
Escaping Heuristic Depressions in Real-Time Heuristic
Search

(Extended Abstract)

Carlos Hernández
Departamento de Ingeniería Informática

Universidad Católica de la Ssma. Concepción
Concepción, Chile

Jorge A. Baier
Depto. de Ciencia de la Computación

Pontificia Universidad Católica de Chile
Santiago, Chile

ABSTRACT

Heuristic depressions are local minima of heuristic functions.
While visiting one them, real-time (RT) search algorithms
like LRTA∗ will update the heuristic value for most of their
states several times before escaping, resulting in costly solu-
tions. Existing RT search algorithm tackle this problem by
doing more search and/or lookahead but do not guide search
towards leaving depressions. We present eLSS-LRTA∗, a
new RT search algorithm based on LSS-LRTA∗ that actively
guides search towards exiting regions with heuristic depres-
sions. We show that our algorithm produces better-quality
solutions than LSS-LRTA∗ for equal values of lookahead in
standard RT benchmarks.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Graph and tree search strategies, Heuris-
tic methods

General Terms

Algorithms, Experimentation

Keywords

Agent Reasoning::Planning (single and multi-agent), Robot
Reasoning::Planning, Path Planning

1. INTRODUCTION
In many real-world applications, agents need to act quickly

in dynamic, initially unknown domains. Example applica-
tions range from robot navigation, to agent navigation in
games (e.g., Baldur’s Gate, Starcraft, etc.). Real-time (RT)
search (e.g., [8]) is a standard paradigm for solving search
problems in those settings. RT algorithms run a computa-
tionally cheap observe-plan-act cycle, in which the environ-
ment is observed, an action is selected, and then executed.
Their search is guided by a heuristic function h, like in stan-
dard A∗ search [3].
Early heuristic RT algorithms like LRTA∗ and RTA∗ [8]

perform poorly in presence of heuristic depressions [5] –

Cite as: Escaping Heuristic Depressions in Real-Time Heuristic Search
(Extended Abstract), Carlos Hernandez and Jorge A. Baier,Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6,
2011, Taipei, Taiwan, pp. XXX-XXX.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

bounded regions of the search space in which the heuris-
tic is unrealistic with respect to the heuristic value of the
states in the border of the region. Before exiting a depres-
sion, they will visit most states in the depression, possibly
many times. State-of-the-art RT search algorithms (e.g. [7,
2, 6, 1, 4]) escape depressions more quickly as a consequence
of performing more lookahead or more learning. More looka-
head involves selecting an action by looking farther away in
the search space, whereas more learning involves updating
the heuristic values of several states in a single iteration.
There are many algorithms that use one or a combination
of these techniques.

In this paper, we propose eLSS-LRTA∗, an RT search al-
gorithm that actively guides search towards escaping heuris-
tically depressed regions. eLSS-LRTA∗ is based on LSS-
LRTA∗, a state-of-the-art RT search algorithm. eLSS-LRTA∗

defers from its ancestor in two main aspects: (1) it provides
a mechanism for detecting states that belong in a heuristic
depression, and (2) it prefers to expand nodes that are not
in a heuristic depression during its lookahead search.

We perform an experimental evaluation that shows gener-
ally improved performance in standard benchmark domains.
In most cases, for an equal amount of lookahead eLSS-LRTA∗

finds better solutions in less time. Additionally, we per-
formed a theoretical analysis; desirable properties, such as
termination, hold for eLSS-LRTA∗.

2. ESCAPING HEURISTIC DEPRESSIONS
The heuristic value of a state s in the search space is an

estimation of the optimal cost incurred to reach a goal state.
As such, a good heuristic is one that assigns higher values to
states that are farther from the goal. In RT search problems,
however, heuristics usually contain depressions [5].

Brief Sketch of the Algorithm Our algorithm, eLSS-
LRTA∗, is a simple yet effective modification of LSS-LRTA∗.
The description that follows assumes familiarity with LSS-
LRTA∗ (details in [7]).

To escape heuristic depressions eLSS-LRTA∗ seeks a quick
way out by explicitly avoiding states in a depression. The
main conceptual difference between eLSS-LRTA∗ and its an-
cestor is that the former carries out its lookahead search by
preferring states that are not in a depression. To achieve
this, we slightly modify LSS-LRTA∗’s lookahead procedure
(originally an A∗) to use two priority queues instead of a
single one. In the first priority queue, Open1, it inserts all
states that are still not proven to be in a depression, whereas
in the second queue, Open2, it puts states that are known

Figure 1: Game (top row) and office maps (bottom
row). Areas of 2 × 2 rooms are shown for the office
maps.

