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Abstract

Real-time heuristic search is a standard approach to pathfind-
ing when agents are required to make decisions in a bounded,
very short period of time. An assumption usually made in
the development and evaluation of real-time algorithms is
that the environment is unknown. Nevertheless, in many in-
teresting applications such as pathfinding for automnomous
characters in video games, the environment is known in ad-
vance. Recent real-time search algorithms such as D LRTA*
and kNN LRTA* exploit knowledge about the environment
while pathfinding under real-time constraints. Key to those
algorithms is the computation of subgoals in a preprocessing
step. Subgoals are subsequently used in the online planning
phase to obtain high-quality solutions. Preprocessing in those
algorithms, however, requires significant computation. In this
paper we propose a novel preprocessing algorithm that gener-
ates subgoals using a series of backward search episodes car-
ried out from potential goals. The result of a single backward
search episode is a tree of subgoals that we then use while
planning online. We show the advantages of our approach
over state-of-the-art algorithms by carrying out experiments
on standard real-time search benchmarks.

Introduction
Intelligent agents moving in physical or virtual environ-
ments are required to constantly perform pathfinding, i.e.
search for a sequence of moves that will lead them to reach
a destination from their current location. This is an old AI
problem for which many approaches exist (Dijkstra 1959;
Hart, Nilsson, and Raphael 1968).

In some pathfinding settings the time allowed for com-
putation per move is bounded by a constant independent of
the size of the problem. An example is pathfinding in video
games, in which companies impose limits in the order of
milliseconds on the aggregated per-move time for all their
virtual agents. Other settings, like pathfinding for unmanned
vehicles in dynamic domains, have similar characteristics.

Real-time heuristic search algorithms, such as LRTA∗
(Korf 1990) or LSS-LRTA∗ (Koenig and Sun 2009), are ap-
plicable to real-time pathfinding. Nevertheless, most exist-
ing approaches produce solutions that look irrational to hu-
mans. Indeed, most real-time algorithms get “trapped” in
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regions of the search space in which the heuristic is impre-
cise or depressed (Ishida 1992). To exit these regions, they
learn the correct heuristic values for states in the depression
– a process that may require re-visiting the same states sev-
eral times.

While it is unclear how to (completely) avoid such a prob-
lem when the environment is initially unknown to the agent,
approaches capable of obtaining much better-quality solu-
tions can be devised if the agent has complete knowledge
about the environment and is allowed sufficient time for pre-
processing. In applications like videogames, preprocessing
is a viable option since designers know the environments in
advance.

There exist a few approaches that utilize additional pre-
processing time effectively. D LRTA∗ (Bulitko et al. 2007)
precomputes optimal paths between pairs of abstracted
states and then exploits this information while planning on-
line. On the other hand, kNN LRTA∗ (Bulitko, Björnsson,
and Lawrence 2010) pre-computes several optimal paths be-
tween pairs of states extracting a number of subgoals that
are later exploited while planning on-line. The preprocess-
ing carried out by kNN LRTA∗ is expensive since a high
number of optimal paths may need to be computed. On the
other hand D LRTA∗ may require a little less preprocess-
ing time but is harder to describe and implement (Bulitko,
Björnsson, and Lawrence 2010).

In this paper we propose a novel and simple approach to
computing subgoals. There are two key elements that dis-
tinguish it from recent previous work. First, subgoals are
computed by doing a backward search from a single state,
generating a tree of subgoals. Second, subgoals correspond
to states that are exit points from heuristic depressions. As
a result, while the agent plans online, depressions are exited
with a small number of moves. We show that, while our ap-
proach does not guarantee optimality, we usually find solu-
tions only about 11% away from the optimal. We also show
advantages in terms of preprocessing time over kNN LRTA∗
and total execution time over LRTA∗.

The rest of the paper is organized as follows. We give
an overview the basics of real-time search and pathfinding
in the next section. We then describe our subgoaling algo-
rithm, and how this information is exploited while planning
online. We finish with an experimental evaluation followed
by conclusions.



