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Abstract
Heuristics used for solving hard real-time search
problems have regions with depressions. Such re-
gions are bounded areas of the search space in
which the heuristic function is exceedingly low
compared to the actual cost to reach a solution.
Real-time search algorithms easily become trapped
in those regions since the heuristic values of states
in them may need to be updated multiple times,
which results in costly solutions. State-of-the-
art real-time search algorithms like LSS-LRTA∗,
LRTA∗(k), etc., improve LRTA∗’s mechanism to
update the heuristic, resulting in improved perfor-
mance. Those algorithms, however, do not guide
search towards avoiding or escaping depressed re-
gions. This paper presents depression avoidance,
a simple real-time search principle to guide search
towards avoiding states that have been marked as
part of a heuristic depression. We apply the princi-
ple to LSS-LRTA∗ producing aLSS-LRTA∗, a new
real-time search algorithm whose search is guided
towards exiting regions with heuristic depressions.
We show our algorithm outperforms LSS-LRTA∗
in standard real-time benchmarks. In addition we
prove aLSS-LRTA∗ has most of the good theoreti-
cal properties of LSS-LRTA∗.

1 Introduction
In many real-world applications, agents need to act quickly in
dynamic, initially unknown domains. Example applications
range from robot navigation, to agent navigation in games
(e.g., Baldur’s Gate, Starcraft, etc.). Indeed, the computer
game company Bioware imposes a time limit of 1-3 millisec-
onds for each search episode [Bulitko et al., 2007].

Real-time search (e.g., [Korf, 1990; Koenig, 2001]) is a
standard paradigm for solving search problems in those set-
tings. Instead of running a computationally expensive pro-
cedure to generate a conditional plan at the outset, real-time
algorithms interleave planning and execution. As such, they
usually run a computationally cheap observe-plan-act cycle,
in which the environment is observed, an action is selected,
and then executed. Like standard A∗ search [Hart et al.,
1968], they use a heuristic function to guide action selection.

However, as the environment is unveiled, the agent updates
its internal belief about the structure of the search space, up-
dating (i.e. learning) the heuristic value for some states. The
observe-plan-act cycle is executed until a solution is found.

Early heuristic real-time algorithms like LRTA∗ and RTA∗
[Korf, 1990] perform poorly in presence of heuristic depres-
sions [Ishida, 1992]. Intuitively, a heuristic depression is a
bounded region of the search space in which the heuristic is
unrealistic with respect to the heuristic value of the states in
the border of the region. When visiting states with heuristic
depressions, LRTA∗ and RTA∗ usually become “trapped”. To
exit these regions they will visit most states in the depression,
possibly many times.

State-of-the-art heuristic real-time search algorithms are
able to escape heuristic depressions more quickly than
LRTA∗ or RTA∗. They do so by performing more search,
more learning or a combination of both. More search typ-
ically involves selecting an action by looking farther away
in the search space; thus, we say these algorithms per-
form lookahead search. More learning involves updat-
ing the heuristic values of several states in a single itera-
tion. There are many algorithms that use one or a com-
bination of these techniques (e.g. [Bulitko and Lee, 2006;
Koenig and Likhachev, 2006; Björnsson et al., 2009; Hernán-
dez and Meseguer, 2005; 2007; Koenig and Sun, 2009]).

LSS-LRTA∗ [Koenig and Sun, 2009] is a state-of-the-art
algorithm that generalizes LRTA∗ and does both lookahead
search and learning, that has been shown to perform very well
in practice. However, despite the use of more elaborate tech-
niques, it may still perform poorly in presence of heuristic
depressions. This is because the main mechanism to escape
depressions remains the same as in early algorithms: to in-
crease the heuristic value of states inside the depression.

In this paper, we propose an approach to actively guide
search towards avoiding heuristically depressed regions that
we call depression avoidance. To apply this approach to a
real-time search algorithm we need to define: (1) a mech-
anism for detecting states that belong to a heuristic depres-
sion, and (2) a strategy that leads the agent to prefer to move
to states that are not identified as being in a heuristic depres-
sion. We apply this approach to the state-of-the-art algorithm
LSS-LRTA∗, producing a new algorithm, aLSS-LRTA∗.

We evaluate aLSS-LRTA∗ on standard benchmarks and
shows that, although simple, our modifications to LSS-



LRTA∗ yield significant performance improvements. On av-
erage, for an equal amount of lookahead aLSS-LRTA∗ finds
better solutions in less time. Additionally, we perform a the-
oretical analysis showing that desirable properties, such as
termination, hold for aLSS-LRTA∗.

