heuristic hollow.

Our experiments on game benchmarks show that PRTA∗

substantially outperforms LRTA∗ and RTA∗, which are algo-

rithms that carry out a similar amount of computation in the

planning phase. PRTA∗ also may outperform learning and

lookahead algorithms which perform much more extensive



Heuristic Quality
Solution Cost

LRTA* RTA* PRTA*

high 1,958 1,608 599

medium 3,181 2,700 830

low 8,093 5,778 3,199

(a)

Heuristic Quality
Expansions per Test Case

LRTA* RTA* PRTA*

high 1,753 1,369 526

medium 2,999 2,330 774

low 7,736 5,105 3,027

(b)

Heuristic Quality
Time per Test Case

LRTA* RTA* PRTA*

high 0.23 0.21 0.13

medium 0.33 0.31 0.17

low 0.76 0.66 0.48

(c)

Figure 6. PRTA∗ performance comparison against algorithms that make
only one cell expansion before the acting phase. (a) shows average solution
cost, (b) shows average number of expansions, and (c) shows time per test
case.

Cost Expansions Time

PRTA∗ 599 526 0.13

RTAA*(10) 613 2,399 0.58

LRTA∗

LS(10) 527 2,318 0.78

Figure 7. PRTA∗ compared with algorithms that make more than one cell
expansion before the acting phase.

computation in the planning phase. PRTA∗ is also sound and

complete, even if the problem does not have a solution; a

property that does not hold true for other well-known real-

time search algorithms. Our results suggest that learning—

the prevalent technique in real-time search—may not be the

best choice for real-time search algorithms. PRTA∗ can be

naturally extended to do more lookahead both for selecting

a best move and for marking states, and thus we expect

future extensions to be competitive or superior to learning

and lookahead algorithms.

ACKNOWLEDGMENTS

We are grateful to Nathan Sturtevant for providing us

with the game maps. Carlos Hernández was partly funded

by Fondecyt project #11080063. Jorge Baier is grateful to

Pontificia Universidad Católica de Chile for the funding

provided through its VRI grant number 38/2010.

REFERENCES

[1] G. Weiss, Ed., Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. Cambridge, MA: MIT
Press, 1999.

[2] S. Koenig, “Agent-centered search,” Artificial Intelligence
Magazine, vol. 22, no. 4, pp. 109–131, 2001.

[3] P. E. Hart, N. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimal cost paths,” IEEE
Transactions on Systems Science and Cybernetics, vol. 4,
no. 2, 1968.

[4] R. E. Korf, “Real-time heuristic search,” Artificial Intelli-
gence, vol. 42, no. 2-3, pp. 189–211, 1990.

[5] T. Ishida, “Moving target search with intelligence,” in Pro-
ceedings of the 10th National Conference on Artificial Intel-
ligence (AAAI), 1992, pp. 525–532.

[6] S. Koenig, “A comparison of fast search methods for real-time
situated agents,” in Proceedings of the 3rd International Joint
Conference on Autonomous Agents and Multi Agent Systems
(AAMAS), 2004, pp. 864–871.

[7] V. Bulitko and G. Lee, “Learning in real time search: a uni-
fying framework,” Journal of Artificial Intelligence Research,
vol. 25, pp. 119–157, 2006.

[8] S. Koenig and M. Likhachev, “Real-time adaptive A*,” in
Proceedings of the 5th International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS), 2006,
pp. 281–288.

[9] Y. Björnsson, V. Bulitko, and N. R. Sturtevant, “TBA*: Time-
bounded A*,” in Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI), 2009, pp. 431–
436.

[10] C. Hernandez and P. Meseguer, “LRTA*(k),” in Proceedings
of the 19th International Joint Conference on Artificial Intel-
ligence (IJCAI), 2005, pp. 1238–1243.

[11] D. C. Rayner, K. Davison, V. Bulitko, K. Anderson, and
J. Lu, “Real-time heuristic search with a priority queue,” in
Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI), 2007, pp. 2372–2377.

[12] C. Hernandez and P. Meseguer, “Improving LRTA*(k),” in
Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI), 2007, pp. 2312–2317.

[13] S. Koenig, C. A. Tovey, and Y. V. Smirnov, “Performance
bounds for planning in unknown terrain,” Artificial Intelli-
gence, vol. 147, no. 1-2, pp. 253–279, 2003.

[14] V. Bulitko, “Learning for adaptive real-time search,”
Computing Research Repository, vol. cs.AI/0407016, 2004.
[Online]. Available: http://arxiv.org/abs/cs.AI/0407016

[15] N. R. Sturtevant and M. Buro, “Partial pathfinding using
map abstraction and refinement,” in Proceedings of the 20th
National Conference on Artificial Intelligence (AAAI), 2005,
pp. 1392–1397.