Preliminaries
Pathfinding is the problem of finding a path in a
graph. Formally, the problem is described by a tuple
(S,A, c, s0, sgoal), where the search space is defined by the
digraph (S,A). The finite set S represents the states and the
arcs in A represent the available actions. A does not contain
elements of form (x, x). On the other hand, the cost func-
tion c : A 7→ R+ associates a positive cost to each of the
available actions. Moreover, the search space is undirected,
i.e. for all (u, v) ∈ A then (u, v) ∈ A and furthermore
c(u, v) = c(v, u). Finally, s0 ∈ S is the start state, and
sgoal ∈ S is the goal state. The successors of state u are
defined by Succ(u) = {v | (u, v) ∈ A}. If v is a successor

Algorithm 1: Pseudo code for LRTA∗.
1 s← s0;
2 while s 6= sgoal do
3 for each w ∈ Succ(s) do update c(s, w);
4 y ← argminw∈Succ(s)c(s, w) + h(w) ;
5 h(s)← max{h(s), c(s, y) + h(y)} ;
6 Move the agent to y and do s← y ;

of u, we say that u and v are neighbors. A heuristic function
h : S 7→ [0,∞) associates to each state s an approximation
h(s) of the cost of a path from s to a goal state. The problem
of pathfinding consists of finding a path in (S,A) starting in
s0 and ending in sgoal.

In real-time pathfinding we additionally assume the an
amount of computation between moves is bounded by a con-
stant. Other potential applications are the control of un-
manned vehicles acting in highly dynamic domains.

Learning Real-Time A∗ (LRTA∗) (Korf 1990) (Algo-
rithm 1) solves real-time search problems. It iteratively exe-
cutes an observe-lookahead-update-act cycle until the goal is
reached. The procedure has three local variables. Variable
s stores the current position of the agent. Variable c(s, s′)
contains the cost of moving state s to a successor s′. Vari-
able h is such that h(s) contains the heuristic value for the
state. All three variables change over time.

In problems in which the domain is initially unknown, no
obstacles are assumed and c(s, s′) is initialized to a value
smaller than ∞ for all states s, s′ ∈ S. As the agent acts
both the cost and heuristic functions are updated (Lines 3
and 5, respectively). On the other hand, when the environ-
ment is known in advance c is initialized with the correct
values, there is no need for updating c while executing.

There are a number of extensions of LRTA∗, that improve
its performance by doing more extensive lookahead or learn-
ing; e.g., LSS-LRTA∗ (Koenig and Sun 2009), LRTA∗(k)
(Hernandez and Meseguer 2005). All of these extensions
however behave poorly in presence of heuristic depressions;
i.e., regions in which the heuristic is imprecise (Ishida 1992).
In pathfinding problems, this results in the agent re-visiting
the same states multiple times; a behaviour that looks irra-
tional and that has hampered the use of real-time heuristic
search for applications like video games.

D LRTA∗ (Bulitko et al. 2007) and kNN LRTA∗ (Bu-

litko, Björnsson, and Lawrence 2010) are algorithms able
to perform much better assuming the environment is known
in advance that sufficient time is available for preprocessing
before the agent acts in the world. In preprocessing time,
D LRTA∗ uses an clique abstraction technique that merges
sets of neighbour states into a single abstracted state. Op-
timal paths are then computed for every pair of abstracted
states. In planning time, D LRTA∗ runs a modified ver-
sion of LRTA∗ that uses the pre-computed information. On
the other hand kNN LRTA∗ precomputes optimal paths be-
tween a number of pairs of initial-final states. These paths
are “compressed” and stored in a database. In planning time,
the algorithm searches for the best among the k closest pairs,
and uses the pre-computed compressed paths as a sequence
of subgoals to pursue.