The paper is organized as follows. We explain basic con-
cepts of real-time search in the next section. We continue
elaborating on the concept of heuristic depression. We then
describe our algorithm in detail and continue with a theoreti-
cal and experimental analysis. Finally, we briefly sketch our
conclusions.

2 Preliminaries
A search problem P is a tuple (S,A, c, s0, G), where (S,A)
is a digraph that represents the search space. The set S rep-
resents the states and the arcs in A represent all available ac-
tions. A does not contain elements of form (x, x). In addi-
tion, the cost function c : A 7→ R+ associates a cost to each
of the available actions. Finally, s0 ∈ S is the start state, and
G ⊆ S is a set of goal states. We say that a search space
is undirected if whenever (u, v) is in A then so is (v, u).
We assume that in undirected spaces c(u, v) = c(v, u), for
all (u, v) ∈ A. The successors of a state u are defined
by Succ(u) = {v | (u, v) ∈ A}. Two states are neighbors
if they are successors of each other. A heuristic function
h : S 7→ [0,∞) associates to each state s an approximation
h(s) of the cost of an path from s to a goal state. h is consis-
tent iff h(g) = 0 for all g ∈ G and h(s) ≤ c(s, w) + h(w)
for all states w ∈ Succ(s). We refer to h(s) as the h-value of
s. We assume familiarity with the A∗ algorithm [Hart et al.,
1968]: g(s) denotes the cost of the path from the start state
to s, and f(s) is defined as g(s) + h(s). The f -value and
g-value of s refer to f(s) and g(s) respectively.

2.1 Real-Time Search
The objective of a real-time search algorithm is to make an
agent travel from an initial state to a goal state performing,
between moves, an amount of computation bounded by a con-
stant. An example situation is pathfinding in previously un-
known grid-like environments. There the agent has memory
capable of storing its current belief about the structure of the
search space, which it initially regards as obstacle-free (this
is usually referred to as the free-space assumption [Koenig et
al., 2003]). The agent is capable of a limited form of sensing:
only obstacles in the neighbor cells can be detected. When
obstacles are detected, the agent updates its map accordingly.

Local Search Space LRTA∗ (LSS-LRTA∗) [Koenig and
Sun, 2009] (Algorithm 1) is a state-of-the-art real-time
heuristic search algorithm which generalizes LRTA∗ [Korf,
1990]. It iteratively executes an lookahead-update-act cycle
until the goal is reached. The procedure has three local vari-
ables. Variable s stores the current position of the agent. Vari-
able c(s, s′) contains the cost of moving state s to a successor
s′. Variable h is such that h(s) contains the heuristic value
for s. All three variables change over time. Initially c is such
that no obstacles are assumed; i.e., c(s, s′) < ∞ for any two
neighbor states s, s′. The initial value of h is given as a pa-
rameter.

In the lookahead phase (Line 3–5), it determines where to
proceed next. To perform this phase, it uses A∗ search to
select the best node to go. The search however, is restricted
to expand at most k nodes. The number k is called lookahead
parameter, and the set of states generated by A∗ are referred
to as the local search space. In the update phase (Line 6), it
updates (raises) the heuristic value of states in the local search
space to the maximum possible value that keeps the heuristic
consistent with respect to the other nodes in the frontier of
the local search space. LSS-LRTA∗ achieves this by a call to
a version of Dijsktra’s algorithm. Finally, in the acting phase
(Line 7) it moves the agent to the final position, updating the
cost variable c if obstacles are observed.

LSS-LRTA∗ is equivalent to LRTA∗ when the number of
nodes expanded by A∗ is limited to 1 (i.e., only the cur-
rent state is expanded). Koenig and Sun [2009] show that,
in several benchmarks, the quality of the solutions returned
improve as the lookahead parameter increases. Nevertheless,
they show that total search time increases as more lookahead
is performed and that LSS-LRTA∗ outperforms incremental
algorithms like D∗ Lite when under time pressure.

Algorithm 1: Pseudo-code for LSS-LRTA∗

1 s← s0
2 while s 6∈ G do
3 Expand at most k states with A∗
4 if the open list is empty then return no-solution
5 y ← Best state in the open list
6 Update the heuristics of states in the Closed list
7 Move the agent from s to y through the optimal path identified by

A∗. Stop if an action cost along the path is updated (to infinity).
8 s← current agent position
9 Update action costs (if they have increased)

3 Heuristic Depressions
In real-time search problems, however, heuristics usually
contain depressions. Identification of these depressions is
central to our algorithm.