-40%

-20%

0%

20%

40%

60%

 1 5 9 13 17 21

A
v
e
ra

g
e
 C

o
s
t
%

 I
m

p
ro

v
e
m

e
n
t

Lookahead

game maps

office maps

Figure 2: Average Percentage Cost Improvements

to be in a depression. While doing the lookahead search,
the algorithm will always expand a state in Open1 if pos-
sible, and will only expand a state from Open2 if Open1 is
empty. Once the lookahead has been carried out, the strat-
egy for updating the heuristic values is essentially the same
as in LSS-LRTA∗, but the update procedure is extended
to mark the states that are inside a depression, so that in
later iterations those marked states can be avoided. The
learning phase of eLSS-LRTA∗ is a slight modification of
LSS-LRTA∗’s. It is a version of Dijkstra’s algorithm that
increases the heuristic of the states in the closed list of the
A∗ search to the maximum value that maintains consistency.
A state is marked if and only if its heuristic increased.
When LSS-LRTA∗ finishes the lookahead search, it de-

cides what path to traverse by looking at the best state
in the priority queue resulting from the A∗ search. eLSS-
LRTA∗, on the other hand, selects the best state in Open1,
if one exists, and else selects one from Open2.

3. EVALUATION
We evaluated the algorithm theoretically and proved it

has desirable properties. In particular if h is initially con-
sistent, it remains consistent. eLSS-LRTA∗ is complete: if
a solution exists, it is found. Experimentally, we compared
eLSS-LRTA∗ with LSS-LRTA∗ in pathfinding tasks over ini-
tially unknown terrain. For fairness, we use comparable im-
plementations with the same underlying code base.
The user-given h-values are the octile distances [9]. We

use three computer game maps adapted from the gameWorld
of Warcraft (sizes: 169×169, 128×128, and 128×128) and
three indoor office maps of 1000 × 1000 cells each (Fig. 1).
For each test case in game maps, we choose the start and the

goal cell randomly, ensuring they are sufficiently far apart.
Figure 2 shows average cost improvements averaged over

3000 test cases for the game maps (1000 test cases for each
particular game map) and over 3000 test cases for the office
maps (1000 test cases for each particular office map). Time
per search episode is very similar for both algorithms, and
thus total search time is proportional to solution cost. We
used a Linux machine with a Pentium CoreQuad 2.33 GHz
CPU and 8 GB RAM.

In game maps eLSS-LRTA∗ consistently outperforms LSS-
LRTA∗. Most significant improvements are produced for low
values of the lookahead parameter. Improvements decrease
as the lookahead parameter increases. In the office maps,
we do observe significant improvements for small values of
the lookahead parameter (1–5), however for higher values
(>9) the quality may be degraded. We think this may be
explained by the quality of the heuristic and the structure of
the problem. The heuristic is more misleading in the office
scenario than on the game scenario. In these problems the
cell corresponding to the position of the agent usually lies in
the interior of a big heuristic depression. When lookahead
is carried out, most cells are marked as in a depression. Due
to the structure of the problem, it is often the case that
the agent finds an obstacle on its way. Thus, a new search is
started from a states whose immediate neighbors are already
marked. In that case eLSS-LRTA∗ behaves like LSS-LRTA∗.

4. RELATEDWORK
There exist algorithms that escape heuristic depressions

by doing more lookahead or learning. Examples and RTAA∗

[6], LRTA∗

LS(k) [4]. LSS-LRTA∗ finds better-quality solu-
tions than RTAA∗ for the same value of the lookahead pa-
rameter (though in more time) [6] . LSS-LRTA∗ is competi-
tive with LRTA∗

LS(k) [4]. We are not aware of any algorithms
that guide search towards escaping away of depressions.

Acknowledgements Carlos Hernandez was partly funded
a by Fondecyt project #11080063. Jorge Baier was funded
by the VRI-38-2010 grant from Universidad Católica de Chile.

5. REFERENCES
[1] Yngvi Björnsson, Vadim Bulitko, and Nathan R. Sturtevant.

TBA*: Time-bounded A*. In IJCAI, pages 431–436, 2009.

[2] V. Bulitko and G. Lee. Learning in real time search: a
unifying framework. Journal of Artificial Intelligence
Research, 25:119–157, 2006.

[3] Peter E. Hart, Nils Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimal cost paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2),
1968.

[4] C. Hernandez and P. Meseguer. Improving LRTA*(k). In
IJCAI, pages 2312–2317, 2007.

[5] Toru Ishida. Moving target search with intelligence. In
AAAI, pages 525–532, 1992.

[6] S. Koenig and M. Likhachev. Real-time adaptive A*. In
AAMAS, pages 281–288, 2006.

[7] Sven Koenig and Xiaoxun Sun. Comparing real-time and
incremental heuristic search for real-time situated agents.
Autonomous Agents and Multi-Agent Systems,
18(3):313–341, 2009.

[8] Richard E. Korf. Real-time heuristic search. Artificial
Intelligence, 42(2-3):189–211, 1990.

[9] Nathan R. Sturtevant and Michael Buro. Partial pathfinding
using map abstraction and refinement. In AAAI, pages
1392–1397, 2005.