Computing Subgoals
As mentioned in the previous section, the exploitation of
pre-computed subgoals is an effective approach to real-time
pathfinding. Recent existing approaches compute subgoals
from actual, optimal paths between pairs of states. In the
rest of the section, we propose a novel approach to comput-
ing subgoals which given a (single) goal state, finds a tree
of subgoals. Subgoals are not extracted from a path; rather,
they correspond to states that are regarded as key to escaping
from the heuristic depressions in the problem.

Heuristic depressions appear naturally in pathfinding
problems. Figure 1 left shows two shaded areas in a grid-
world where the heuristic is depressed with respect to the
goal G; i.e., the heuristic value of shaded cells is lower than
the actual cost to reach the goal. To travel from cell D2 to
E6, the agent has to escape the heuristic depression. With
no subgoaling, a traditional real-time heuristic search algo-
rithm performs several updates to the heuristic of the states
in the depressed region before the region is exited. However,
assume the search algorithm were informed that state B3 is
a good subgoal to pursue. In such a situation, it turns out
that the heuristic (manhattan distance) of D2 with respect
to the subgoal B3 (h(D2, B3)) is exactly the actual cost of
reaching B3 from D2. If we now consider a new search
problem in which the goal is B3, then D2 is no longer in a
heuristic depression with respect to this new goal. As such,
LRTA∗ would head straight to the subgoal cell B3. Once
B3 is reached, if the algorithm were informed that E6 is the
next goal to pursue, we likewise have that h(B3, E6) is the
actual distance to the goal, and thus E6 will be reached with
a little number of moves.

Our subgoaling algorithm (Algorithm 2) discovers states
that correspond to exit points from a heuristic depression. A
state s is an exit point from a heuristic depression with re-
spect to a goal state g if for some successor s′ of s, h(s′, g)
is lower than the actual cost to reach g from s′. These exit
states are found by performing a backward search from a
given goal state. Our algorithm is a modification of the Di-
jkstra algorithm which associates to every state in the search
space (1) a function g(s), which corresponds to the opti-
mal distance from s to the given goal sgoal, (2) a function
Sub(s), that returns the goal that will come after s during the
real-time search, (3) a function gsub(s) which is the optimal
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Figure 1: A 4-connected grid, with a goal marked by G. Left: The upper-left corner of each cell shows the actual distance to the goal. The
upper-right corner shows the value of the heuristic for the cell (manhattan distance). Shaded cells show heuristic depressions. Right: The
result of running Algorithm 2. g1, g2, and g3 are the computed subgoals. The parent of g1 and g2 is G, and the parent of g3 is g2. The upper-
left corner of each cell shows the actual distance to the goal (g-value), the lower-left shows the actual distance to the corresponding subgoal
(gsub-value), and the upper-right corner shows the value of the heuristic (manhattan distance) to the corresponding subgoal (h(s, Sub(s))-
value) .

Algorithm 2: Subgoaling algorithm
Input: A search problem
Output: A tree of subgoals, stored in variable Tree

1 Tree← emptyTree;
2 for each s ∈ S do g(s)←∞;
3 Sub(sgoal)← sgoal;
4 gsub(sgoal)← 0;
5 g(sgoal)← 0;
6 Open.push(sgoal);
7 while Open 6= ∅ do
8 s← Open.pop();
9 if s 6= sgoal then

10 Sub(s)← Sub(parent(s)) ;
11 gsub(s)← gsub(parent(s)) + c(parent(s), s);
12 for each s′ ∈ Succ(s) do
13 if g(s′) > g(s) + c(s, s′) then
14 g(s′)← g(s) + c(s, s′);
15 gsub(s