Intuitively, a heuristic depression is a bounded region of the
search space containing states whose heuristic value is too
low with respect to the heuristic values of states in the bor-
der of the depression. Depressions exist naturally in heuris-
tics used along with real-time heuristic search algorithms and
are also generated during runtime. As we have seen above,
heuristic real-time algorithms build solutions incrementally,
incrementing the heuristic values associated to certain states
as more information is gathered from the environment.

Ishida [1992] gave a constructive definition for heuristic
depression. The construction starts with a node s such that its
heuristic value is equal to or less than those of the surround-
ing states. The region is then extended by adding a state of
its border if all states in the resulting region have a heuristic
value lower or equal than those of the states in the border. As
a result, the heuristic depression D is a maximal connected
component of states such that all states in the boundary of
D have a heuristic value that is greater than or equal to the
heuristic value of any state in D.

It is known that LRTA∗ behaves poorly in presence of
heuristic depressions [Ishida, 1992]. To see this, assume that
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Figure 1: A 4-state grid-like search space with unitary costs.
Cells show their h-value. D is the goal state.

LRTA∗ visits a state in a depression and that the solution node
lies outside the depression. To exit the depressed region the
agent must follow a path in the interior of the depressed re-
gion, say, s1 . . . sn, finally choosing a state in the border of
the region, say se. While visiting sn the agent chooses se as
the next move, which means that se minimizes the estimated
cost to reach a solution among all the neighbors of sn. In
problems with uniform action costs, this can only happen if
h(se) is lower or equal than the heuristic value of all other
neighbors of sn. This fact actually means that the depression
in that region of the search space no longer exists, which can
only happen if the heuristic values of states in the originally
depressed region have been updated (increased). For LRTA∗,
the update process may be quite costly: in the worst case, in-
deed, all states in the depression may need to be updated and
each state may need to be updated several times.

Ishida’s definition is, nonetheless, restrictive. In fact, it
does not take into account the costs of the actions needed to
move from the interior of the depression to the exterior. A
closed region of states may have unrealistically low heuris-
tic values even though the heuristic values in the interior are
greater than the ones in the border. We propose a more intu-
itive notion of depression when costs are taken into account.
The formal definition follows.

Definition 1 (Cost-sensitive heuristic depression) A con-
nected component of states D is a cost-sensitive heuristic
depression of a heuristic h iff for any state s ∈ D and every
state s′ in the boundary of D, h(s) < k(s, s′) + h(s′), where
k(s, s′) denotes the cost of the cheapest path that starts in s,
traverses states only in D, and ends in s′.

Figure 1 shows an example search space in which our def-
inition for cost-sensitive depression defers from Ishida’s. In-
deed, no matter what “start state” is used with Ishida’s proce-
dure, A is never part of a heuristic depression. On the other
hand {A,B} is a cost-sensitive depression. The fact that A is
in a cost-sensitive depression is important because this means
that the h-value of A is low with respect to the border cell
C. Indeed, intuitively if it takes two actions to get to state C,
then the heuristic value of A should be 3 instead of 2.

4 Depression Avoidance
As seen above, a major issue in solving real-time search prob-
lems is the presence of heuristic depressions. Algorithms like
LSS-LRTA∗, and LRTA∗(k) escape those regions faster than
LRTA∗ because they increment the heuristic value of more
states in every iteration. Thus, if a set of states D is a heuris-
tic depression, and the current position of the agent is in D,
LSS-LRTA∗, LRTA∗(k) and LRTA∗ exit the region given by
D when the heuristic value of those states has increased suf-
ficiently so that the depression in D has disappeared. LSS-
LRTA∗ exits the depressions more quickly than LRTA∗ both

because the heuristic function increases for states in D more
quickly and because of its ability to do lookahead.

To escape heuristic depressions we propose a different
strategy: depression avoidance, which guides search for a
quick way out of depressions by explicitly avoiding them.
Depression avoidance is a very simple principle that dictates
that search should be guided away from states identified as
being in a heuristic depression. There are many ways in
which one could conceive the implementation of this prin-
ciple in a real-time heuristic search algorithm. Below, we
propose one of the many possible realizations of the principle
within the state-of-the-art LSS-LRTA∗ algorithm. The result
is aLSS-LRTA∗, an algorithm based on the principle that has
good theoretical properties.

aLSS-LRTA∗ is a simple yet effective modification of LSS-
LRTA∗. The main conceptual difference between aLSS-
LRTA∗ and LSS-LRTA∗ is that the former prefers to move to
states that are not yet identified as belonging to a depression.
To achieve this, we modify two aspects of LSS-LRTA∗. First,
we modify the procedure that LSS-LRTA∗ uses to update the
heuristic values to mark the states that are inside depression.
Second, we modify the mechanism to select at what state the
agent will attempt to move to. To select the next move, the
algorithm chooses the best state generated by the lookahead
phase that has not been marked as in a depression. If such a
state does not exist the algorithm selects the best state seen
during the lookahead phase, just like LSS-LRTA∗ would do.

Details of the pseudo code for aLSS-LRTA∗ are shown in
Algorithm 2. The lookahead procedure (Line 6) is exactly the
same used by LSS-LRTA∗: a standard A∗ search that will ex-
pand at most k nodes and, additionally, stops if the goal state
is inserted into Open. The set of states that were expanded,
as usual, are stored in Closed.

The heuristic values of states expanded by the lookahead
search will be updated by a call to our modified Dijkstra pro-
cedure. In a nutshell, this procedure changes the values of the
heuristic for all states in Closed to the highest possible value
that guarantees the consistency of the heuristic. The main
difference between our procedure and that of LSS-LRTA∗ is
Line 32, which does not exist in LSS-LRTA∗. Here, for a state
s in the search space, we set s.updated to true if the heuristic
value for h changes as a result of the update process. In the
following section, we formally prove that this means that s
was inside a heuristic depression (Theorem 1).

Finally, in Line 8, the algorithm chooses the next state to
go to by extracting the state with lowest f -value in Open
which is not marked. If no unmarked states exist, the algo-
rithm chooses the state with best f -value in Open.

An Example Fig. 2 shows an example that illustrates the dif-
ference between LSS-LRTA∗ and aLSS-LRTA∗ with looka-
head parameter equal to two. After 3 search episodes, we
observe that aLSS-LRTA∗ avoids the depression leading the
agent to a position 2 steps closer to the goal than LSS-LRTA∗.

5 Evaluation
Below we evaluate aLSS-LRTA∗ both theoretically and ex-
perimentally.



Algorithm 2: aLSS-LRTA∗: Learning Real-Time A∗
with propagation and depression avoidance.

Input: A search problem P , a heuristic function h, a cost function c.
1 for each s ∈ S do
2 s.updated← false
3 h0(s)← h(s)

4 scurrent ← s0
5 while scurrent 6∈ G do
6 A∗ ()
7 if Open = ∅ then return no-solution
8 snext ← Extract-Best-State()
9 Dijkstra ()

10 move the agent from scurrent to snext through the path
identified by A∗. Stop if an action cost along the path is updated
(to infinity).

11 scurrent ← current agent position
12 update action costs (if they have increased)

13 procedure A∗ ()
14 for each s ∈ S do g(s)←∞
15 g(scurrent)← 0
16 Open← ∅
17 Insert scurrent into Open
18 expansions← 0
19 while each s′ ∈ Open with minimum f -value is such that s′ 6∈ G

and expansions < k do
20 s← argmins′∈Openg(s

′) + h(s′)
21 Insert s into Closed
22 for each s′ ∈ Succ(s) do
23 if g(s′) > g(s) + c(s, s′) then
24 g(s′)← g(s) + c(s, s′)
25 s′.back = s
26 Insert s′ in Open

27 expansions← expansions+ 1

28 procedure Dijkstra ()
29 for each s ∈ Closed do h(s)←∞
30 while Closed 6= ∅ do
31 Extract an s with minimum h-value from Open
32 if h(s) > h0(s) then s.updated = true
33 if s ∈ Closed then delete s from Closed
34 for each s′ such that s ∈ Succ(s′) do
35 if s′ ∈ Closed ∧ h(s′) > c(s′, s) + h(s) then
36 h(s′)← c(s′, s) + h(s)
37 if s′ 6∈ Open then Insert s′ in Open

38 procedure Extract-Best-State ()
39 if Open contains an s such that s.updated = false then
40 s← argmins′∈Open∧s′.updated=falseg(s

′) + h(s′)

41 else
42 s← argmins′∈Openg(s

′) + h(s′)

43 return s

5.1 Theoretical Analysis

In this section we show that aLSS-LRTA∗ satisfies most of the
interesting properties of LSS-LRTA∗. Specifically, we can
use the same proofs by Koenig and Sun [2009] to prove the
heuristic h is non-decreasing and remains consistent if the
provided heuristic is consistent. Below we present an analysis
of some properties specific to aLSS-LRTA∗. We establish
some results that also hold for aLSS-LRTA∗, but that need
different proofs than those known for LSS-LRTA∗.