′)← gsub(s) + c(s, s′);
16 parent(s′)← s;
17 if gsub(s′) 6= h(s′, Sub(s)) then
18 gsub(s)← 0;
19 Tree.push(Sub(s), s);
20 Sub(s)← s;
21 if s′ ∈ Open then remove s′ from Open;
22 Open.push(s′);

distance from s to Sub(s), (4) a function h(s′, s), given as
a parameter, which returns an estimate of the cost of an op-
timal path from s′ to s, and (5) a function parent(s) which,
as in a standard Dijkstra algorithm, corresponds to the state
from which s can be reached optimally from the goal state
sgoal. In addition, Open is Dijkstra’s Algorithm priority
queue, which in our variant is ordered by g. Finally, the
variable Tree stores the tree of subgoals. A new arc in the
tree is added in Line 19 when a state has a child state s′

whose optimal distance to the next subgoal is greater than
the heuristic value from s′ to such a subgoal.

Figure 1 right shows an example execution of the algo-
rithm for the problem shown on the left. The first arc added
to the tree is (B8, E6), since the heuristic distance of a chil-
dren of B8’s, C8, is such that h(B8, C8) = 4 is lower than
6, which is the cost of the optimal distance to C8 found by

Dijkstra’s algorithm when run goal.

Real-Time Pathfinding with Subgoaling
We have shown how to compute a tree of subgoals from a
particular goal. We now turn our attention to how we ex-
ploit these trees for real-time pathfinding. In the rest of the
section we describe a simple way to do it. Later we will
show that our approach, although simple, achieves superior
performance.

We start off assuming that we have computed a subgoal
tree (using Algorithm 2) for every state s of a given pathfind-
ing problem. (Although that is seemingly a very expensive
initial step, we later show that this outperforms the state-of-
the-art.) Then we use a modified version of LRTA∗ (shown
in Algorithm 3) to plan find a path in real time. The algo-
rithm initializes a variable nextgoal(s) (Lines 1–4) which
corresponds to the next goal to be pursued once s is reached,
for each state s in the search space. Variable goal contains
the goal that is currently being pursued, and is initialized to
the state that seems closer given the heuristic (Line 5). Then
a slightly modified version of LRTA∗ ensues, in which sub-
goals are followed respecting the subgoal tree structure. We
assume h(s, s′) is initialized to an estimate of the optimal
path from s to s′ (in 4-connected grids, we use the manhat-
tan distance whereas in 8-connected grids we use the octile
distance). In our implementation we do not set the value of
h(s, s′) for all pairs (s, s′) ∈ S × S, but only for pairs that
are required at execution time.

Algorithm 3: LRTA∗ with subgoaling
1 for each s ∈ S do nextgoal(s)← null;
2 tree← subgoal tree for sgoal;
3 for each state s in tree do
4 nextgoal(s)← parent of s in tree ;
5 goal← argmins in treeh(s0, s);
6 s← s0 ;
7 while s 6= sgoal do
8 if nextgoal(s) 6= null then goal← nextgoal(s);
9 y ← argminw∈Succ(s)c(s, w) + h(w, goal) ;

10 h(s, goal)← max{h(s, goal), c(s, y) + h(y, goal)} ;
11 Move the agent to y and do s← y ;



Cost Time first search Total time
A* 198 3.101 3.101
LRTA* 39,232 0.001 34.446
LRTA*+sub 220 0.024 0.251

Figure 2: LRTA* with subgoaling compared with A* and
LRTA* in on-line search. Time first search and Total time
are in milisecond.

Evaluation
We evaluated the performance of our approach over the four
videogame maps used by Bulitko and Björnsson (2009) (2
from the game Baldur’s Gate, and 2 from World of War-
craft), and 4 maps from the game Dragon Age: Origins.
Maps are represented as 8-connected grids where horizon-
tal and vertical movements have cost 1 and diagonal move-
ments have cost

√
2. We use the octile distance as heuristic

function. All experiments were run on a Linux PC with a
Pentium QuadCore 2.33 GHz CPU and 8 GB RAM.