Before stating the results we introduce some useful no-
tation. We denote the heuristic value function h in aLSS-
LRTA∗ at the beginning of the n-th iteration as hn. As such,
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Figure 2: First 3 search episodes of LSS-LRTA∗ (above) and aLSS-
LRTA∗ (below) with lookahead equal to 2 in a 4-connected grid
world with action unitary action costs, where the initial state is D2,
and the goal is D4. Numbers in cell corners denote the g-value (up-
per left), f -value (upper right), h-value (lower left), and new h-value
of an expanded cell after an update (lower right). Only cells that
have been in a closed list show four numbers. Cells just generated
by A∗ or (i.e., in their Open lists) show three numbers, since their
h-values have not been updated. Triangles (N) denote states with
updated flag set to true after the search episode. The heuristic used
is the manhattan distance. We assume ties are broken by choosing
first right then bottom then left then top adjacent cell. The position
of the agent is given by the dot. A grid cell is shaded (gray) if it is a
blocked cell that the agent has not sensed yet. A grid cell is black if
it is a blocked cell that the agent has already sensed. The best state
chosen to move the agent to after lookahead is pointed by an arrow.

hn+1 represents the result of updating hn by the call in Line
9. Likewise, we denote the value of the cost function c in
aLSS-LRTA∗ at the beginning of the n-th iteration by cn. Fi-
nally, kn(s, s′) denotes the cost of the cheapest path from s to
s′ that traverses states only in Closed until it reaches s′, with
respect to the cost function cn.

The proposition below gives an expression h-value of a
state in Closed after the call to the Dijkstra algorithm. In-
tuitively, the heuristic is updated soundly with respect to the
boundary.

Proposition 1 Let s be a state in Closed right after the call
to A∗ in the n-th iteration of the algorithm. Then,

hn+1(s) = min
sb∈Open

kn(s, sb) + hn(sb).

The updated flag is set to true as soon as the heuristic has
been updated:

Proposition 2 If hn+1(s) > hn(s) then s.updated = true
after the n-th iteration of the algorithm.

The following theorem establishes that whenever a state s
is marked as updated, then s belongs to a heuristic depression.

Theorem 1 Let s be a state such that s.updated switches
from false to true between iterations n and n + 1. Then s is
in a cost-sensitive heuristic depression of hn.

Proof: Let D be the maximal connected component of states
connected to s such that (1) all states in D are in Closed after
the call to A∗ in iteration n, and (2) any state sd in D is such
that hn+1(sd) > hn(sd). We prove that D is a cost-sensitive
heuristic depression of hn.



Let s′ be a state in the boundary of D. We first show that
hn(s

′) = hn+1(s
′). Indeed, s′ ∈ Closed ∪ Open. Assume

s′ ∈ Closed. Then, since s′ 6∈ D, it must be because it does
not satisfy condition (2) of the definition of D, and hence
hn+1(s

′) ≤ hn(s
′). However, since the heuristic is non-

decreasing, it must be that hn(s
′) = hn+1(s

′). On the other
hand, if s′ is in Open, its heuristic value is not changed and
thus also hn(s

′) = hn+1(s
′).

Let sd be a state in D. We continue the proof by showing
that hn(sd) is too low with respect to hn(s

′), which means
that D is a heuristic depression of hn. We distinguish two
cases: if s′ ∈ Closed,

hn(s
′) = kn(s

′, sb) + hn(sb), (1)

for some sb ∈ Open. On the other hand, since the heuris-
tic value has increased for sd, hn(sd) < hn+1(sd) =
mins′b∈Open kn(sd, s

′
b) + h(s′b); in particular, hn(sd) <

kn(sd, sb) + hn(sb). Since kn(sd, sb) is the optimal cost to
go from sd to sb, kn(sd, sb) ≤ kn(sd, s

′) + kn(s
′, sb). Sub-

stituting kn(sd, sb) in the previous inequality we have

hn(sd) < kn(sd, s
′) + kn(s

′, sb) + hn(sb). (2)

We now substitute the right-hand side of (2) using (1), and we
obtain hn(sd) < kn(sd, s

′) + hn(s
′). Finally, if s′ ∈ Open

by Proposition 1 and the fact that hn+1(sd) > hn(sd), we
also have that hn(sd) < kn(sd, s

′)+hn(s
′). This proves that

sd is in a cost-sensitive heuristic depression of hn. �

Finally, we prove that the algorithm leads an agent to a so-
lution if such a solution exists when the heuristic is consistent.