There are 17,789 unblocked cells on average in the 8 maps
used. For each of them we compute a subgoal tree. Trees
contain on average 198 states. The largest tree has 255 states
whereas the smallest has size 0 and corresponds to a cell
surrounded by obstacles. Subgoal trees for a single map are
computed in 73.5 sec. on average, with a maximum compu-
tation time of 159.78 sec. and a minimum of 31.74 sec.

In the game maps of Bulitko and Björnsson (2009) we
obtained an average computation time of 51.6 seconds.
kNN LRTA∗ computes subgoals in a comparable time when
its parameter is set to 1000 on the same maps and a very sim-
ilar hardware. Such a parameter corresponds to the number
of pre-computed optimal paths (between pairs of different
states) that are precomputed. kNN LRTA∗’s preprocessing
time increases as the parameter is increased.

Figure 2 shows results obtained by A∗ (Hart, Nilsson, and
Raphael 1968), LRTA∗ and LRTA∗ with subgoaling. We av-
erage our experimental results over 4000 test cases (500 test
cases for each game map). For each test case, we choose
the start and goal cells randomly. The average solution cost
obtained by LRTA∗ with subgoaling is only 11% above the
optimal. In the maps that were also tested by Bulitko and
Björnsson (2009) our solutions were 13% above optimal.
The suboptimality of kNN LRTA∗ (1000) over those maps is
49.91%, whereas the suboptimality of kNN LRTA∗ (10000)
is 19.52%, requiring an average pre-processing time of 6.23
minutes (Bulitko and Björnsson 2009).

LRTA∗ and LRTA∗ with subgoaling need a very small
time per planning episode. However, LRTA∗ with subgoal-
ing outperforms LRTA∗ in 2 orders of magnitude in terms of
solution quality. LRTA∗ with subgoaling requires more time
only for the first planning episode (in which it needs to ini-
tialize variables and determine the first goal to pursue). The
first planning episode takes 0.024 milliseconds on average.
The subsequent planning episodes take 0.001 milliseconds
on average. LRTA∗ with subgoaling is 12.4 times better than
A∗ and 137.4 times better than LRTA∗ in terms of total time.

The quality of the solutions and preprocessing times
obtained by our algorithm are comparable to those re-

ported for D LRTA∗(3) and D LRTA∗(5) by Bulitko and
Björnsson (2009). D LRTA∗, however, requires more
cell expansions during the on-line planning phase; indeed,
D LRTA∗(5) requires 19.98 more expansions on average
than our subgoaling technique.

LRTA∗ with subgoaling obtains good quality solutions by
expanding a single state per move. The state-of-the-art algo-
rithms D LRTA∗ and kNN LRTA∗ need several expansions
per planning episode yielding higher computation times.

Summary and Conclusions
We presented a simple and fast approach that computes and
exploits subgoals for real-time pathfinding when the envi-
ronment is known in advance. In the pre-computation phase,
our subgoaling algorithm performs a backward search which
returns a tree of subgoals. Each subgoal intuitively corre-
sponds to an exit point from a heuristic depression. In the
online planning phase, we modify LRTA∗ slightly to sequen-
tially pursue goals in a branch of a the subgoal tree.

The performance exhibited by our approach is better
both in terms of preprocessing time and solution quality
than those obtained by Bulitko and Björnsson (2009) for
kNN LRTA∗ over the same maps and running on similar
hardware. Our approach seems comparable with D LRTA∗
in terms of preprocessing and quality. However, D LRTA∗
is more complex and requires more expansions per move. A
recent version of kNN LRTA∗ that improves upon D LRTA∗
is presented by Bulitko, Björnsson, and Lawrence (2010).

We think our approach has plenty of potential, as there
are many ways in which it could be extended. Computing
smaller trees and grouping states that have similar subgoal
trees are interesting avenues of future research. Our sub-
goal trees can also be straightforwardly incorporated into
other real-time search algorithms such as LSS-LRTA∗ or
LRTA∗(k) (Hernandez and Meseguer 2005).
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