Theorem 2 Let P be an undirected finite real-time search
problem such that a solution exists. Let h be a consistent
heuristic for P . Then aLSS-LRTA∗, used with h, will find a
solution for P .

5.2 Experimental Evaluation
We compared aLSS-LRTA∗ with the state-of-the-art LSS-
LRTA∗ at solving real-time navigation problems in unknown
environments. For fairness, we used comparable implemen-
tations that use the same underlying codebase. For example,
both search algorithms use the same implementation for bi-
nary heaps as priority queues and break ties among cells with
the same f -values in favor of cells with larger g-values.

We used six maps from deployed video games to carry
out our experiments. The first three, from the game Bal-
dur’s Gate, are 512 × 512 cells each. The remaining three
are 456×463, 939×718, and 656×1491 cells, and are taken
from the game Dragon Age. All maps were retrieved from
Nathan Sturtevant’s repository.1

Each map in the repository has a set of associated prob-
lems. We estimated the hardness of the problems and selected
the 300 hardest for each map. We estimate the hardness as the
difference between the optimal cost to reach the goal from
the initial state and the h-value for the initial state. All maps
are regarded as undirected, eight-neighbor grids. Horizontal

1http://www.movingai.com/. For Baldur’s Gate we
used maps AR0011SR-512, AR0602SR-512, and AR0700SR-512.
For Dragon Age, we used orz103d, orz702d, and orz900d.

LSS-LRTA* aLSS-LRTA* %Cost
k Avg. Cost Time Time/se Avg. Cost Time Time/se Impr.
1 1,330,352 1,222.2 0.001 981,828 888.9 0.001 26.2 ±1.8
4 424,693 785.6 0.003 330,933 609.4 0.003 22.1 ±1.6
7 285,568 657.4 0.004 228,333 527.4 0.004 20.0 ±1.6

10 215,545 557.9 0.006 182,361 474.2 0.006 15.4 ±1.8
13 171,338 482.8 0.007 147,743 417.9 0.008 13.8 ±1.9
16 139,467 422.4 0.009 125,512 382.5 0.009 10.0 ±1.6
19 121,376 392.9 0.011 109,596 357.2 0.011 9.7 ±1.5
22 106,256 366.0 0.012 95,806 332.5 0.012 9.8 ±1.3
25 95,783 350.0 0.014 87,019 320.8 0.014 9.1 ±1.3
28 86,328 333.1 0.015 78,603 306.2 0.016 8.9 ±1.3
31 78,582 319.5 0.017 72,395 297.4 0.017 7.9 ±1.4
34 73,834 314.3 0.018 67,666 292.2 0.019 8.4 ±1.4

Figure 3: Average results for the 6 game maps. For lookahead value
k, we report the average solution cost (Avg. Cost), and two measures
of efficiency: total runtime (Time), and average runtime per search
episode (Time/se) in milliseconds. Results obtained over a Linux
PC with a Pentium QuadCore 2.33 GHz CPU and 8 GB RAM.

and vertical movements have cost 1, whereas diagonal move-
ments have cost

√
2. We used the octile distance as heuristic.

We ran LSS-LRTA∗ and aLSS-LRTA∗ for 12 different
lookahead values over each problem. Figure 3 shows av-
erage cost and time results. In addition, we show the per-
centage cost improvement of aLSS-LRTA∗ over LSS-LRTA∗.
The value after the “±” defines a 99% confidence interval
for the cost improvement. This measure was obtained by
carrying out a t-test for the cost difference for each indi-
vidual problem. We observe aLSS-LRTA∗ consistently out-
performs LSS-LRTA∗, both in total search time and solution
cost. The greatest improvements are obtained for lower val-
ues of the lookahead parameter (i.e., when there is more time
pressure). On the other hand, since the additional overhead
of aLSS-LRTA∗ (depression marking and move selection) is
little: time per search episode is essentially the same.

The cost improvement on the 6 different maps we exper-
imented with is shown in Figure 4. They present a rather
similar behavior across different domains. This suggests that
average values are representative of aLSS-LRTA∗’s behavior.

Although aLSS-LRTA∗ is better suited for applications in
which the environment is initially unknown, we also eval-
uated its performance in known environments (this implies
the cost function c is initialized with the correct values). In
this case we observed that aLSS-LRTA∗ outperforms LSS-
LRTA∗ very consistently: improvements in this setting do
not seem to depend on lookahead values. Indeed, cost-wise,
aLSS-LRTA∗ outperforms LSS-LRTA∗ at least by 26% and
at most by 40%; time-wise, aLSS-LRTA∗ improves on LSS-
LRTA∗’s total search time by least 30% and at most by 41%.
Relative Performance As shown by our experiments aLSS-
LRTA∗ outperforms LSS-LRTA∗ on average. There are spe-
cific cases in which the situation is the opposite. Consider for
example, path-finding scenarios that look like Figure 5. Be-
cause of the way ties are broken, aLSS-LRTA∗ always enters
the shaded region, as the cells it leaves behind are marked
as updated. When height is lower than the length of corri-
dor LSS-LRTA∗ also visits the shaded area. In those situa-
tions aLSS-LRTA∗ outperforms LSS-LRTA∗ because aLSS-
LRTA∗ exits the shaded depressed region quickly. However,
when height is much larger than the length of the corridor,
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Figure 4: Cost improvement for different lookahead values
on maps from Baldur’s Gate (BG) and Dragon Age (DA).
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Figure 5: A situation in which the relative performance between
LSS-LRTA∗ and aLSS-LRTA∗ changes depending on the value of
height. S is the start state, and G is the goal. Ties are broken in
favor of upper cells.

LSS-LRTA∗ does not enter the shaded region, producing bet-
ter solutions. We did not observe such bad cases frequently
in our experiments. Indeed, aLSS-LRTA∗ outperforms LSS-
LRTA∗ in 75.6% of the problems we tried. We also com-
puted the relative performance given by the ratio between the
solution costs for each test case. On its 100 best cases, LSS-
LRTA∗ obtains on average solutions 5.02 times cheaper than
those of aLSS-LRTA∗. On the other hand, aLSS-LRTA∗ ob-
tains on average solutions that are 23.41 times cheaper than
those of LSS-LRTA∗ on its 100 best cases.

6 Related Work
There are a number of real-time search algorithms that
can be used in initially unknown environments. Besides
LSS-LRTA∗, RTAA∗ [Koenig and Likhachev, 2006] and
LRTA∗LS(k) [Hernández and Meseguer, 2007] are among the
best-performing real-time search algorithms. LSS-LRTA∗
finds better-quality solutions than RTAA∗ for the same value
of the lookahead parameter; however, LSS-LRTA∗ typically
requires more time per search episode to obtain solutions of
similar quality [Koenig and Likhachev, 2006]. LSS-LRTA∗,
on the other hand, is competitive with LRTA∗LS(k) [Hernán-
dez and Meseguer, 2007]. None of the abovementioned al-
gorithms utilize any mechanism comparable to depression
avoidance. eLSS-LRTA∗ is a preliminary version of aLSS-
LRTA∗ we presented in an extended abstract [Hernández and
Baier, 2011]. It is outperformed by aLSS-LRTA∗ on average,
as it usually becomes too focused on avoiding depressions.

Finally, less related to our work are algorithms that abide
to real-time search constraints but that assume the environ-
ment is known in advance. Examples are D-LRTA∗ and kNN-

LRTA∗ [Bulitko et al., 2010], TBA∗ [Björnsson et al., 2009].

7 Summary
We have presented a simple principle for guiding real-time
search algorithms away from heuristic depressions. We inte-
grated the principle into a state-of-the-art real-time search al-
gorithm, producing aLSS-LRTA∗, a novel heuristic real-time
search algorithm. In aLSS-LRTA∗, depressions are avoided
by marking states in a depression using the Dijkstra algorithm
and then selecting a state that is not in a depression as the
next move, if possible. We showed aLSS-LRTA∗ is complete
and preserves several of the properties of LSS-LRTA∗. In
our experiments, we observed that aLSS-LRTA∗ consistently
outperforms LSS-LRTA∗, most notably under time pressure.
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